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Abstract 

The research presented in this thesis focused on the development of a prediction model for 

friction performance of asphalt pavements quantified as skid resistance, accounting for the non-

standard texture parameters. Pavement friction results from a complex interplay of many 

influencing parameters that can be grouped in four distinct groups: surface roughness 

properties, driving properties, vehicle tire properties and environmental influences. Surface 

roughness properties were selected as the key influencing factor in this research. There are two 

specific texture roughness scales relevant for pavement's friction performance: micro-texture 

and macro-texture. Current standardized practice enables the determination of macro-texture 

indicators, commonly related to friction performance measured on the roads. Despite the effort 

to establish a relationship between the standard texture indicators and friction performance, 

there still exists no unique model which would provide a reliable and unambiguous prediction 

of friction from the traditionally determined texture roughness properties. 

To investigate the relationship between pavement friction performance and surface roughness 

on both relevant texture scales, an alternative method based on remote sensing technology was 

developed in this thesis. The method utilized a digital camera for the acquisition of multiple 

pavement surface images from a close range, further used for the creation of a 3D digital surface 

model. The method was called Close-Range Orthogonal Photogrammetry - CROP method. 

Created 3D digital surface models enabled the analysis of multiple roughness parameters on 

micro- and macro-texture levels. The CROP method was optimized for the data acquisition 

procedure, photographic equipment used and procedure for digital surface model processing 

and analysis. The accuracy of CROP method was verified by performance comparison to a 

benchmark technology for 3D digital model creation – a high precision 3D laser scanner. 

Selected non-standard texture parameters were used as predictors in the development of a 

friction prediction model, performed in regression analysis framework. Friction performance 

was quantified by skid resistance measurements of the analysed surfaces, performed by a 

stationary low-speed measurement device. Four different regression-based models were 

established and compared for the model performance assessment, accounting for the model 

predictive strength evaluated by coefficient of determination values and selected error metric. 

The optimal model was defined by partial least squares regression, with two non-standard 

texture parameters selected as the most influential for the prediction of pavement surface 

friction performance. In comparison to the performance of simple linear regression model 
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accounting for a single traditional texture indicator Mean Profile Depth, the model developed 

in the thesis obtained better performance for the prediction of skid resistance.    

Keywords: pavement friction, skid resistance, pavement texture, experimental analysis, close-

range photogrammetry, digital surface models, non-standard texture parameters, regression 

analysis framework, partial least squares, prediction model  
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Sažetak 

Istraživanje predstavljeno u ovom doktorskom radu usmjereno je na razvoj modela predikcije 

hvatljivosti, uzimajući u obzir nestandardne parametre teksture kolnika. Hvatljivost na kolniku 

složen je fenomen koji proizlazi iz međusobnog djelovanja mnogih utjecajnih parametara koji 

se mogu grupirati u četiri različite skupine: svojstva hrapavosti površine, svojstva vožnje, 

svojstva pneumatika vozila i utjecaji okoliša. Svojstva hrapavosti površine odabrana su kao 

ključni utjecajni faktor u ovom istraživanju. Dvije su specifične razine hrapavosti teksture 

relevantne za hvatljivost: mikrotekstura i makrotekstura. Standardizirana praksa omogućuje 

određivanje pokazatelja makroteksture, koji se uobičajeno povezuju sa izmjerenim svojstvom 

hvatljivosti na kolniku. Unatoč naporima da se uspostavi odnos između standardnih pokazatelja 

teksture i hvatljivosti, još uvijek ne postoji jedinstveni model koji bi pružio pouzdano i 

nedvosmisleno predviđanje hvatljivosti iz tradicionalno određenih svojstava hrapavosti 

teksture. 

Kako bi se istražio odnos između hvatljivosti kolnika i hrapavosti površine na obje relevantne 

razine teksture, u ovom je doktorskom radu razvijena alternativna metoda temeljena na 

tehnologiji daljinskih istraživanja. U metodi je korištena digitalna kamera za prikupljanje većeg 

broja fotografija površine kolnika iz neposredne blizine, koje se dalje koriste za izradu 

trodimenzionalnog digitalnog modela površine. Metoda je nazvana Close-Range Orthogonal 

Photogrammetry (Ortogonalna fotogrametrija bliskog dometa) - CROP metoda. Izrađeni 

trodimenzionalni digitalni modeli površina omogućili su analizu nekoliko parametara 

hrapavosti na razini mikro i makro teksture. CROP metoda optimizirana je za postupak 

prikupljanja podataka, korištenu fotografsku opremu te postupak obrade i analize digitalnog 

modela površine. Točnost CROP metode potvrđena je usporedbom sa referentnom 

tehnologijom za kreiranje 3D digitalnog modela – 3D laserskim skenerom visoke preciznosti. 

Odabrani nestandardni parametri teksture korišteni su kao ulazni parametri u razvoju modela 

predikcije hvatljivosti, izvedenog u okviru regresijske analize. Hvatljivost je kvantificirana 

mjerenjem otpora klizanja analiziranih površina standardnim stacionarnim mjernim uređajem 

pri malim brzinama. Četiri različita regresijska modela uspostavljena su i uspoređena za 

procjenu izvedbe modela, uzimajući u obzir snagu predviđanja modela procijenjenu iz 

koeficijenta determinacije i odabrane metrike pogreške. Optimalni model definiran je 

djelomičnom regresijom najmanjih kvadrata, s dva nestandardna parametra teksture 

odabranima kao najutjecajnijima za predviđanje hvatljivosti. U usporedbi sa jednostavnim 

modelom linearne regresije, koji uzima u obzir samo srednju dubinu profila kao tradicionalni 
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indikator teksture, model predikcije hvatljivosti razvijen u ovom doktorskom radu postigao je 

bolju izvedbu. 

Ključne riječi: trenje na kolniku, otpor klizanju, tekstura kolnika, eksperimentalna analiza, 

fotogrametrija bliskog dometa, digitalni modeli površine, nestandardni parametri teksture, 

regresijska analiza, djelomični najmanji kvadrati, model predviđanja  
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1. Introduction 

 

This Chapter provides a brief description of the research problem investigated in this thesis. 

The relevance of the pavement friction performance for traffic safety is adressed as the main 

motivation for the research. The defined research aims and hypotheses are given, together with 

the scope of this research. A brief description of research methodology is given. A textual 

description and graphical summary of the thesis structure is presented at the end of the 

introductory chapter. 
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1.1.Research background  

Traffic safety of road users is, together with the road capacity, the most important functional 

feature when the motorized road traffic is considered. Three main influencing factors are 

responsible for adequate traffic safety: drivers' behaviour, vehicle properties and road properties 

(Bilten o sigurnosti cestovnog prometa, 2021). More than half of traffic accidents in Croatia are 

caused by drivers' behaviour (57%), and in combination with road properties drivers are 

responsible for 35% of severe traffic accidents (Nacionalni plan sigurnosti cestovnog prometa 

RH, 2021). Most traffic accidents with serious health or fatal outcomes occur when the driving 

speed is not adjusted to given traffic conditions, either speed limit, weather conditions or road 

surface conditions (39%). To adress the drivers' behaviour as the main influencing factor for 

road safety improvements, national regulations are directed towards the increase of driving 

culture by strictly penalizing the most severe traffic violations (Bilten o sigurnosti cestovnog 

prometa, 2021). As the negative bihevioral effect could never be fully excluded, European 

policies for road safety adopted the so-called „Safe System Approach“ (SSA), accounting for 

policies and measures which will be „forgiving“ for road users and reduce the negative effect 

of drivers' risky behaviour (Transport Research Centre, 2008).  

The SSA has four key factors: safe infrastructure, safe road usage, safe vehicles and fast and 

efficient emergency services. Safe infrastructure is the key factor relevant for civil engineering 

practices dealing with safe road geometry and pavement design. It includes measures and 

activities pointed towards the reduction of severe traffic accidents. Safety inspection and 

analysis of existing and new roads by regular monitoring campaigns where road functional 

properties related to traffic safety are analysed is one of the activities defined in the Croatian 

national plan for road safety (Nacionalni plan sigurnosti cestovnog prometa RH, 2021).   

There are multiple elements of road infrastructure that have to be considered in the process of 

planning, design, construction and maintenance of safe road infrastructure. Pavement surface 

friction is one of the most important functional features as it directly impacts the safety of road 

users (Wambold et al., 1995). It is a physical phenomenon occuring on the contact between the 

vehicle tire and pavement surface, which controls the stability of the vehicle in motion and 

contributes to vehicle stopping when a braking maneuver is applied. Insufficient friction 

between the vehicle tire and pavement surface results in an uncontrolled vehicle motion and 

disables the driver to stop the vehicle, which could lead to road accidents with negative 
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financial, health or fatal outcomes. Therefore, the adequate friction performance is an important 

aspect of road safety management under jurisdiction of road agencies. 

Friction performance on roads is mostly quantified by a non-dimensional friction coefficient, 

resulting from the friction force that occurs on the contact surface between the vehicle and 

pavement (Hall et al., 2009). The magnitude of friction coefficient depends on many influential 

parameters, which can be categorized into four main groups: pavement surface properties, 

driving properties, vehicle tire properties and environmental conditions. The parameters that 

can be defined and controlled by pavement engineering practice are related to the pavement 

surface properties. The most relevant surface features related to friction are roughness 

characteristics, defined by pavement texture. Pavement texture is categorized by different 

texture levels, where each level governs a certain driving effect (Wambold et al., 1995). Two 

texture levels related to friction performance are micro- and macro-texture, defined by certain 

wavelength and amplitude range and resulting from the properties of pavement constituent 

materials and construction methods (Kogbara et al., 2016).  

Pavement friction performance is regularly monitored on roads by standardized measurement 

procedures and evaluated by defined threshold values of friction coefficient, specific for each 

country and defined by naional regulations. Inadequate friction performance reduces the safety 

level and contributes to an increased risk of traffic accidents occurence. Besides friction, texture 

level is also monitored  as a part of pavement performance evaluation. Texture measurements 

produce a single texture indicator, mostly on macro-texture level. They are not affected by any 

influencing factor but provide a geometrical description of roughness feature, which makes 

them an objective descriptor of friction related pavement performance(Kogbara et al., 2016; 

Wang et al., 2011). 

The intention to relate friction performance with pavement texture has been a focal point of 

numerous research dealing with pavement friction phenomenon (Fwa, 2021). To do so, 

prediction models were developed in numerical and empirical framework. These models 

account for a single texture property evaluated by traditional measurement methods or include 

the effect of other influencing factors, such as vehicle speed, traffic load effect or environmental 

conditions. The quality of developed models varies significantly, from no predictive strength 

to almost perfect prediction based on included influencing parameters. There exists no uniquely 

applicable prediction model, especially in case where influencing parameters other than texture 

were included in the model development. When the model is established only from the 
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traditionally evaluated texture properties, the predictive strength of the model is usually weak. 

The reason is the generalization of surface roughness features to a single indicator, which 

cannot describe the true effect that texture has on the friction performance. 

In recent two decades, the effect of texture roughness to friction performance has been 

investigated by remote sensing technologies (Matlack et al., 2023; Yu et al., 2020). These 

technologies provide a more detailed insight to pavement surface morphology and enable the 

extraction of roughness parameters on texture micro- and macro-scale, used for friction 

prediction models establishment. Two most common technologies used for pavement texture 

analysis are photogrammetry and laser scanning which enable the creation of 3D digital surface 

models, further analysed in terms of roughness properties related to friction. In comparison to 

the friction prediction models developed from the traditional texture characterization methods, 

the models where alternative roughness parameters are the predictors obtained better 

performance (Q. J. Li et al., 2020&2017).    

1.2.Friction terminology explication 

Two different terms can be found in the literature regarding the pavement surface frictional 

performance: pavement friction and skid resistance (ROSANNE Project Deliverable D4.1, 

2014). Pavement friction is a term related to the physical phenomenon, describing the grip 

developed on the contact between a particular road surface and vehicle tire, influenced by a 

number of parameters. Skid resistance reffers to the road surface’s contribution to the frictional 

performance determined by a standardized measurement procedure, performed under dry or 

wet surface conditions. The measurement result is expressed as „skid number“. In general, the 

term “friction” represents the phenomenon itself and the term “skid resistance” represents the 

pavement surface’s functional property related to the measured frictional performance.  

This research is focused on the investigation of pavement surface friction performance affected 

by surface roughness properties. Friction performance was evaluated by a standard 

measurement procedure in dry surface conditions, resulting in friction indicator called Skid 

Resistance Tester number. The term „skid resistance“ was used in the thesis title as the 

prediction models for friction performance developed in this research were established on dry 

surface skid resistance measurements. However, the term „pavement friction“ will be used 

further in the thesis as a synonym to „skid resistance“, for the sake of simplicity and broader 

analysis of pavement frictional properties presented in Chapters 2 and 3. 



Ivana Ban: A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters 

6 

 

1.3.Problem statement and research aims 

The main objective of this research is the prediction of pavement friction performance based 

on texture properties. The initial idea was motivated by the availability of measurement 

equipment for texture characterization in the Transportation laboratory of Faculty of Civil 

Engineering Rijeka. The intention was to utilize the traditional measurement methods to relate 

measured pavement texture with friction performance.  Several measurement campaigns were 

performed in cooperation with Croatian road agencies, resulting in a large database of friction 

and texture values collected on different types of roads and under different climatic conditions. 

The goal was to develop a friction prediction model based on texture indicators derived from 

traditional measurement methods. Texture measurements were simpler than friction 

measurements, as they did not require any additional resources such as water supply or traffic 

regulation during the measurement procedure and provided indicators which are objective 

representation of texture roughness features. Conducted analyses however did not result in a 

significant or reliable friction prediction model (Pranjić et al., 2020). 

To adress the problem of defining a friction prediction model from texture roughness features, 

the analysis of an advanced method for a detailed texture characterization was done. The 

method is based on photogrammetry, an image-based measurement methodology which enables 

the interpretation of the relevant properties extracted from the digital reconstruction of an object 

captured by images (Luhmann et al., 2006). A special case of photogrammetry, called close-

range photogrammetry was utilized in this research for pavement surface texture data collection 

on sub-millimeter scale.  

The results of the preliminary research of texture-friction relationship establishment by 

traditional measurement methods and the potential of photogrammetry method for a detailed 

pavement texture roughness description formed the main research aim of this thesis - to 

establish a reliable prediction model for friction performance based on non-standard texture 

parameters, derived from the digital pavement surface representation produced by close-range 

photogrammetry method.  

To reach this aim, following research goals were defined: 

1.) Establish a photogrammetry-based data collection procedure which will produce digital 

surface representations with sufficient precision and accuracy for the analysis of pavement 

texture morphology on relevant texture scales. By defining a sutiable data collection procedure, 

pavement texture features could be extracted from the reconstructed digital surface models.  
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2.) Determine the texture roughness parameters with a significant influence on pavement 

friction performance.  

3.) Define a friction prediction model in regression analysis framework by using selected 

texture roughness parameters as model predictors. Several models were proposed and evaluated 

by selected performance measures to determine the optimal model. 

The defined research aim and corresponding research goals were pointed towards the 

confirmation or rejection of the following thesis hypotheses: 

H1: Close-range photogrammetry based method is suitable for the determination of non-

standard pavement texture parameters.  

H2: Non-standard pavement texture parameters enable a more detailed description of surface 

roughness properties related to the pavement friction performance in comparison to traditional 

texture descriptors.   

H3: Non-standard pavement texture parameters can be used for the definition of a friction 

prediction model which is more reliable in comparison to the prediction models defined from 

traditional texture indicators. 

1.4.Research scope and limitations 

Pavement friction is adressed as a highly complex phenomenon influenced by many parameters 

and a complete understanding of the friction mechanism on tire-pavement interface would be 

reachable if all the influential factors were considered. The research scope in this thesis was 

limited to investigation of pavement texture properties related to friction performance. The 

roughness characteristics were investigated at two texture levels relevant for friction: macro-

texture and to a certain extent micro-texture, following the technical limitations of utilized 

equipment for data collection.  

To reach the defined research aim and the corresponding research goals, a thorough 

investigation of advanced photogrammetry-based method for data acquisition was conducted, 

including the analysis of the method's performance in different data acquisition setups. The 

relative camera position to the pavement's surface, number of acquired images and differences 

in photographic equipment used were evaluated. The properties of pavement surface's digital 

models created by different data acquisition setups were analyzed to evaluate the performance 
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of method's variants. The optimal method was verified by a selected benchmark remote sensing 

technology for small-scale measurements. 

The development of a friction prediction model based on non-standard texture parameters 

obtained by advanced texture measurement method was done in regression analysis framework, 

which was found to be suitable for the determination of cause-effect relationships and 

predictions from two or more variables determined empirically, in this case the texture 

parameters and friction performance (Uyanık & Güler, 2013).  

1.5.Thesis outline 

The research activities and results obtained in this thesis are structured in seven chapters: 

Introduction, Pavement friction, Pavement texture properties related to friction, Preliminary 

research of texture-friction relationship, Development of CROP method, Development of 

friction prediction model and Research conclusions and further plans (Figure 1.1).  

The Introduction chapter (1) summarizes the relevance of the problem, defined research aim 

and hypothesis, research scope and limitations and provides a schematic overview of thesis 

content. The chapter Pavement friction (2) is a state-of-the-art overview of the friction 

phenomenon in general and in the context of pavement functional performance. It provides a 

thorough analysis of the influencing factors, measurement methods and friction performance 

characterization incorporated in national regulations in Croatia, European Union and 

worldwide. In this chapter, existing friction performance prediction models are analysed and 

uniquely classified to simple and complex prediction models, with respect to the number of 

influencing parameters they account for and to the framework they were developed in. The 

chapter Pavement texture properties related to friction (3) is devoted to an overview of 

pavement texture properties, as the texture was selected as the key influencing parameter of this 

research. Pavement texture classification according to World Road Association PIARC is 

given, with the emphasis on two friction-related texture levels: micro-texture and macro-

texture. Traditional methods for texture measurement and characterization are reviewed, 

pointing out the deficiencies of such methods in friction performance assessment via texture 

properties. Advanced methods for texture characterization and evaluation are described as an 

introduction to the development of a novel methodology for texture analysis, based on remote 

sensing photogrammetry technology. The chapter Preliminary investigation of pavement 

texture-friction relationship (4) presents the results obtained from the initial attempt to relate 
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pavement texture and friction performance determined by traditional measurement methods. 

The results presented in this chapter are published in Pranjić et al., 2020. The following chapter 

(5) Methodology development for pavement texture data analysis describes the research 

activities performed with the aim to establish a photogrammetry-based methodology for texture 

data acquisition and analysis. A part of the research presented in this Chapter was published in 

Pranjić & Deluka-Tibljaš, 2022. The CROP method was utilized for the acquisition of texture 

dataset, used for the development of a friction prediction model based on non-standard texture 

roughness parameters, described in chapter (6) Development of a friction performance 

prediction model. The final chapter (7) Research conclusions and further research perspectives 

provides a summary of performed research and discusses the importance and relevance of 

research findings with respect to the existing research results in the field. The limitations, 

disadvantages and weak points of the performed research are pointed out, together with the 

opened research questions and further research plans. 
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2. Pavement friction  

 

In this Chapter an insight to the theory of friction and rough contact mechanics is given. 

The physical meaning of friction and its application to the analysis of a rough contact 

problem in the pavement surface – vehicle tire system is described. An overview of key 

influencing factors for pavement friction realization is provided. Standard methods for 

pavement friction measurements and established pavement friction indicators are presented 

and discussed. The models developed for the prediction of pavement frictional performance 

based on different influencing factors are analysed. A summary of the most important 

findings for the pavement friction analysis is given in the final section of this Chapter. 
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2.1. Friction force and coefficient of friction 

Friction is a resistive force that occurs when one body moves over another body. It is 

generated at the contact surface between two bodies and directed opposite to the direction 

of motion, acting to try to stop the relative motion of the moving body. The forces present 

in this system are the normal load F, acting perpendicular to the contact surface, and the 

tangential (friction) force T, acting parallel to the contact surface. The proportionality 

between the tangential force and normal load is defined by the coefficient of friction, which 

occurs on the contact surface between the bodies (Figure 2.1). 

 

Figure 2.1. Definition of friction coefficient µ as a ratio between tangential friction force (T) and Normal force 

(F) 

Friction coefficient can be either static or kinetic, depending on the relative motion of the 

system. If the ratio between friction force and normal force is below the critical value no 

motion occurs, and the ratio is defined as static coefficient of friction (Vakis et al., 2018). 

If the critical value of the friction force is overcome, motion occurs and the proportionality 

between the normal and tangential force is now defined as the kinetic coefficient of friction. 

If the motion is sliding, kinetic friction is defined as sliding friction. If the moving body is 

in rolling motion, the coefficient of friction is defined as rolling friction (Figure 2.2). 

 

Figure 2.2. Difference between static, sliding and rolling friction 

The fundamental friction laws described above are defined by Amontons and Coulomb 

(Vakis et al., 2018). They state that the friction force is proportional to normal load and 
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independent of the apparent contact area (1st and 2nd Amontons law) and that kinetic 

friction is independent of sliding speed (Coulomb law).  According to the Amontons and 

Coulomb laws of friction, both the static and kinetic coefficients of friction are defined as 

constants that are independent of the contact area and sliding velocity (Barber, 2018; Popov, 

2010). However, this constant proportionality depends on several influencing factors, for 

example the surface roughness, properties of the interacting materials and thermal 

conditions but also contact time and sliding velocity. Therefore, the basic friction laws are 

extended to more complex frictional laws to account for all the influencing variables for 

applications that cannot be described by the basic friction law (Vakis et al., 2018). 

Static friction coefficient is greater than kinetic friction coefficient, as stated by Euler. The 

linearity of the normal and frictional force defined by the Amontons and Coulomb law is 

applicable just for a limited range of forces and must be interpreted carefully for materials 

such as polymers or elastomers where the actual contact area differs significantly from the 

apparent contact area (Popov, 2010). However, for contact problems with friction observed 

at the macro level, the fundamental friction laws can be used not just for the definition of 

frictional behavior, but also for the comparison to experimental results (Paggi & Hills, 

2020). 

2.2. Contact mechanics on rough surfaces 

Surface roughness is an important parameter in the friction phenomenon as it determines 

the size of the actual contact area between two bodies in contact(Vakis et al., 2018). If at 

least one of the contacting bodies surfaces is rough, the actual contact area is much smaller 

than the nominal contact area equivalent to the true contact area in case of a smooth contact 

(Figure 2.3). The contact pressure is a function of the real contact area and the applied 

normal load. Therefore, the coefficient of friction derived from the ratio between tangential 

and normal force directly depends on the real contact area. An adequate representation of 

the surface roughness is crucial for determining the frictional behavior of bodies in contact. 

Contact mechanics represents a fundamental discipline focused on the study of the 
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deformation that occurs when two bodies come into contact and the resulting effects, 

including friction (Popov, 2010).  

 

Figure 2.3. Difference between contact area for smooth contact (left) and rough contact (right) 

2.2.1. Rough contact theories 

The study of the contact mechanics problem began with the Hertzian theory in 1882, as a 

contact between two single non-deformable asperities of a parabolic shape in the contact 

zone (Persson, 2006).  The contact was assumed to be frictionless and the proportion of the 

squeezing force F and resulting contact area A was non-linear, defined as A~F (2/3). Hertz 

extended his single contact model to a rough surface contact model, where the surface 

roughness was defined as a regular array of parabolic asperities and the contact theory was 

applied to each asperity of the surface (Vakis et al., 2018). This was the simplest asperity 

contact model, representing a basis for later smooth contact theories, e.g. JKR theory 

(1971.) and DMT theory (1975.), but also for several non-smooth contact theories, e.g., 

Archard (1957.) and Greenwood and Williamson (1966.) contact theories, which account 

for the effect of surface roughness on the mechanical response of the system. 

The effect of surface roughness to the frictional response was first adressed by Bowden and 

Tabor (1950.), who introduced the importance of roughness in frictional contact by 

distinguishing between the actual contact area and the apparent contact area caused by the 

roughness of the contacting bodies (Vakis et al., 2018). Because of the importance of 

surface roughness to the problem of contact mechanics, this theory became a basis for the 

development of rough contact mechanics theories. In general, the rough contact problem is 

described by two main theories: Greenwood and Williamson (GW) theory and Persson's 

theory of rubber friction. Greenwood and Williamson (1966) introduced the multi-asperity-

based contact model, while Persson's theory is based on the pressure probability distribution 

function and includes real surface roughness (Persson, 2001). 

Greenwood and Williamson (GW) theory is a pioneering approach to rough contact 

mechanics, predicting the load-displacement behaviour of contacting surfaces by 
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considering the height distribution of the asperities (Ciavarella et al., 2008). This theory 

assumes that the surface roughness can be described by a set of asperities whose peak 

heights follow a normal distribution, they have an equal radius of curvature and the contact 

between them is assumed to be independent since they are separated by distances at which 

their mutual influence can be neglected. Another assumption is the approximate 

proportionality of the contact area and the applied load and the contact between two surfaces 

is described by the Hertzian contact theory (Vakis et al., 2018.). By neglecting the 

interaction between the asperities, GW theory is physically incorrect and affects the 

resulting forces in the contact theory. Nonetheless, the GW theory was a basis for the 

development of some advanced multi-asperity contact theories such as Nayak’s theory or 

BGT theory (Vakis et al., 2018). Two main drawbacks of the multi-asperity theories are the 

assumption that there is no interaction between asperities and the lack of inclusion of real 

surface roughness, which has multi-scale characteristics and is crucial for defining a contact 

problem with roughness and friction. Contact models with multiple asperities are generally 

correct only for very low pressures and small contact areas due to the simple representation 

of surface roughness and in cases when long-range elastic coupling is neglected. 

A fundamentally different approach to rough contact mechanics was given by Persson 

(2001), whose theory considers a very large contact area and high squeezing forces that 

cause a nearly complete contact at the interface (Persson, 2006). The stress distribution at 

the contacting interface is calculated by a diffusion-like equation, considering the stress as 

the spatial variable and magnification level as the time variable. The magnification level ζ 

is determined as the ratio between contact length L and shortest surface wavelength λ that 

can be detected at a given magnification level ζ. For low magnification levels, the contacting 

interface appears to be smooth, and the true contact area is equal to the nominal contact 

area. By increasing the magnification of the contacting interface (ζ=10 or ζ=100) in a way 

that more roughness components are observed, non-contact regions occur, and the stress 

distribution function propagates as a Gaussian distribution (Figure 2.4.).  

Persson's theory predicts that the contact area evolves as an error function from zero to full 

contact, and it is approximately valid for all squeezing forces. The linearity of Persson's 

theory holds for realistic area/pressure intervals and provides accurate predictions for full 

contact conditions and approximate results for partial contact cases. Persson’s theory was 

originally developed to implement the theory of rubber friction on rough road surfaces, 
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incorporating rubber-like materials such as vehicle tyres that exhibit viscoelastic behaviour 

when in contact with the road surface (Vakis et al., 2018). 

 

Figure 2.4. The efect of magnification level on the contacting interface and the distribution of the stress function 

defined in Persson's contact theory (Persson, 2001) 

2.2.2. Rubber friction theories 

The theory of rubber friction assumes that friction results from energy dissipation during 

the deformation process of the elastomer when in contact with rough surface irregularities. 

Rubber friction differs significantly from the frictional behaviour of other solids due to the 

specific properties of rubber: very low modulus of elasticity and high internal friction over 

a wide range of frequencies (Persson, 2001). The pioneering experimental studies by 

Grosch (1962) showed that rubber friction is mainly related to the internal friction of the 

rubber, leading to a coefficient of friction that depends on sliding speed and temperature 

(Lorenz et al., 2011). These findings led to the conclusion that the frictional force depends 

on the internal friction of the rubber, mainly related to the bulk property of the rubber 

(Persson, 2001). The effect of sliding velocity and the temperature dependence of the rubber 

define its viscoelastic character, which in general has a phase difference between stress and 

strain originating from internal energy dissipation (Lorenz et al., 2015). 

In rubber friction theory, the assumption is that the surface roughness of a rigid body causes 

the deformation of the viscoelastic rubber body during the rolling or sliding motion. This 

results in energy dissipation in the bulk of the rubber. Direct bonding between the rubber 

molecules and the rough substrate followed by viscoelastic deformation and bond breaking 

contributes to the energy dissipation and sliding friction. In rubber friction theory, three 

main components of frictional force are distinguished: adhesion, hysteresis and wear. Each 

of these components contributes to rubber friction in a different way and on different length 
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scales as a result of complex interactions between the materials in contact. The adhesion 

and hysteresis contribution to the pavement friction are described more in detail in section 

2.3. In a discussion about rubber friction theories by (Genovese et al., 2019), two theories 

were selected as significant with respect to their possible application to quantitative 

frictional models - Persson’s rubber friction theory and Heinrich and Klüppel’s rubber 

friction theory. 

Persson’s theory of rubber friction states that the main contribution to the frictional response 

comes from the viscoelastic energy dissipation on the rubber surface in contact with rough 

surface. This phenomenon is a result of the forces acting on the contacting interface, 

observed within the hysteretic contribution to the friction force and without the 

consideration of the adhesion effect, excluded due to the small true contact area. The kinetic 

rubber friction coefficient µkin derived by Persson (2001) is dependent on the rubber 

viscoelastic complex modulus and rough surface representation as power spectral density 

function at a specific velocity (Persson et al., 2005). Surface roughness is considered within 

a limited range of wave vectors related to real physical lengths of the observed problem, 

specifically the texture wavelengths corresponding to the friction relevant texture scales. 

Persson’s theory emphasizes the importance of inclusion of all relevant length scales in the 

determination of frictional response for rubber friction, which is proven to be a sound 

approach verified by conducted numerical and experimental investigations (Lorenz, 2012; 

Ueckermann et al., 2015). 

Heinrich and Klüppel’s (HK) rubber friction theory accounts for the different contributions 

of energy dissipation during the sliding of a rubber on a self-affine rough surface (Heinrich 

& Klüppel, 2008). This theory includes fractal analysis of texture, characterized as a self-

affine surface with three characteristic roughness descriptors: the Hurst exponent related to 

the fractal dimension and two correlation lengths parallel and perpendicular to the surface 

and related to the height-difference correlation. Texture roughness is described by the 

fractal dimension of the surface D, such that 2 ≤ D ≤3, used for the calculation of Hurst 

exponent. The original HK rubber friction theory used the elastic contact model defined by 

GW theory, which was found to be applicable only for a limited roughness spectrum 

(Genovese et al., 2019). A later generalization of HK theory included the viscoelastic 

contact, which showed to be effective for the description of the rubber friction theory 

(Heinrich & Klüppel, 2008). The kinetic friction coefficient in HK theory is defined as a 

sum of frictional coefficients resulting from the dissipation mechanisms adhesion and 
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hysteresis. The adhesion-related friction coefficient is determined as a ratio of adhesion 

force, calculated from the shear stress in the actual contact area and the load-dependent size 

of actual contact area, and normal load. The hysteresis-related friction coefficient is defined 

as velocity-dependent and it is calculated as a ratio of hysteresis friction force, determined 

from the material parameters of the rubber (loss modulus and thickness of the rubber layer) 

and surface roughness power spectral density function, and normal load. 

Rubber friction theories are developed as analytical approach to the friction phenomenon 

on rough contact interface, where the surface roughness characteristics are included as 

analytical functions, for example power spectral density functions or fractal functions. Limit 

ranges of roughness values are often discussed in terms of their relevance to the prediction 

of friction coefficient, so there is no unique rule or range of values defined for usage in 

friction prediction models (Genovese et al., 2019). The fractal description of the surface 

roughness used in analytical models cannot accurately describe the real topology of 

engineering and natural surfaces (Paggi & Hills, 2020). 

Contact problems are in general considered as non-linear due to the material behaviour or 

geometrical non-linearities of the observed problem (Renaud et al., 2005; Vakis et al., 

2018). Rough profiles of the contacting bodies can be conforming as for a fracture induced 

interface, or non-conforming as for an interface between two different bodies. For rough 

contact problems with non-conforming surfaces, the contact area is a priori unknown due 

to the changes in the position over the time or the applied load, which yields non-linearity 

of the problem (Paggi & Hills, 2020). 

To overcome the limitations of analytical methods regarding the non-linearity of the 

problem, numerical methods are utilized for explicit solutions. The numerical approach 

doesn’t require the approximations of surface topology or contact conditions that are 

necessary in analytical solutions. In terms of numerical analysis of rough contact problems 

including friction, the most common methods employed are the finite element method 

(FEM) and the boundary element method (BEM) (Vakis et al., 2018; Paggi & Hills, 2020). 

Both methods can solve rough contact problems and the selection of a specific method 

depends on the nature of the problem. Numerical methods can be computationally complex 

due to the non-linear nature of the problem, especially for multi-scale problems, which 

could result in absence of solution convergence. Recently, standard numerical methods are 

supplemented with multi-scale and hybrid methods which are less computational 
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demanding but still accurate enough to predict the frictional response of a pavement in a 

realistic way ((Putignano & Carbone, 2014; Paggi & Hills, 2020). 

2.2.3. Numerical methods for rough contact mechanics 

Boundary element method (BEM) is a numerical method utilized for solving multiscale 

rough contact problems mostly in the linear elastic regime and for small deformations 

assumption, where only the surface of the bodies in contact must be discretized without the 

need for surface interpolation techniques to discretize the interface (Bugnicourt et al., 2017; 

Putignano & Carbone, 2014). In order to be able to use BEM it is necessary to know the 

surface topography of the bodies in contact defined in a matrix form as a set of coordinates. 

As the contacting surfaces are non-conformal, the contacting area is unknown, and this 

results in a non-linear and complex problem. BEM is a good numerical method for solving 

contact problems of rough bodies in linear elasticity regime with the possibility of its 

extension to some more complex problems including material non-linearity or contact 

problems involving friction by introducing some simplifications of the problem (Nguyen & 

Hwu, 2019). The advantage of the BEM is the fact that it does not require the discretization 

of the entire bulk but only the rough interface for the problem solution, which significantly 

reduces the computational time in comparison to the FEM. The main drawback of this 

method is that it is not generally applicable for more complex problems that involve both 

constitutive and geometric non-linearities in large deformations framework, as is the rubber 

friction problem on rough surfaces. For such problems, the FEM is preferable even if it is 

more computationally demanding than BEM. 

Finite element method (FEM) is a numerical method that can deal with the non-linear 

complexity of the contact problem in different aspects - the non-linear material model, the 

multiscale roughness character, the time and velocity dependence, the temperature effect 

etc. (Vakis et al., 2018). With FEM employed in contact modelling, it is necessary to 

discretize the entire volume of the bodies in contact and define proper contact interaction 

scheme on the contacting interface. FEM is capable of an explicit definition of stress-strain 

relationship by including a constitutive material model of any kind, for both infinitesimal 

and finite strain formulations (Srirangam et al., 2017). The possibilities of numerical 

modelling of contact engineering problems with FEM results in higher computational 

complexity in comparison to BEM, but the method is inevitable for problems that cannot 

be solved by BEM - for example problems with large deformations, large sliding contacts, 

problems with non-linear material behaviour, etc. (Vakis et.al, 2018). In general, the FEM 
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solution of rough contact problems includes the phase where the contact area is defined by 

applying contact search algorithms (Hyun et al., 2004) and afterwards the enforcement of 

contact conditions, once when the true contact area is defined. The methods for defining 

contact conditions differ for the compenetrating condition, for example the penalty method 

allows a certain compenetrating level while methods based on Lagrange multipliers 

explicitly impose there is no compenetrating at the contacting interface. Resulting system 

of non-linear equations is usually solved by an appropriate algorithm, in most cases 

Newton-Raphson iterative scheme (Wriggers & Reinelt, 2009). 

Multiscale and hybrid modelling approach considers interaction between several different 

numerical models defined for different problem scales. When this approach is exploited for 

rough contact problems, the multitude of the scales is caused by multiple scales of rough 

geometrical features, defined as a spatially multiscale problem (Vakis et al., 2018). For a 

multiscale problem it is important to define the governing physical processes in each of the 

observed scales and the hierarchy and independence between the defined problem scales 

(Hou et al., 2018; Luan et al., 2006). An example is a multiscale rough contact model where 

the upper scale model is treated with FEM and it determines the state for the lower - 

microscale model, which is treated with BEM and provides the contact interface properties 

relevant for the macroscale model (Wriggers & Reinelt, 2009). A FEM-BEM approach that 

involves an interface FE for modelling interface interaction on macroscale and BEM for 

modelling the solution of the contact problem on microscale is another example of 

multiscale modelling (Bonari et al., 2020; Bonari & Paggi, 2020). In this approach, scale 

coupling is enforced by passing the calculated value of the normal gap at each integration 

point of the interface FE observed at macroscale to the BEM procedure for the normal 

contact problem solution at the microscale, without the need for the roughness topology 

simplification. An extension of this approach is a hybrid FEM, where the exact height field 

of the rough profile is stored nodal-wise inside the novel MPJR finite element. This 

framework is recently extended to frictional simulations as shown in (Bonari et al., 2021, 

2022). 

2.3. Friction mechanisms on pavement surfaces  

Pavement surface frictional performance is characterized by a non-dimensional friction 

coefficient, calculated as a ratio between the traction friction force and wheel load (Figure 

2.5) (Fwa, 2017). The friction force is the tangential force that occurs between the tire tread 
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of a vehicle in motion and the pavement surface, in the direction opposite to the direction 

of motion. The vehicle load is normal force perpendicular to the pavement surface (Hall et 

al., 2009).  

 

Figure 2.5. Pavement friction phenomenon and forces in the system (from Hall et al., 2009) 

The interaction mechanism between the pavement surface and vehicle tire is crucial for 

understanding the pavement friction phenomenon. Pavement surface is considered to be 

rigid as its deformations in the system are negligible in comparison to the deformations of 

vehicle rubber (Al-Assi & Kassem, 2017; Alhasan et al., 2018a; Wriggers & Reinelt, 2009). 

Rubber is the main component of vehicle tires. It is characterized as an elastomer which 

undergoes finite deformations during the vehicle motion over the pavement surface due to 

the material characteristics of the rubber bulk. The friction mechanism on tire-pavement 

interface is described by the theory of rubber friction. Two friction force components 

recognized in the rubber friction theory are relevant for pavement friction phenomenon: 

adhesion and hysteresis. Each of these components contributes to the friction realization 

differently on a different roughness scale. 

Adhesion (Figure 2.6 a, c) is a result of intermolecular contact between two materials, 

caused by attractive Van der Waals dipole forces (Wriggers & Reinelt, 2009).  When the 

micro-asperities of two surfaces are in contact, dipole Van der Waals forces attract and hold 

the two asperities together and prevent their separation. Van der Waals forces that occur on 

a molecular level between two different materials in contact are not particularly strong and 

they need a very close contact for their activation. Adhesion is very dependent on the size 

of the true contact area, so in the perspective of rough pavement surfaces in contact with 

the rubber tire, the adhesion force plays a minor role in the friction phenomenon. This is 

even more emphasized if the contact is lubricated, i.e. if a water layer exists between the 

pavement surface and vehicle tire. However, adhesion is the most representative component 
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of the friction force for low sliding velocities and dry surface conditions. Here, the pavement 

surface properties related to the micro-roughness scale geometry and material features 

contribute significantly to the friction performance. Studies show that there is a noticeable 

correlation between the adhesive bond energy and the friction coefficient on the rubber - 

pavement contact, which implies that the increase in the adhesion force results in an increase 

of the friction coefficient (Al-Assi & Kassem, 2017). 

Hysteresis (Figure 2.6 b, d) is the result of the rubber material bulk deformation when it 

contacts the surface irregularities and undergoes permanent plastic deformation while 

passing over the rough surface (Al-Assi & Kassem, 2017, Srirangam et al., 2017). Bulk 

deformation causes energy loss during the sliding movement. The rubber undergoes 

compression-expansion cycles while moving over the rough surface asperities. When a 

deformable rubber material is pressed against a rigid and rough surface asperity, the stress 

distribution causes the rubber to deform, resulting in energy loss. The resulting deformation 

is the potential energy stored in the rubber bulk. After passing over the asperity, the rubber 

returns to its initial state and the material is relaxed. Part of the stored potential energy is 

recovered and the other part is lost in the form of heat. The irreversible energy loss is known 

as hysteresis. The hysteresis effect to the friction phenomenon lies in the fact that asperities 

induce energy dissipation on the contact between the tire and the pavement. Rougher 

surfaces will produce greater energy loss and consequently larger friction coefficient. 

Hysteresis is considered to be a governing friction force component for high-speed and 

larger texture scales, especially for wet pavement surfaces. Furthermore, as tire rubber is a 

viscoelastic material, a significant contribution to the phenomenon is given by the sliding 

speed and the temperature (Hall et al., 2009).  
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a) b) 

c) d) 

Figure 2.6. Adhesion and hysteresis mechanisms of pavement friction on dry (a,c) and wet (b,d) pavement 

surfaces (from Fwa, 2021) 

2.4. Factors affecting pavement friction 

The frictional response of a pavement results from the interplay of several factors that can 

be grouped into four main categories (Hall et al., 2009, Kogbara et al., 2016, Yu et al., 2020, 

Kumar & Gupta, 2021):  

- pavement surface properties,  

- environmental impacts,  

- driving parameters  

- vehicle tire properties 

Each group of properties contributes to the frictional performance specifically and for a 

comprehensive understanding of the friction phenomenon the best approach would be to 

consider the effect of all the influencing parameters in these groups. As such approach 

would result in a highly complex framework, researches usually focus on several interacting 

parameters to gain insight into pavement frictional properties (Kogbara et al., 2016). The 

following sections provide an overview of the most important influencing parameters in 

each group of properties.  
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2.4.1. Pavement surface properties 

Surface properties related to the pavement friction performance are mostly considered as 

the texture-related properties, stemming from the characteristics of the pavement material 

and construction method. The material characteristics are resulting from the asphalt mixture 

type, whose properties define the surface texture characteristics on friction-related texture 

scales, micro-texture and macro-texture (Wambold et al., 1995). Each of the relevant texture 

levels has a different influence on the pavement friction performance. By referring to the 

friction mechanisms adhesion and hysteresis described in section 2.2., micro-texture scale 

is responsible for the most of the adhesion contribution and macro-texture governs the 

hysteresis effect.  

Micro-texture mostly results from the aggregate particles properties so it is usually referred 

to as “the texture of the aggregates”. Macro-texture results from the asphalt mixture 

properties and surface layer construction method, therefore it is referred to as “the texture 

of the pavement”.  Surface-related texture properties are thoroughly observed in Chapter 3 

as the texture was selected to be the key parameter for friction performance assessment in 

this research.  

2.4.2. Environmental impacts 

Three major environmental impacts related to the pavement frictional performance are 

temperature, presence of water on the surface and various contaminations of the surface 

(Kogbara et al., 2016). These effects are not controllable as they mostly depend on the 

seasonal climatic variations or unexpected events.  

The influence of temperature on frictional performance is investigated mostly within the 

effect of the seasonal variations in winter and summer period. In general, pavement 

frictional performance decreases with an increase of temperature (Khasawneh et al., 2012). 

This is due to the viscoelastic nature of the problem and the changes of rubber and pavement 

stiffness with the temperature changes. An increase of the rubber resilience on higher 

temperatures causes the decrease of the hysteretic losses and consequently reduced 

frictional performance. This is why pavement frictional performance monitoring is mostly 

performed during the summer, as the critical values occur on higher temperatures. On the 

other hand, higher frictional performance on lower temperatures results from an increase in 

aggregate roughness due to the winter maintenance procedures and aggregate natural 

weathering processes (Kogbara et al., 2016). Also, as winter season tends to have higher 
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amounts of precipitation, road surfaces are less contaminated and therefore aggregate’s 

textures are more exposed and consequently providing higher friction values. 

The presence of water on the pavement surface in general has a negative effect on the 

frictional performance (Kumar & Gupta, 2021). When the pavement surface is wet, a thin 

water film occurs between the vehicle tire and pavement, lubricating the contact area and 

reducing the friction. For pavement surfaces with lower macro-texture values, the presence 

of water is critical for the hydroplaning effect appearance. Water fills the texture cavities 

and additionally reduces the surface roughness, making it very slippery especially under 

high driving speeds. The positive effect of the water presence is obtained if the surface’s 

macro-texture level is satisfactory so the water does not retain on the pavement or if the 

pavement type is open-graded (porous) asphalt mixture so the water is drained from the 

surface to the pavement base layers. In such cases, the intensive rainfall washes out the 

pavement and removes the contaminants which might contribute to the polishing of the 

surface texture under the traffic load (Kogbara et al., 2016).   

The contaminants negatively affect the pavement frictional performance by smoothing the 

surface for two main reasons (Kumar & Gupta, 2021). If they are largely accumulated on 

the surface, they tend to fill up the texture cavities and thus smooth the surface. This often 

happens during the dry season, when no intensive rainfall could wash out the pavement 

surface. The second reason is the polishing effect of the contaminants under the traffic load. 

This is specific for fine-grained contaminants such as dust and sand particles, chipped fine 

aggregates and similar. Viscous-type contaminants such as motor oils or ice and snow 

reduce the frictional performance similar to the presence of water, making the contact area 

more slippery. Several models and research results about the effect of contaminants on the 

friction were listed in (Alauddin Ahammed & Tighe, 2010), concluding that there is no 

consensus over their influence and pointed out the importance of both seasonal temperature 

variations and pavement type used for the prediction of frictional response of the surface. 

2.4.3. Driving parameters 

Pavement surface friction is highly related to the vehicle speed and driving manoeuvres 

(Hall et al, 2009). During the vehicle motion, two speeds are present in the system: vehicle 

speed usually defined as or the operating speed, and rolling tire speed which depends on the 

tire radius and angular velocity. The difference between these two speeds is called the slip 

speed. When a vehicle tire is in free rolling mode, meaning there is no braking manoeuvre, 

the vehicle speed and tire speed are equal. The slip speed changes when a breaking 
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manoeuvre is applied. During the braking, the vehicle tire is blocked and can no longer have 

the same speed as the vehicle. In this case the slip speed increases and the ratio between slip 

speed and vehicle speed is called the slip ratio. The pavement frictional performance 

changes with respect to the change in the slip ratio (C. Huang & Huang, 2014). After 

obtaining a peak friction value at the critical slip value equal to 10-20% of the slip ratio, the 

frictional performance decreases to the value of sliding friction at 100% slip, when vehicle 

tire is fully blocked and its speed is equal to zero (Figure 2.7). 

 

 

Figure 2.7. Slip ratio versus pavement friction performance (Hall et al., 2009)   

When considering the influence of speed on the friction realization, it is well known that 

low speed frictional performance depends on the micro-texture properties of the pavement 

surface and macro-texture is a predominant factor for friction realization at high speeds (Yu 

et al., 2020). Another important speed-related observation is that the micro-texture governs 

the peak value of the friction coefficient obtained at a critical slip speed value and macro-

texture is responsible for the slope of the friction curve after the peak friction is obtained 

(Figure 2.8).    
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Figure 2.8. The effect of different texture levels on the slip ratio (Yu et al., 2020) 

2.4.4. Tire properties 

Tire properties have an important effect on the pavement friction phenomenon being a body 

in contact to the pavement surface. The rubber as a constituent material dictates the material 

behavior law and consequently the friction coefficient realization on the contacting 

interface. Besides the material properties, the condition of vehicle tires plays a significant 

role in the friction realization (Hall et al., 2009). Vehicle tires have a tread so they can 

provide a better grip and efficient surface water evacuation when the road surface is wet. 

Another important tire property is the inflation pressure, which affects the contact area and 

resulting contact pressure. In cases when the tires are under-inflated, contact area increases 

causing the decrease in contact pressure and consequently the decrease in frictional 

performance. If the tire is overinflated, the true contact area reduces and the contact pressure 

increases. Therefore, no significant pavement friction loss occurs (Hall et al., 2009). 

In the pursuit for the prediction of tire-pavement friction performance, a notable amount of 

research was oriented on the tire behavior modelingl resulting in both analytical and 

numerical solutions for the problem (Yu et al., 2020). Tire performance-oriented research 

is mostly driven by the automotive industry, emphasizing the importance of further research 

and development of the tire properties related to the friction performance. From the 

pavement engineering perspective, the effect of tire properties is less important for the 

observed phenomenon than the effect of the pavement properties  and therefore won’t be 

further analyzed in this thesis.   
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Table 2.1 summarizes the main influencing parameters described in previous sections, 

emphasizing the positive or negative effect that each parameter has on the pavement friction 

properties.  

Table 2.1. A summary of the positive and negative effects of the key influencing parameters for pavement  

friction performance 

Influencing 

parameter 

Pavement surface 

properties 

Environmental 

impacts 

Driving parameters Tire properties 

Positive 

effect 
➔ high micro-texture 

and macro-texture 

levels 

➔ “positive” texture 

with surface 

asperities pointed 

upwards 

➔ lower 

temperature

s 

➔ dry weather 

➔ moderate vehicle 

speed 

➔ straight road 

sections 

➔ quasi steady-state 

driving 

conditions 

➔ new, well-

treaded tires 

 

Negative 

effect 
➔ low micro- and 

macro-texture 

values, “negative” 

texture with 

significant amount of 

texture valleys and 

cavities 

➔ temperature 

increase 

➔ rainfall 

➔ surface 

contaminan

ts (debris, 

dust etc.) 

➔ Increase in 

vehicle speed 

➔ curved road 

sections with 

high super-

elevations 

➔ braking 

manoeuvres 

➔ under-

inflated, worn 

out tires 

2.5. Measurement and characterization of pavement friction 

To characterize the frictional performance of a pavement, road authorities perform friction 

measurements and categorize the measured values according to available national 

regulations or technical standards. The measurements are usually performed as a part of a 

periodical monitoring program or in cases of reduced road safety level when traffic 

accidents occur frequently on a specific location. In such cases, measured frictional 

performance is compared to the defined threshold values defined in the regulations and 

standards. In this Section, an overview of methods for pavement friction measurement is 

given, including the description of standard measurement methods and resulting friction 

performance indicators. A comparison of limit values for friction indices according to the 

Croatian national regulations and some internationally recommended indicators is provided. 

2.5.1. Pavement friction measurement methods 

The quantification of pavement frictional performance is obtained by different measuring 

principles and corresponding devices. In general, all measuring devices operate on a 

principle of detecting a resistive force that occurs when a rubber object slides over a 
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pavement surface. The differences between the measuring devices are in the measuring 

speed, slip ratio and friction force direction (Rajaei et al., 2016). The choice of an 

appropriate measuring device depends on the measuring conditions, target speed for the 

friction estimation and limiting factors such as device availability. 

Traditionally, friction measurement methods are grouped into stationary and dynamic 

methods. The difference is in the relative position of the measuring device with respect to 

the measured surface. Stationary methods imply a fixed position of the measuring device, 

while dynamic measuring methods entail movement of the measuring device. Stationary 

devices are more common for laboratory testing of friction performance or for single-spot 

measurements in situ, while dynamic devices are usually exploited for road network 

monitoring and measurements of longer road sections where frictional performance has to 

be assessed. A schematic representation of the most common stationary and dynamic 

friction measurement devices is given in Figure 2.9. 

The widely used single-spot methods for pavement friction estimation are pendulum-based 

measurements and rotating plate-based measurements (Figure 2.9, i-vi). Both methods 

estimate the friction performance from the kinetic energy loss due to the contact between 

the rubber pads characteristic for the devices and the pavement surface (Hall et al., 2009). 

The measuring speed for such devices are different. Pendulum-based devices always 

operate under the same measuring speed, while rotating-plate devices can have variable 

measuring speeds. The value of slip ratio is unknown for such devices (Yu et al., 2020). 

The friction value from pendulum-based devices (Figure 2.9, i) is a result of the resistance 

that a specific pavement surface provides against the swinging pendulum movement. The 

kinetic energy of a pendulum reduces as the rubber is sliding over the surface and it is 

converted to potential energy for a maximum height, which in the end represents the 

measuring result. The measurement speed is a fixed value and it is approximately 10 km/h. 

Therefore, pendulum-based devices are categorized as low-speed friction measurements but 

also as an indirect estimation of pavement surface micro-texture performance (Kogbara et 

al., 2016). They enable relatively easy and low cost measurements. The operating principle 

is simple so no specific training is needed for its usage and the device is easily transferable. 

However, such devices cannot yield results that are comparable to the real interface contact 

conditions due to its operating principle. Also, the results can be very sensitive to the 
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subjectivity of the measurement due to the purely mechanical principle of device adjustment 

prior to the measurements and influence of the operator's measuring skills. 

 

Figure 2.9. Friction measurement devices with different operating principles: (i) pendulum-based devices, (ii) 

single-spot dynamic friction testers, (iii) locked wheel dynamic testers, (iv) fixed slip dynamic testers, (v) 

variable slip dynamic testers, (vi) sideway force testers ( Rajaei et al., 2016) 

Single-spot dynamic friction testers (Figure 2.9, ii) operate on a principle of rotating disc 

with rubber pads attached to its bottom, which come into contact with pavement surfaces at 

different speeds. The device measures the momentum at which the rubber pads are rotating 

for a given measuring speed. As the speed can be varied, this type of equipment can be used 

to determine the dependency of the friction performance with respect to different speeds. 

Similar to the pendulum-based devices, they can be also made as field testing equipment, 

therefore portable and easy to operate with. Another advantage is lack of subjectivity due 

to the operator's experience as the device operates automatically. Even though it is a single-

spot measuring device, it can represent the friction performance at high speeds, up to 90 

km/h (Wallman & Åström, 2001). 

Dynamic methods for friction performance estimation are related to the in-situ testing as 

they imply high speed testing devices. They are categorized according to the operating 

principle into four modes: locked wheel, fixed slip, variable slip and sideway force (Hall et 

al., 2009). The sliding process is controlled by the wheel blocking process specific for 

different measurement devices.  

Locked wheel friction devices (Figure 2.9, iii) have a slip ratio of 100%, meaning that the 

measuring wheel is fully blocked and sliding occurs. The friction performance is measured 

in the direction of vehicle movement for a given operating vehicle speed. This type of device 

produces a longitudinal friction coefficient as a friction estimation. The devices that operate 
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under fixed slip (Figure 2.9, iv) and variable slip mode (Figure 2.9, v) have one or two 

measuring wheels which can have a fixed slip ratio usually up to 20%, or variable slip ratios 

which are predetermined. Sideway force devices (Figure 2.9, vi) are different from the 

aforementioned for the position of the measuring wheel. In such devices, the measuring 

wheel is dilated from the vehicle movement axis for a constant angle and usually has a 

constant slip ratio (also up to 20%). The angle between the direction of motion and turned 

wheel is called slip angle, which generates the sideway friction coefficient. In this way, the 

friction performance related to the vehicle stability and manoeuvring performance in the 

curves can be assessed.   

The main advantage of the dynamic friction measuring devices is that they represent the 

actual contact conditions and frictional response of a pavement much more realistic than 

the single-spot low speed measurements (Yu et al., 2020). As these measurements are 

performed at driving speeds, no traffic interruption is necessary. The devices are capable of 

continuous data acquisition. Therefore, they represent the friction performance of the entire 

road section and not only a single location. The main drawback of the dynamic friction 

measurement systems is that they are more resource – consuming in comparison to the 

single-spot measurements. Dynamic devices provide longitudinal friction coefficient and 

they have the advantage of higher measuring speeds, better mobility performances as they 

are generally smaller and mostly trailer-based, but require an addition of accompanying 

vehicle carrying a water tank which can be a limiting factor in the measurement length range 

(Andriejauskas et al., 2014). The sideway operating devices are larger and consequently 

more expensive for the operation, obtain lower measuring speeds but have an integrated 

water tank so the measurements can be continuous and long distance. For a heavily uneven 

road surface, sideway force devices can suffer from measuring wheel damage (Yu et al., 

2020). A summary of selected traditional measuring methods and corresponding devices 

mostly related to European practice is given in Table 2.2 (Andriejauskas et al., 2014). 

Both stationary and dynamic measurement methods estimate the pavement frictional 

performance based on the contact between the rubber of the measuring device and the 

pavement surface. In such measurements, factors such as surface and rubber temperature, 

rubber material properties, measurement speed, operator's skills, measuring device 

characteristics and similar affect the measurement result. For different types of measuring 

devices, pavement frictional performance is expressed through different friction values. The 

diversity of operating principles and the measuring procedures make it impossible to define 
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a unique friction indicator. The PIARC association performed a series of harmonization 

campaigns in order to derive such an indicator, by carrying out extensive measurement 

programmes with various texture and friction measuring devices. The result was a common 

harmonization index called International Friction Index (IFI), formulated in such way that 

for a given texture measurement expressed in millimetres and friction value adjusted to 60 

km/h from the actual performed measurements at different slip speeds, a friction number at 

60 km/h can be estimated. This procedure however, accounts for the calibration coefficients 

that are device specific, therefore any other device that was not a part of the harmonization 

campaign couldn't be used for the estimation of a standardized friction index expressed as 

IFI. Following, a number of researches attempted to exploit the IFI concept for the 

harmonization of friction measurements was prompted, but the results didn't seem to be 

satisfying enough (Ahammed & Tighe, 2012). 
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Table 2.2. An overview of friction measurement devices used in Europe (Andriejauskas et al., 2014) 

Device Type Operating principle 
Measurement 

parameters 

Resulting 

friction 

indicator 

Skid Resistance 

Tester (SRT) 

Stationary 

(lab/field) 

Pendulum: friction is estimated from 

the kinetic energy loss in the sliding 

process of a rubber attached to the 

pendulum arm 

Operating speed: 

approx. 10 km/h 

Measured surface 

area: approx 9 

000 mm2 

Skid Resistance 

Number 

Dynamic Friction 

Tester (DFT) 

Stationary 

(lab/field) 

Rotating plate: friction is estimated 

from the decrease of the target speed 

to zero 

Operating speed: 

0 – 80 km/h 

Measured surface 

area: approx. 65 

000 mm2 

Friction 

coefficient 

Wehner/Schulze 

Machine (W/S) 

Stationary 

(lab) 

Rotating plate: friction is estimated 

from the contact between the 

rotation beads accelerated to a target 

speed and wetted test surface 

Operating speed: 

60 km/h 

Measured surface 

area: approx.  40 

000 mm2 

Friction 

coefficient 

GripTester 

Moving 

 

Fixed slip: friction is estimated from 

the wheel dragging force and wheel 

load, as the rotation of the measuring 

wheel is partially confined with a 

fixed slip ratio. The devices are 

usually operating under wet 

conditions with controlled water 

film thickness. 

Operating speed: 

5-100 km/h 

Slip ratio: 15% 

Measurement 

interval: various 

Longitudinal 

Friction 

Coefficient 

(LFC) 

RoadSTAR 

Operating speed: 

30/60 km/h 

Slip ratio: 18% 

Measurement 

interval: 50 m 

BV-11 

Operating speed: 

70 km/h 

Slip ratio: 17% 

Measurement 

interval: 20 m 

ROAR 

Operating speed: 

> 50 km/h 

Slip ratio: 20% 

Measurement 

interval: > 5 m 

IMAG (variable 

slip mode) 

Variable slip: the test wheel rotates 

freely, therefore friction can be 

estimated for different slip ratios 

Operating speed: 

65 km/h 

Slip ratio: up to 

100% 

SRM 

Operating speed: 

40/60/80 km/h 

Slip ratio: 15% or 

100% 

Measurement 

interval: 20 m 

Skiddometer BV-

8 

Operating speed: 

40/60/80 km/h 

Slip ratio: 14% or 

100% 

Measurement 

interval: 30-50 m 

ADHERA 
Locked wheel: friction is estimated 

from the resisting force generated in 

Operating speed: 

40/60/90/120 

km/h 
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full sliding conditions, as the 

measuring wheel is fully locked 

Slip ratio: 100% 

Measurement 

interval: 20 m 

SRT-3 

Operating speed: 

60 km/h 

Slip ratio: 100% 

IMAG (locked 

wheel mode) 

Operating speed: 

65 km/h 

Slip ratio: 100% 

SCRIM 
Sideway force: friction is estimated 

from the ratio of generated side 

force, which stems from the slip 

angle between the measuring wheel 

and moving direction 

 

Operating speed: 

50 km/h 

Slip angle: 20° 

Measurement 

interval: >10 m 

Sideway 

Friction 

Coefficient 

(SFC) 

MuMeter 

Operating speed: 

60 km/h 

Slip angle: 7,5° 

MuMeter 

Number (MuN) 

 

2.5.2. Pavement friction indicators 

Traditional friction measuring devices provide a friction performance estimation in the form 

of a specific pavement friction performance indicator, which depends on the operating 

principles of the devices and specific measurement conditions (Table 2.2). The selection of 

measuring devices and resulting friction performance indicators depends on the national 

regulations and accepted standards and practices for practical use in road management. The 

most commonly used friction measurement devices in Europe are SRT Pendulum device, 

Grip Tester and SCRIM (Andriejauskas et al. 2014). The SRT is mostly used for quality 

control assessment or for location-based friction performance measurements. In general, 

European countries are more leaning towards fixed-slip and sideway force slip devices for 

network monitoring purposes, while US countries mostly use the devices based on locked 

slip principle (Yu et al., 2020).  

European normative documents consider the friction measurement procedures within 

several standards and technical specifications. In European standard EN 13036-4: Road and 

airfield surface characteristics – Test methods – Part 4: Method for measurement of 

slip/skid resistance of a surface: The pendulum test, a procedure for friction performance 

determination by means of a stationary pendulum device is defined. Technical specification 

CEN/TS 13036-2: Road and airfield surface characteristics – Test methods – Part 2: 

Assessment of the skid resistance of a road pavement surface by the use of dynamic 

measuring systems describes the necessary procedures for friction measurements conducted 

by the dynamic friction measuring devices, whose specifications are given in CEN/TS 

15901-1 to -10 series of technical specifications. The devices listed in CEN 13036-2 
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technical specification are characterized as „permitted for friction measurements, with a 

described measuring principle and procedure“. The measuring results are used for the 

estimation of Skid Resistance Index (SRI), together with the texture measurements, device-

specific calibration parameters and adjusted slip speed. 

The determination of friction performance threshold values depends on the national policies 

of road agencies and in general, it is very different among countries. Authors Astrom and 

Wallman (2001) analysed the measurement methods, resulting friction indicators and their 

relation to the traffic safety to define the friction coefficient threshold value in several 

European countries (Table 2.3).  An American technical document AASHTO's Guide for 

Pavement Friction (Hall et al., 2009) provided an overview of threshold values for friction 

performance in UK, New Zealand, Maryland, USA and Australia related to the road 

ategories or specific road network sites (Table 2.4). This document also encourages the 

establishment of investigatory and intervention friction threshold levels as a part of 

pavement friction management program. Methods for defining investigatory and 

intervention levels of pavement friction are proposed, based on historical friction data 

collected on a particular road and traffic accident data. The investigatory and intervention 

levels are set to be corresponding to a notable decrease of friction values or an increase in 

traffic accidents number. 

Table 2.3. Required friction levels in some EU countries (Wallman and Astrom, 2001; Litzka et al., 2008) 

Country Required friction level (friction 

coefficient) 
Measurement device principle 

Austria 0.38 Fixed slip 

Belgium 0.4 Sideway force 

Denmark 0.5 (60 km/h) Sideway force 

Germany 0.3 (80 km/h), 0.39 (60 km/h), 

0.48 (40 km/h) 

Sideway force 

Sweden 0.5 Sideway force 

Finland 0.4 (80 km/h), 0.5 (100 km/h), 0.6 

(120 km/h) 
Locked wheel or sideway force 

Netherlands 0.51 (50 km/h) Fixed slip 

Poland 0.35 (60 km/h) Locked wheel 

Slovenia 0. 45 (50 km/h), 0.39 (70 km/h), 

0.33 (90 km/h) 

Sideway force 
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Table 2.4. Threshold friction levels in non-EU countries (Hall et al., 2009) 

Country 
Required friction level at 50 

km/h 
Comments about threshold values and site specifics 

UK 
0.30 – 0.55 for Friction Number 

(FN) 

Threshold values are different for specific road categories, 

intersections and road design elements (curvature radius, 

vertical gradient) 

New 

Zealand 

0.35 – 0.55 for Sideway Friction 

Coefficient (SFC) 

Threshold values defined for different types of approaches 

and intersections, pedestrian crossings, bridges and road 

categories 

Maryland, 

USA 
35 – 55 for Friction Number (FN) 

Threshold values defined for various intersection types, 

pedestrian crossings, highway categories and road design 

elements (curvature radius, vertical gradient) 

Australia 

0.35 – 0.60 for primary and 

secondary roads with > 2500 

veh/lane/day 

0.30 – 0. 55 for secondary roads 

with < 2500 veh/lane/day 

Threshold values defined for various intersection types, 

pedestrian crossings, road design elements (curvature 

radius, vertical gradient) and road categories 

 

In 2004. COST Action 354 Project was launched in several EU countries with the objective 

to define a set of uniform pavement performance indicators and indexes (Litzka et al., 

2008). The project deliverables were presented in COST Action 354 Final Report (2008), 

where a set of performance indicators (PI) related to a specific technical parameter (TP) 

obtained from different measuring procedures was given. COST Action 354 proposed a 

unique performance indicator for friction performance assessment for two types of 

measuring devices – sideways friction coefficient devices and longitudinal friction 

coefficient devices, with respect to the measurement speed of each device. To evaluate the 

performance indicator (PI_F) of frictional properties expressed as Skid Resistance, the 

transformation functions were derived to calculate the PI from the measured values. The 

Action's Final Report (2008) presented a range of values for the proposed technical 

parameters (TP) for pavement friction estimation and the transformation equations for the 

calculation of the Performance Index from the obtained technical parameter values (Table 

2.5). 

Table 2.5. Proposed transfer functions for the friction Technical Parameters analyzed in COST 354 Action 

(Litzka et al., 2008) 

Technical Parameter Measurement speed 
Transfer functions for Performance Indicator 

calculation 

Sideway Friction 

Coefficient - SFC 
60 km/h PI_F = Max (0; Min (5; (-17.600 SFC + 11.205))) 

Longitudinal Friction 

Coefficient – LFC 
50 km/h PI_F = Max (0; Min (5; (-13.875 LFC + 9.338))) 
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The conclusions derived in the COST 354 Final Report emphasize that the obtained PI’s 

serve only as a recommendation for road agencies, without the proposal of target or limit 

values for any of the derived indicators. This conclusion is corroborated with a statement 

that threshold values strongly depend on the road type and characteristics, but also on the 

desired serviceability level for a specific road. Therefore, the values given as results of this 

Action serve only as a recommendation or a guideline in pavement management 

assessment. The Report gives some recommendations regarding the range of calculated 

Performance Indicator values within the defined grades (0-5), specifying that lower grade 

value represents better performance (Table 2.6).  

Table 2.6. Performance Index grades for friction determined by two different measurement devices and resulting 

Technical Parameters SFC and LFC, (Litzka et al., 2008) 

 Very Good > Very Poor 

Skid Resistance 

Performance 

Index (PI_F) 
0 - 1 1 – 2 2 – 3 3 – 4 4- 5 

SFC (60 km/h) 
0.64 – 0.58 0.58 – 0.52 0.52 – 0.47 0.47 – 0.41 0.41 – 0.35 

LFC (50 km/h) 
0.67 – 0.60 0.60 – 0.53 0.53 – 0.46 0.46 – 0.38 0.38 – 0.31 

 

A collaborative European project ROSANNE was launched in 2013, with the aim of 

development and harmonization of pavement performance measurement methods in terms 

of friction, noise and rolling resistance (Birkner et al., 2016). The objectives of the 

ROSANNE project in the context of pavement frictional performance was to harmonize the 

friction measurements by defining the conversion factors for the devices with similar 

operating principles. The texture influence was evaluated by exploring the usage of texture 

parameters derived by non-contact measurement methods for a better description of its 

effect to the pavement frictional performance. The ROSANNE Project reviewed the 

national policies and established thresholds for the frictional performance in participating 

European countries, different for the monitoring of the existing pavements or the acceptance 

of newly built ones. A summary of friction measurement devices with specified friction 

coefficient type (depending on the measurement principle of the used device) and defined 

threshold values for new pavements and pavements in use for different road categories can 

be found in the Project deliverable D 4.1 Definition of boundaries and requirements for the 

common scale for harmonization of skid resistance measurements (Goubert et al., 2014).  

The analysis of existing practice for frictional performance assessment in the participating 
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countries showed that almost all of them have a defined threshold for friction, but only nine 

out of 20 demand a threshold value for texture acceptance and eight for texture monitoring 

(Table 2.7).  

The ROSANNE project was a continuation of the TYROSAFE project (2008-2010), a 

collaborative European action with the aim of coordination and preparation for the 

harmonization of frictional performance assessment Europe (Haider & Conter, 2010). 

TYROSAFE delivered a report about skid resistance policies and standards in Europe for 

17 participating countries, showing the threshold levels for frictional performance are very 

different among them. They were different for the performance indices and influencing 

parameters taken into consideration, but also for the investigatory timetables and levels of 

road network where the monitoring is performed. 

Table 2.7. National policies of friction and texture monitoring for ROSANNE project participating countries 

(Goubert et al., 2014) 

Country 
Acceptance Road monitoring 

Friction Texture Friction Texture 

France - X X X 

UK X X X X 

Germany X X X - 

Denmark X - X - 

Spain X X X X 

Slovenia X - X X 

Portugal X X X X 

Italy - - - - 

Czech Republic X X X X 

Sweden X X - X 

Norway - - - - 

Finland - - - - 

Belgium X X X - 

Netherlands X - X - 

Austria X - X X 

Switzerland X X X - 

Hungary X - X - 

Slovakia X - X - 

Romania X - - - 

Poland X - X - 

 

A thorough investigation of skid resistance policies was performed with results presented 

in the TYROSAFE Project Deliverable D06 (Nitsche & Spielhofer, 2009). The 

measurement procedures and used devices, the purpose of measurements and the frequency 

of road network monitoring are very different among the participating countries. The 
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existence of threshold values for frictional performance assessment determined in the 

TYROSAFE project is shown in Figure 2.10. 

 

Figure 2.10. TYROSAFE project analysis of friction national policies (Nitsche & Spielhofer, 2009) 

2.5.3. Pavement friction performance evaluation in Croatia 

European Normative documents are incorporated in the Croatian national regulations and 

technical specifications for the pavement frictional characteristics assesment. The friction 

performance estimation is mostly related to the road safety topic, mentioned in two national 

laws: The road law (Zakon o cestama, NN 04/23) and The road safety law (Zakon o 

sigurnosti prometa na cestama, NN 114/22). In these documents, pavement friction is 

considered as a part of safety and maintenance activities that road authorities should 

perform, but no specific actions or requirements are mentioned. There are several rulebooks 

that are considering the issue of pavement friction with respect to the road safety 

requirements, but again no particular demand is expressed. The rulebook on activities and 

procedures for improving the safety of road infrastructure and road safety auditing 

(Pravilnik o aktivnostima i postupcima za poboljšanje sigurnosti cestovne infrastrukture i 

reviziji cestovne sigurnosti, NN 55/2022-739) defines that one of the activities for the road 

safety estimation is pavement skid resistance. The rulebook for road safety improvement 

activities (Pravilnik o aktivnostima poboljšanja sigurnosti TEM cesta, NN 74/2013-1485) 

provides guidelines for the revision of the road safety, including the pavement condition as 

one of necessary input parameters. It also states that if some road sections have a reduced 

safety level measured in number of accidents with fatal outcome, the increase of pavement 

skid resistance performance has to be performed. The rulebook for road safety maintenance 

(Pravilnik o održavanju cesta, NN 90/2014-1826) provides a list of activities that have to 

be performed in a specific timeframe, including the pavement inspections which include the 

estimation of pavement friction performance. 
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The only Croatian regulation document that gives a specification for minimal requirements 

for pavement friction performance is Technical specification for asphalt pavements 

(Tehnički propis za asfaltne kolnike, NN 48/2021-977). This document defines the 

properties that have to be inspected on installed road surface layers, including the skid 

resistance and texture as a part of friction performance estimation. The EN standards for 

inspecting the relevant friction-related surface properties are specified, with respect to the 

road category and testing frequency on newly built roads or roads in use. Technical 

specification defines the threshold values for friction performance as skid resistance values, 

SRT and texture properties as Mean Texture Depth (MTD) values. The values are given for 

different types of asphalt pavements and different road categories (Table 2.8). The 

document also specifies the minimal requirements for friction performance of pavement 

surface at the end of road warranty period, with respect to the aggregate type used in the 

asphalt mixture (Table 2.9). 

Table 2.8  Friction performance requirements for newly built roads - acceptance criterion (Tehnički propis za 

asfaltne kolnike, 2021) 

Asphalt pavement surface property Skid resistance 

National standard for determination (HRN) EN 13036-4 

Technical parameter SRT 

Minimal required SRT value for different road categories Comments 

Highways 58 
For all asphalt mixture types used for 

surface layers in Croatia except for 

overlays, where the SRT value has to 

be > 60 for primary and secondary 

roads and > 55 for noncategorized 

roads 

Primary and secondary roads 55 

 

Table 2.9. Friction performance requirements at the end of warranty period for different aggregate 

types in asphalt mixture (Tehnički propis za asfaltne kolnike, 2021) 

Aggregate type AG1 AG2 and AG3 AG4 

SRT limit value: 2-year warranty period 58 55 45 

SRT limit value: 5-year warranty period 53 50 40 

2.6. Existing models for pavement friction prediction 

Direct estimation of pavement friction by employing the measuring techniques described in 

previous section provides unambiguous friction value, which facilitates the characterization 

of pavement friction performance for both researchers and practitioners. However, some 

limitations emerge from the direct friction estimation. The repeatability and accuracy of the 

performed measurements are affected by the testing and environmental conditions (Yu et 
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al., 2020). Another issue is the simplified assumption of the contact behavior on the tire-

pavement interface in some measurement procedures, which makes it difficult to understand 

the actual friction mechanism. Friction measurement campaigns can be heavily resource 

and time - consuming , especially in cases of friction performance estimation by dynamic 

measurements with real-scale measuring devices. 

To overcome the difficulties of direct pavement friction performance estimation by 

traditional measurement methods, the development of a prediction model based on one or 

more factors affecting pavement frictional performance has been one of the main topics in 

the research field. The framework for the development of a prediction model can be 

analytical, numerical or empirical (Yu et al., 2020). When a prediction model is being 

defined in any of the frameworks, the complexity of a model increases for a larger number 

of influencing parameters included. Simple prediction models account for a small number 

of influencing parameters. Complex prediction models account for several influencing 

parameters in the same group or from different parameters’ groups. The complexity of a 

model stems from the computational environment in which the model was developed. An 

example of a simple friction prediction model would be an analytical model observing only 

influence of speed to the friction performance, or an empirical model predicting friction 

performance on a single texture indicator. Some examples of complex models are numerical 

models developed in the finite element framework or empirical models defined with several 

influencing parameters: texture properties, climate effects or vehicle speed. 

In this Section, existing friction prediction models were reviewed and addressed as simple 

or complex with respect to the number of influencing factors they account for and the 

approach adopted for the prediction model establishment. The systematization of prediction 

models is shown in Figure 2.11. A special attention was given to the empirical prediction 

models accounting for texture features as the main influencing parameter.  
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Figure 2.11. Friction prediction models – a schematic overview 

2.6.1. Analytical models  

Analytical models represent the pioneering approach of rough contact mechanics modelling 

and the prediction of surface’s frictional performance based on rubber friction theory. Such 

models are developed by Greenwood and Williams, Grosch, Persson, Heinrich and Kluppel 

and others, as described in sections 2.2.1 and 2.2.2. In analytical models, friction prediction 

is evaluated by accounting for the influence of surface roughness, tire rubber material 

properties and/or speed. The explanation of friction phenomenon is limited due to the 

approximations and assumptions specific for the applied theory and usually fail to 

accurately predict the non-linear behaviour of the observed problem. They are applicable 

only for small deformation ranges, which is not the case in the tire-pavement interaction. 

Also, they cannot account for the transient contact conditions, due to the braking or 

acceleration or existence of a water film on the pavement surface (Yu et al., 2020). 

Analytical models are therefore characterized as simple models as the number of 

influencing factors is generally small and the friction performance prediction is limited due 

to the models’ simplifications. 

2.6.2. Numerical models  

Numerical methods for pavement friction modelling are an extension of analytical methods, 

where the problem non-linearities resulting from the rough contact interface and 

viscoelastic material behaviour could be addressed without the problem generalization and 

solved in the large deformation framework, as described in section 2.2.3.  The most common 

numerical method for pavement friction modelling is the finite element method (FEM), in 

Friction 
prediction 

models

Simple 

Analytical

Empirical

(≤ 2 influencing 
parameters)

Complex

Empirical

( > 2 influencing 
parameters)

Numerical 

(FEM analysis)
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which modelling of vehicle tires, pavement structure and the contact between these two 

bodies is needed for the simulation of the physical problem (Peng et al., 2019; Z. Yang et 

al., 2019). This framework requires the discretization of both vehicle tires and the pavement 

structure, which results in high computational complexity of the FE numerical model. Tire 

modelling requires not only the definition of the material model, which is commonly 

selected as hyper elastic or viscoelastic, but also the specification of the loading scenario 

and the influence of tire anisotropy caused by the different stiffnesses of the vehicle wheels 

(Yu et al., 2020). Even though it is possible to simulate the tire-pavement interaction in a 

2D framework, the best simulation results comparable to the actual physical problems are 

obtained by 3D interaction models. Pavement structure modelling is even more demanding 

because it requires the discretization of the surface texture irregularities, but it is inevitable 

if the goal of the simulation is to evaluate the frictional response in the tire-pavement 

interaction. An overview of research of pavement frictional performance done in the 

numerical FEM framework is given in Table 2.10.  

The main advantage of numerical models is their ability of friction performance prediction 

by including the actual effects of the selected model parameters, without the need to 

simplify or approximate any influence as is the case for the analytical models. The 

numerical models are considered as complex models for friction prediction as they account 

for more than one influencing parameter and they are computationally demanding, which 

means they require a deep understanding of rough contact mechanics and friction theories, 

but also FEM expertise with accompanying computational structure (adequate hardware 

and software for FE analysis). This is a major drawback for numerical models in terms of 

practical applications.  
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Table 2.10. Examples of FEM application for numerical modelling of pavement friction phenomenon 

Authors Model parameters 
Model 

dimension 
Contact simulation Model output 

Fwa, 2017 
Water film thickness, sliding 

speed 
2D 

Coulomb friction law 

(+Navier-Stokes 

equations and 

standard κ-ε model 

for the fluid 

behaviour 

description) 

The contact model 

solves the coupled 

tire-fluid-pavement 

interaction problem 

Srirangam 

et al. , 

2017 

Surface morphology, 

pavement material, loading 

pressure, sliding speed 

3D 

surface-to-surface 

contact algorithm 

(suitable for the large 

deformation 

framework) 

Frictional response is 

evaluated through the 

calculation of sliding 

friction coefficient as 

the ratio between the 

resultant tangential 

force and applied 

normal force 

Yu et al., 

2017 

elastic properties (recoverable 

resilient deformation) of 

various pavement structures 

and system variables: tread 

deformation at the contacting 

interface, actual contact area 

and the braking force 

3D 

dynamic friction 

contact analysis (3D 

tire-pavement 

interaction model) 

Pavement elasticity 

influences the real 

contact area 

Wagner et 

al., 2017 

rubber friction components - 

adhesion and hysteresis, multi-

scale surface roughness 

2D 

viscoelastic material 

model and robust 

surface-to-surface 

contact algorithm for 

hysteresis modelling, 

different surface 

contact conditions on 

macroscopic level for 

adhesion modelling 

Low-speed sliding 

friction on rough and 

rigid pavement 

surfaces 

Tang et al., 

2018 

asphalt mixture components: 

aggregates, bitumen and air 

voids (modelled by 

microstructure FE meshes 

where aggregates were 

modelled as elastic material 

and binder was modelled as 

viscoelastic material), the 

effect of high temperatures 

3D 
surface-to-surface 

contact algorithm 

Frictional response is 

derived from the 

theory of hysteresis-

induced energy 

dissipation 

Peng et al., 

2019 

3D pavement surface model 

reconstructed from high 

resolution pavement texture 

data, assumption of pavement 

rigidity and rubber hyper-

elastic characterization, water 

effect 

3D 
Exponential decay 

friction model 

Friction coefficient 

from the resultant 

tangential force vs. 

applied normal load 

(with and without the 

effect of water) 

Liu et al., 

2019 

Pavement texture, effect of 

water, effect of different 

vehicle movements (braking, 

turning) 

2D 

Persson’s friction 

theory for the 

calculation of kinetic 

friction coefficient 

integrated tire-vehicle 

model for the 

prediction of frictional 

performance of wet 

pavements 
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2.6.3. Empirical models  

Empirical prediction models are developed from the experimentally obtained data for different 

groups of influencing parameters. They investigate the relationship between one or more 

influencing parameters and the frictional performance, usually by inferential statistics methods 

(Rezaei & Masad, 2013a). By following the classification of friction prediction models in 

Figure 11, an empirical model is considered to be simple if it accounts for a maximum of two 

influencing parameters, and complex if it observes multiple influencing parameters. Simple 

empirical models usually investigate the influence of a single pavement surface roughness 

indicator, the influence of speed or the combined effect of these two parameters. 

2.6.3.1. Simple empirical prediction models 

Simple empirical models aim to predict the friction performance by observing a single 

influencing parameter, most commonly the measured pavement texture indicator. Additionally, 

the friction measurement device speed is accounted in the prediction model and the final model 

outcome is adjusted according to the measurement speed. All the other influencing parameters 

are usually neglected in the prediction model. Such models have a straightforward interpretation 

and provide a direct causality of friction performance based on the evaluated texture property.  

Two widely known simple two-parameter empirical prediction models are The Penn State 

model and the PIARC model (Fwa, 2021). Both models predict the frictional performance of a 

wet pavement (i.e. skid resistance) by pavement surface texture characteristic and vehicle 

speed. The Penn State model (1978) accounts for friction with respect to the various vehicle 

speeds and texture dependable constants. This model is developed from skid resistance 

measurements performed by a small scale standard static measuring method – pendulum device 

and at various test speeds by a dynamic full-scale measuring method. The model also contains 

parameters related to the micro-texture and macro-texture of the pavement surface. By 

employing this model, it is possible to determine the threshold values of pavement frictional 

performance for a given vehicle speed, with respect to the surface properties (Fwa, 2017).  

The Penn State model was a basis for the development of the PIARC model, resulting from the 

International PIARC experiment for pavement friction harmonization launched in 1991. This 

extensive experimental program gathered sixteen world countries in the pursuit for a worldwide 

acceptable friction performance indicator, derived from on-site measurements of friction and 

texture. The participants had to provide at least one representative friction and texture 

measurement device as a collaborator in extensive measurement campaign. The obtained 
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friction and texture data was used for the establishment of friction and texture relationship 

between different measurement principles and devices. The harmonization procedure outcome 

was a unique friction performance indicator, the International Friction Index - IFI. The IFI was 

defined as a function of two parameters: Friction Number (F60) and Speed Number (Sp). The 

former is a friction performance indicator, adjusted from the measurement outputs of different 

devices to the friction value at common slip speed of 60 km/h. The latter is a texture 

performance indicator, estimated from the texture measurements. According to the PIARC 

prediction model, the friction value F at any given slip speed S can be estimated as 

𝐹(𝑆) = 𝐹60 𝑒
[
(60−𝑆)

𝑆𝑝
]
 

with F60 calculated as  

𝐹60 = 𝐴 + 𝐵𝐹𝑅60 + 𝐶𝑇𝑋 

where A, B and C are are the calibration constants, specific for a particular friction and texture 

measurement device and FR60 is determined as  

  

𝐹𝑅60 = 𝐹𝑅𝑆 𝑒
[
(𝑆−60)

𝑆𝑝
]
 

from the actual friction value measured by the system (FRS) and the slip speed of the measuring 

system (S) adjusted by the speed number Sp. The speed number Sp is a parameter estimated 

from the texture measurements as 

𝑆𝑝 = 𝑎 + 𝑏 𝑇𝑋 

with a and b being constants depending on the applied measurement device and Tx texture 

measurement output. 

The PIARC experiment results provided a unique harmonization procedure for friction 

performance assessment by a single friction indicator, including both friction and texture 

measurements. The obtained results were limited to the participating measurement devices, 

since the derived calibration constants used in the calculation expressions were device-specific. 

PIARC model considered only macro-texture indicators in the friction prediction model, 

neglecting the influence of micro-texture to the pavement frictional performance. 

The Penn State and PIARC friction prediction models are applicable for the steady-state driving 

conditions, where no changes in the driving speed or direction of motion occur. As the frictional 
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phenomenon on the tire-road interface is mostly a dynamic process, steady-state models are not 

suitable for the actual behaviour simulations (Canudas-De-Wit et al., 2002). Dynamic friction 

models were developed to capture the dynamic tire-road contact behaviour, where the influence 

of speed gradient is highlighted as an influential parameter, therefore they can also be 

considered as simple one-parameter friction prediction models. The frictional behaviour in 

dynamic models is described by ordinary differential equations for lumped models, assuming 

point contact between pavement and tire. Some examples are the Dahl friction model which 

accounts for friction as a function of displacement and speed effect is observed only through 

the relative speed direction sign (positive or negative), the Brush model where the frictional 

response is assumed from the tire deformation and stiffness with respect to the kinematics of 

the system including the speed gradient, or the Lu-Gre kinematic model where the effect of 

speed is accounted for by employing the Stribeck effect characteristic for lubricated contact. 

The distributed kinetic friction models follow the tribology approach, where the frictional 

response is assumed on a larger area than just a single point. This area is called the contact area 

and it represents a zone where vehicle tires and pavement surface are in partial or full contact. 

The frictional response is mostly realized in the zone of full contact and it depends on the ratio 

between the size of the full contact zone and contact area in total. 

2.6.3.2. Complex empirical prediction models 

The complex empirical models observe more influencing parameters from the same group or 

from several different parameters’ groups. An example of a complex empirical prediction 

model including more influencing parameters from the same group would be a model 

accounting for the effect of different asphalt mixture properties: aggregate type and gradation, 

binder type and amount, different construction methods and different asphalt mixture types 

(Hall et al., 2009). These models are usually pointed towards the influence analysis of a specific 

property (or properties) to the texture performance related to the friction realization. Complex 

empirical models with several influencing parameters from different groups account for their 

combined effect on the friction realization. Some examples are the friction prediction model 

developed from asphalt mixture surface properties evaluated during different polishing stages 

at different test temperatures (Khasawneh et al., 2012), friction prediction model based on the 

effect of environmental seasonal variations and traffic load (Pomoni et al., 2020) or the 

prediction model accounting for the traffic load, pavement age and asphalt mixture 

properties(Pérez-Acebo et al., 2019).  
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2.6.3.3. Empirical models with texture as the main influencing parameter 

Prediction models based on texture features are mostly derived from extensive measurements 

of relevant pavement surface properties, performed by traditional measurement devices. They 

can be simple if only a single texture parameter is related to the friction performance, or 

complex if other influencing parameters, such as traffic load, pavement type or environmental 

effects are included in the prediction model. An overview of some existing friction prediction 

models with texture as the main influencing parameter is given in Table 2.11. 

Table 2.11. Overview of empirical friction prediction models with texture emphasizd as the main predictor for 

friction performance 

Authors Research aim 
Influencing 

parameters 
Results 

Model 

complexity 

Ergun et al., 

2005 

To predict the friction 

performance on 

different pavements 

from micro- and macro-

texture features and 

examine the speed 

effect 

Texture (micro-

texture characterized 

by specific 

wavelengths and 

macro-texture 

characterized with 

traditional texture 

indicator), 

Pavement type, 

Speed 

R2 = 0.89 for friction 

prediction from the 

combined micro- and 

macro-texture effects, with 

respect to the slip speed 

Complex 

Dell’Acqua et 

al., 2011 

To predict the friction 

performance from 

micro- and macro-

texture features on a 

specific pavement type 

(porpous asphalt) 

Texture (micro-

texture estimated 

indirectly by 

pendulum device 

measurements and 

macro-texture 

characterized with 

traditional texture 

indicator) 

R2 = 0.74 for friction 

prediction from the 

combined micro- and 

macro-texture effects 

Simple 

Ahammed & 

Tighe, 2012 

To investigate the 

correlation between 

different texture 

characterization 

methods and friction 

performance 

determined from high-

speed measurement 

device 

Texture (micro-

texture estimated 

indirectly by 

pendulum device 

measurements and 

macro-texture 

characterized with 

traditional texture 

indicator), 

Friction measurement 

equipment tire 

properties 

R = 0.53 for measured 

friction and macro-texture 

indicator, 

R = 0.85 for measured 

friction and micro-texture 

indicator, 

Negative texture-friction 

correlation obtained for 

ribbed tire and positive 

correlation obtained for 

smooth test tire 

Complex 

Kotek & 

Kováč, 2015 

To investigate the 

correlation between 

different texture 

characterization 

methods and friction 

performance 

determined from 

measurement device 

Texture (micro-

texture estimated 

indirectly by 

pendulum device 

measurements and 

macro-texture 

characterized with 

traditional texture 

indicator), Friction 

measurement 

R2 = 0.80 for prediction 

model accounting for 

micro- and macro-texture 

effect and smooth tire, 

R2 = 0.88 for for prediction 

model accounting for 

micro- and macro-texture 

and ribbed tire 

Complex 
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equipment tire 

properties 

Kargah-

Ostadi & 

Howard, 

2015 

To investigate the 

relation between 

friction performance 

and macro-texture 

indicator 

Traditional macro-

texture indicator,  

Friction measurement 

speed 

 

R2 = 0.11 regardless of the 

measurement speed, 

R2 = 0.73 for high-speed 

measurements (70 km/h) 

Simple 

Meegoda & 

Gao, 2015 

To investigate the 

effect of macro-texture 

level and effect of 

water on the friction 

performance 

Traditional macro-

texture indicator and 

defined limit values 

 

No correlation observed 

for all observed texture 

parameter values, 

R2 = - 0.85 for texture 

values with profile depths 

> 0.9 mm, 

The effect of water film is 

included as an explanation 

of correlation absence for 

lower texture indicator 

values 

Complex 

Miao et al., 

2016 

To investigate the 

cummulative traffic 

effect on polishing 

resistance of different 

pavement types 

(indirec friction 

performance) 

Traditional macro-

texture indicator, 

cumulated traffic load 

(2-year period), 4 

pavement types 

Texture-friction 

relationship is clear for 

two pavement types, but 

no exact measurement of 

correlation strength was 

provided 

Complex 

Chou et al., 

2017 

To investigate the 

correlation between 

traditional texture 

indicators and high-

speed friction 

measurements 

Two traditional 

macro-texture 

indicators 

no significant correlation Simple 

Basu & 

Chowdhury, 

2017 

To investigate the 

correlation between 

traditional texture 

inidcators and low-

speed friction 

measurements 

Traditional macro-

texture indicator 
no significant correlation Simple 

G. Yang et 

al., 2018 

To investigate the 

correlation between 

traditional texture 

indicators and high-

speed friction 

measurements 

Traditional macro-

texture indicator 
no significant correlation Simple 

Kouchaki et 

al., 2018 

To investigate the 

effect of texture 

measurement 

equipment on 

measured friction 

performance 

Traditional texture 

indicator obtained by 

two different devices, 

Friction measurement 

speed 

R2 = 0.57 for low-speed 

friction measurements, 

R2 =0.79 for high-speed 

friction meaurements 

Simple 

Islam et al., 

2019 

To investigate the 

correlation between 

traditional texture 

indicator and high-

speed friction 

measurements on 

different road network 

levels 

Traditional macro-

texture indicator, 

Network level (whole 

road network, project 

level network with 

specified pavement 

types) 

No significant correlation 

on whole road network 

level investigation, 

R2 = 0.84 and R2 = 0.97 

for project level network 

investigation on two 

different pavement types 

Simple 

Li et al., 2020 

To investigate the 

correlation between 

traditional texture 

Traditional macro-

texture indicator 
R2 = 0.58 Simple 
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indicators and high-

speed friction 

measurements 

Pomoni et al., 

2020 

To investigate the 

texture, long-term 

seasonal variation and 

traffic load effect on 

friction performance 

Traditional macro-

texture indicator, 

cummulative traffic 

load effect, 

Climate 

characteristics in 

Mediterranean zone 

(wet/dry seasons) 

A strong but negative 

correlation with R2 = - 0.8 

for texture and friction 

indicators (explained by 

the effect of micro-texture 

which was not evaluated 

in this research) 

Complex 

 

2.7. Pavement friction – summary 

Previous sections provided the most important findings related to the pavement friction 

phenomenon selected from the performed extensive literature review. The theory of rough 

contact mechanics and physical effects to the pavement friction were analysed. The contribution 

of the most relevant influencing parameters to the pavement friction phenomenon was 

overviewed. The methods for pavement friction measurements and classification of pavement 

friction performance according to the relevant European standards, available technical 

specifications, collaborative projects’ deliverables and most common practices in European 

countries, including Croatia were given. The existing models for the prediction of friction 

performance were analysed and grouped according to the number of influencing parameters 

included in the model definition and with respect to the analytical, numerical or empirical nature 

of the model. To summarize, here are some important findings about the pavement friction: 

- friction coefficient results from the magnitude of friction force, which depends on the size 

of true contact area between pavement surface and vehicle tire 

- true contact area is a function of surface roughness characteristics, therefore pavement 

friction phenomenon should be observed in rough contact mechanics framework 

- the complexity of the phenomenon is multi-dimensional: it accounts for a multitude of 

roughness scales, non-linear behaviour of the tire rubber, the effect of velocity and 

temperature in a non-linear behaviour regime and the influence of external non-controllable 

environmental parameters   

- pavement friction performance assessment is not unique, as there exists multiple 

standardized measurement devices and corresponding resulting parameters for friction 

performance characterization  
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- development of different pavement friction prediction models represents an attempt to 

exclude the actual friction measurements and estimate the friction performance from the 

selected influencing parameters in a simple or more complex manner  

The existing empirical models for friction prediction based on texture indicators as the 

governing influence parameter were overviewed. The obtained results are not unique as some 

indicate a strong and positive relationship between texture indicators and friction performance 

and satisfactory coefficient of determination for the proposed prediction models, while others 

failed to establish a reliable prediction model showing that no significant correlation could be 

obtained between texture features and friction performance.  

The research performed in this thesis focused on development of a friction performance 

prediction model based on the influence of pavement surface roughness characteristics, 

resulting from the texture features. Other influencing parameters were neglected. Therefore, the 

next Chapter is devoted to an overview of pavement texture properties and characterization 

methods. 
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3. Pavement texture properties related to friction  

 

Pavement surface texture is a controllable friction influencing parameter that can be defined, 

monitored and maintained by pavement engineering practices. To address the importance of 

the texture in the analysis of pavement friction problem, a detailed overview of important 

texture properties and characterization procedures relevant for the friction performance is 

given in this Chapter, including: 

- texture definition and classification with respect to its effect on friction performance  

- texture-related properties relevant for pavement friction performance 

- standard methods for pavement texture measurement and characterization 

- alternative texture features characterization by roughness parameters defined in 

European standards EN ISO 21920-2 and EN ISO 25178-2  

- advanced methods for pavement texture characterization 
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3.1. Pavement texture definition and classification 

Pavement texture represents pavement surface deviations from a true planar surface within a 

specific wavelength range (EN ISO 13473-1: Characterization of pavement texture by use of 

surface profiles – Part 1:Determination of Mean Profile Depth). The deviations from true 

planar surface are resulting from peaks and valleys formed by aggregate particles in the asphalt 

mixture. Texture wavelength represents a horizontal distance between two consecutive texture 

peaks when observed along a single texture profile. Texture profile is defined as a 2D surface 

representation, extracted from an observed surface as a cross section perpendicular to the 

surface plane in a specific length (Figure 3.1.). From the extracted texture profile, texture 

wavelengths can be determined and texture can be classified accordingly. Another texture 

descriptor that can be evaluated from the surface profile is the amplitude, which is the peak-to-

valley height difference between two consecutive extreme profile points. Characteristic texture 

dimensions in horizontal and vertical direction are given in Figure 3.2. 

 

Figure 3.1. An example of full-length profile  

 

 

Figure 3.2 Characteristic profile-related texture dimensions 
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Texture wavelengths and amplitudes are used for the characterization of different texture levels. 

The first classification of pavement texture according to the profile’s geometrical features was 

presented by Permanent International Association of Road Congresses - PIARC in 1983. 

Texture was divided in three categories: micro-texture, macro-texture and mega-texture, with 

respect to the limit values of wavelength and amplitude ranges specific for each texture level. 

In 1987. PIARC redefined the texture categories with respect to the influence that each texture 

level has on a specific phenomenon influencing the riding quality (Figure 3.3 and 3.4). 

Additional texture level was introduced – unevenness or roughness.  Texture levels were 

defined by limit values of wavelengths and amplitudes and such categorization was adopted by 

national standards and specifications such as American Society of Testing Materials (ASTM), 

European International Organization for Standardization (ISO) or German Institute for 

Standardization (DIN). Texture categorization established by PIARC in 1987. was further 

applied in all research considering the influence of texture features on pavement frictional 

performance. 

 

Figure 3.3. Texture classification by PIARC with four texture levels and different reference lengths of a 

pavement at which they are relevant (Hall et al., 2009) 

Following the PIARC texture categorization, European Standard EN ISO 13473 series 

recognizes four texture levels with different influences on the pavement surface performance. 

Texture ranges are listed and described in Table 3.1. Micro-texture is the smallest texture level 

mostly related to the texture of the aggregate particles in the asphalt mixture. Macro-texture is 

the rough surface texture resulting from the asphalt mixture properties. Mega-texture represents 

the surface irregularities that can be categorized as roughness of the road surface itself, mostly 

coming from the mechanical and structural properties of pavement construction and installation 

procedure. Unevenness represents pavement surface texture which comprises surface defects 

much larger in comparison to other texture levels, resulting from structural damage of the 
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pavement construction. When the observed pavement property is the friction performance, 

micro-texture and macro-texture levels are considered as relevant. Even though they both have 

an important influence on the friction phenomenon and shouldn't be neglected, usually one of 

them is investigated thoroughly within a single research, depending on the scope of the 

investigation and the expected results (Kogbara et al., 2016; L. Li et al., 2016). 

 

Figure 3.4. Texture levels according to the PIARC categorization and the specific effect on the pavement 

surface-vehicle interaction (Hall et al., 2009) 

Table 3.1 Pavement texture levels and classification with respect to the wavelengths and amplitudes and the 

effect on the pa vement-vehicle interaction phenomenon 

Texture level 
Wavelength 

range 
Amplitude range Reference length 

Influence on 

phenomena 

Micro-texture < 0.5 mm 0.001 – 0.5 mm Aggregate particle 
Tire wear, low speed 

friction 

Macro-texture 0.5 – 50 mm 0.1 – 20 mm 

Tire-pavement 

contact area (tire 

tread elements) 

High speed friction, 

aquaplaning, 

splash/spray effect, noise 

Mega-texture 50 – 500 mm 0.1 – 50 mm 
Tire-pavement 

interface 
Noise, rolling resistance 

Unevenness 0.5 – 50 m >0.5 m Road segment 

Riding quality, 

smoothness, 

serviceability 

 

In wet road conditions, the contribution of both texture levels is important for the friction 

realization on wet pavement-tire contact. Micro-texture enables the quick dispersion of water 

film covering the pavement surface while macro-texture helps with water drainage and reduces 

the hydroplaning effect (Mataei et al., 2018). The combined effect of both texture levels reflects 

on the friction performance of pavement surfaces for different vehicle speeds. There are four 

categories of pavement surface different for the variety in micro- and macro-texture properties 
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affecting the sliding friction differently with increase of vehicle speed (Hall et al., 2009). 

Surfaces with high micro-texture and low macro-texture are considered to be smooth and harsh 

(plot A’) and those with high micro- and macro- texture are categorized as rough and harsh 

(plot B’). For low micro-texture values, surfaces are described as smooth and polished if they 

also have low macro-texture values (plot C’) and rough and polished if the macro-texture values 

are satisfying (plot D’). Micro-texture magnitude dominantly influences the value of sliding 

friction coefficient and macro-texture governs the decrease rate of friction coefficient with an 

increase in vehicle speed (Figure 3.5). 

 

Figure 3.5. The combined effects of micro-texture and macro-texture on friction performance for an increase in 

vehicle speed (Hall et al., 2009) 

3.2. Pavement micro-texture properties 

Pavement micro-texture represents surface texture level with wavelengths and amplitudes 

below 0.5 mm (EN ISO 13473-1). This texture level is hardly visible or not visible at all to the 

naked eye in its full range (Figure 3.6). It can be described as the pavement surface roughness 

at the microscopic level interacting with the tire rubber on a molecular scale and thus 

contributing to the adhesion part of total friction force (Kogbara et al, 2016). When inspecting 

pavement texture characteristics on low-speed roads, the values of micro-texture are usually 

more emphasized and related to the available skid resistance level. Research by Kogbara et al., 

2016 pointed out the importance of micro-texture for both wet and dry pavements and relevance 

for the frictional properties regardless of the driving speed. 
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Figure 3.6. Micro-texture level of pavement surface roughness (Kotek&Kovac, 2015) 

Pavement micro-texture results mostly from the mineral properties of aggregates in the asphalt 

mixture, therefore it is commonly referred to as the texture of the aggregate particles (Yu et al., 

2020). The most important aggregate properties in relation to the micro-texture are geometric 

characteristics such as shape and size, and petrological and physical properties, mostly 

resistance to polishing (Florková & Komačka, 2015). Aggregate origin significantly affects the 

micro-texture performance. Aggregates such as eruptive, basalt or granite produce higher levels 

of micro-texture while aggregates of limestone origin result in lower micro-texture levels. Fine 

aggregate particles (< 2 mm) of the basalt origin tend to increase the micro-texture if their 

amount in the asphalt mixture increases (Kumar & Gupta, 2021). 

Conclusions derived from the research by Ergun et al. (2005) state that micro-texture is an 

indicator of the pavement surface's polishing resistance directly affecting pavement surface 

frictional properties. In order to quantify the polishing resistance of different aggregate types, 

a polished stone value (PSV) test is performed, resulting in PSV values categorized according 

to the achieved test result (EN 1097-8: Tests for mechanical and physical properties of 

aggregates -- Part 8: Determination of the polished stone value). National regulations give 

recommendations or requirements for minimal PSV values for different road categories and 

traffic loads, limiting the choice of an adequate aggregate in the asphalt mixture production. 

Some European countries give a detailed tables of minimal PSV requirements for different road 

categories, road network sites or traffic load (Descantes & Hamard, 2015; Senga et al., 2013). 

In Croatia, Technical specifications for asphalt pavements (Tehnički propis za asfaltne kolnike, 

2021) defines that a minimal PSV value for pavement surface layers with aggregate mixtures 

containing mostly eruptive stone (AG1-AG2 and AG3) is PSV 50, while mixtures containing 

both eruptive and limestone material have a minimal requirement of PSV 30. 
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Traffic load polishes the pavement surface and decreases the roughness of the aggregate 

particles exposed to this effect. The polishing effect of traffic influences micro-texture the most, 

as it is the most exposed part of pavement surface in contact with the tire rubber (Nataadmadja 

et al., 2015). When aggregates are exposed to the polishing, two effects arise: smoothing and 

abrasion (J. Liu et al., 2020). The size of these effects depends on the aggregates mineralogy 

properties. Smoothing is considered as polishing in general as this process results in smooth 

aggregate surfaces without any micro-texture. The abrasion effect results in new surface micro-

texture due to the loss of mineral grains in the aggregate which is composed of minerals with 

different hardness. If the aggregate material consists of several minerals with different hardness, 

both effects occur during the polishing process. Aggregates with better polishing resistance 

provide a better long-term friction performance of pavement surface (Kumar & Gupta, 2021). 

Although micro-texture is recognized as an important parameter for pavement friction 

performance characterization, there is still no standardized method for its direct determination 

(Zuniga-Garcia & Prozzi, 2019). It is difficult to measure the micro-texture directly on site since 

it involves small-scale roughness that cannot be captured by traditional texture measuring 

techniques applied for macro-texture characterization (Sansoni et al., 2009). The most common 

micro-texture characterization is by low-speed friction measurements with pendulum devices. 

The measurement result expressed as friction value is a representation of pavement surface 

micro-texture and not the accurate value. The obtained friction coefficient from the pendulum 

measurements includes the effects of both texture levels, but also other factors in the 

measurement procedure, such as surface temperature, rubber slider hardness and some non-

controllable factors related to the subjectivity of the measurement method (Kogbara et al 2016). 

Some researchers investigated the possibility of direct micro-texture characterization by 

determining shape related roughness parameters of aggregates in order to connect it to the 

pavement friction, achieving satisfactory results (Do et al., 2009; Dunford et al., 2012; 

Nataadmadja et al., 2015). Texture is characterized by high-resolution devices such as 

microscopes, which enable a detailed analysis of surface morphology at micro-roughness 

levels. This measurement procedure is called aggregate image measuring system – AIMS, 

utilized to investigate the effect of polishing on the aggregates texture (Araujo et al., 2015; 

Rezaei et al., 2011). AIMS texture analysis was applied in laboratory conditions and required 

sophisticated equipment and educated operators. The investigation of micro-roughness effects 

on the frictional performance is done on aggregate stone samples and not on asphalt mixture 
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samples. Therefore, real on-road conditions of tire rubber-pavement surface contact related to 

micro-texture performance cannot be described completely by such analyses.  

Recently, advanced non-contact optical-based methods are used for in-situ characterization of 

texture's micro-roughness features (S. Chen et al., 2022). These methods rely on spatial texture 

measurements and resulting digital texture models from which various roughness parameters 

can be extracted, regardless of the texture level. Besides the roughness parameters, digital 

texture models can be used for the calculation of specific functions describing the surface 

texture, for example power spectral density function or height difference correlation function 

related to the fractal nature of pavement texture. The important feature of such methods is that 

they do not constraint any of the texture levels responsible for the friction realization. 

3.3. Pavement macro-texture properties 

Macro-texture is defined as a range of surface texture with wavelengths between 0.5 mm and 

50 mm and amplitudes between 0.5 mm and 20 mm (PIARC, 1995). It is the road surface texture 

visible to the naked eye, resulting from asphalt mixture properties and surface layer construction 

method (Figure 3.7). Macro-texture contributes to pavement friction performance through the 

hysteresis component of friction force caused by energy loss in the tire rubber deformation 

process when in contact with pavement surface. Surfaces with coarser texture will induce larger 

tire deformations when vehicle is passing over, causing increase in energy dissipation and 

resulting in greater frictional response on the contact area.  

   

a) b) c) 

Figure 3.7. Macro-texture of different asphalt mixtures on laboratory samples: a) dense-graded mixture HMA, 

b) gap-graded mixture  SMA, c) porous mixture PA (author's images, 2023) 

Macro-texture is responsible for friction performance at high-speed driving conditions and 

under wet surface conditions (S. Chen et al., 2022). For higher macro-texture values, the excess 

water covering the surface will be successfully drained away without forming a slippery water 

film that can fill up the texture cavities and reduce both adhesion and hysteresis components of 
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friction force (Kogbara et al. 2016). In this way, the dangerous hydroplaning effect is reduced 

and its influence on the friction realization is disabled. Therefore, sufficient level of macro-

texture, together with adequate micro-texture level, provides safe driving conditions.  

The most significant parameters responsible for macro-texture are related to the asphalt mixture 

properties. Those are mainly aggregate mineralogy, distribution and gradation in the mixture, 

binder type and binder content, air voids content and filler to binder ratio (Araujo et al., 2015; 

Yu et al., 2020). Despite the fact that the listed properties are well recognized in the research 

community as governing for macro-texture, there is still no standardized procedure for 

evaluation of pavement macro-texture prior to the surface layer installation. Most of the asphalt 

mixture design standards focus on mechanical and volumetric properties of asphalt mixtures, 

neglecting the effect that mixture properties could have on the friction performance ((D. Chen 

et al., 2015). Therefore, it is still not possible to predict the friction performance of an asphalt 

mixture based on the mixture properties. Texture and friction performance are evaluated only 

on installed roads by traditional measurement procedures and categorized by measured texture 

and friction indicator values. 

The most important asphalt mixture properties that influence the roughness of the pavement 

surface are the aggregate grains properties: aggregate type, aggregate gradation and nominal 

maximum aggregate size in the mixture (Hall et al., 2009). Aggregate type used in the mixture 

governs the asphalt mixture resistance to polishing after the initial binder film covering the 

aggregate particles is worn out by traffic polishing effect. Aggregates such as basalt, granite, 

sandstone and crushed gravel are considered as favorable in the asphalt mixture for better 

friction performance while dolomite or limestone aggregates are more prone to polishing and 

therefore, the usage of such aggregate types is discouraged for high pavement friction demands 

(Kogbara et al., 2016).  Aggregate's resistance to polishing is evaluated by PSV value, 

elaborated in section 4.2. Aggregate's geometrical properties such as shape, angularity and 

soundness govern the initial arrangement of the aggregate in the mixture and contribute to the 

resulting macro-texture of the surface (Araujo et al., 2015). 

The coarse/fine aggregate particles ratio will also affect the macro-texture values. Coarse 

aggregate content governs the aggregate arrangement and interaction with the binder in the 

mixture, which are mixture properties closely related to the pavement friction performance. 

Mixtures with higher amounts of fine aggregates will result in lower macro-texture values (Hall 

et al., 2009; Iuele, 2016; Rezaei & Masad, 2013). Asphalt mixtures designed as gap-graded or 
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discontinuous, such as stone mastic asphalt (SMA) or porous asphalt (PA) mixtures have a 

higher content of coarse aggregate particles and therefore provide better friction performance 

with higher macro-texture values in comparison to dense-graded mixtures(Araujo et al., 2015; 

Dell’Acqua et al., 2011; Rezaei & Masad, 2013a; Xie et al., 2019).  If the mixture is designed 

to be as close to the maximum density line, this will reduce the macro-texture of the pavement 

surface as the amount of fine aggregates is similar to the amount of coarse aggregates (Praticò 

et al., 2015; Praticò & Vaiana, 2013; Vaiana et al., 2012). Any deviation from the maximum 

density line will increase the amount of air voids volume in the mixture and increase the surface 

texture(Sullivan, 2005). However, increase in air voids volume might affect the mixture 

stability and degrade the properties such as aging, permeability or fatigue. Therefore, the 

bitumen content in the mixture should be adjusted if the mixture is designed to have a higher 

amount of air voids. The influence of Nominal Maximum Aggregate Size on the realized 

macro-texture of the mixture is very straightforward – larger NMAS causes higher macro-

texture values (D. Chen, 2020; Vaiana et al., 2012). 

Another influencing mixture related parameter is the bitumen amount and type. In standard hot 

asphalt mixtures bitumen is used as a main binding agent (Kogbara et al., 2016). Asphalt 

mixtures containing higher bitumen amounts tend to have lower macro-texture values (Asi, 

2007; Sullivan, 2005). This is because bitumen envelops aggregate grains in the mixture 

creating a film on the pavement surface and reducing both micro- and macro- texture in the 

pavement early life. If the bitumen amount is high, it will also fill up the cavities in the gap-

graded mixtures with higher amounts of coarse aggregates and reduce the texture performance.  

Influence of bitumen type is observed by evaluating the frictional performance of asphalt 

mixtures with standard and modified bitumen. A research performed by (J.-S. Chen et al., 2013) 

investigated the effect of various bitumen types on the frictional performance of asphalt 

mixtures, showing no significant difference in the obtained results. The SKIDGRIP project 

launched at the University of Ulster, 2003 investigated the effect of various aggregate and 

bitumen combinations on the early-life friction performance, concluding that aggregate type 

and its properties related to moisture sensitivity significantly influence the speed of bitumen 

coat striping on the pavement surface. Polymer modified bitumens tend to retain longer on the 

pavement surface and therefore extend the initial stage of lower friction performance as they 

cover the aggregate particles on the surface (Woodward & Jellie, 2003). 

Besides the dominant effect of asphalt mixture properties on macro-texture realization, surface 

layer construction techniques can also influence texture performance. Compaction efforts, 
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compaction type and surface layer thickness are recognized as the most relevant (Pratico et al., 

2010). Compaction energy and type of compaction affect the air voids content in the mixture, 

which is a macro-texture related property. Higher compaction energy and vibrating compaction 

reduces the air voids amount and decreases the macro-texture performance. An increase of 

asphalt surface layer thickness influences texture performance negatively (Cantisani et al., 

2016). A summary of overviewed aspahlt mixture properties and their positive and negative 

influence on pavement macro-texture is given in Table 3.2. 

Table 3.2. Positive and negative effects of asphalt mixture properties on the pavement macro-texture 

Asphalt mixture 

property 
Positive influence Negative influence 

Aggregate type 
→ Basalt, Granite, Sandstone, Crushed 

gravel, Gabbro, Greywacke 

→ Limestone, Dolomite, Dolerite, River 

gravel, Quartzite 

Aggregate 

material 

properties 

→ Higher PSV test values 

→ Higher LA abrasion and Micro-

Deval wear test values 

→ Lower water sensitivity 

→ Lower aggregate soundness values 

(degradation resulting from 

environmental effects) 

→ Lower PSV test values 

→ Lower LA abrasion and Micro-Deval 

wear test values 

→ Higher water sensitivity 

→ Higher aggregate soundness values 

(degradation resulting from 

environmental effects) 

Aggregate 

shape 

properties 

→ Sharp and angular-shaped particles 
→ Flat and elongated, rounded aggregate 

particles 

Aggregate size 

properties 

→ Coarse aggregates (> 2mm) 

→ Larger NMAS 
→ Fine aggregates (< 2mm) 

Asphalt mixture 

type 

→ Gap-graded or open-graded 

mixtures (SMA or PA) 

→ Dense-graded mixtures with smaller 

NMAS (AC8) 

Asphalt mixture 

gradation 

→ Higher amount of coarse aggregate 

particles 

→ Deviations from maximum density 

line 

→ Increase in air voids volume 

(VMA) 

→ Higher amount of fine aggregate particles 

→ Mixture designed to follow maximum 

density line 

Asphalt 

bitumen 

properties 

→ Lower bitumen content in the 

mixture 

→ Standard bitumen type usage for 

early-life friction performance 

→ Bitumen content higher than optimal 

→ Polymer modified bitumen for early-life 

friction performance 

Construction 

method 

→ Static compaction 

→ Lower compaction energy 

→ Lower surface layer thickness 

→ Vibrating compaction 

→ Higher compaction energy 

→ Higher surface layer thickness 

3.4. Macro-texture evaluation by standard measurement methods  

Macro-texture is regularly monitored on road network as it is recognized as an important 

performance indicator for pavement functional performance assessment. It is usually evaluated 
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by volumetric or geometrical characteristics measured on constructed pavements by 

standardized test methods and described by a corresponding pavement macro-texture indicator. 

Based on the measured values of macro-texture indicators, pavement texture is characterized 

as either having a positive effect on friction performance or as a critical for pavement friction 

performance, if the determined macro-texture indicators are below the threshold values. The 

common methods for pavement macro-texture characterization can be used either on-site or in 

laboratory conditions. They are generally divided into contact and non-contact measurement 

methods (W. Wang et al., 2011b). 

3.4.1. Standard macro-texture measurement devices 

The most common contact measurement methods are the volumetric methods: Sand Patch test 

and the Outflow Meter test (Table 3.3). The measurement procedure for the Sand Patch 

volumetric method is defined in European standard EN 13036-1: Road and airfield surface 

characteristics – Test methods – Part 1: Measurement of pavement surface macrotexture depth 

using a volumetric patch technique. The Outflow Meter test is defined in American standard 

ASTM E2380/E2380M-15: Standard Test Method for Measuring Pavement Texture Drainage 

Using an Outflow Meter. Measurement results of Sand Patch test are expressed as a volumetric 

indicator of macro-texture describing its depth Mean Texture Depth – MTD in millimeters. For 

the Outflow Meter test, texture is indirectly estimated from the time needed for a fixed volume 

of water to evacuate from a measured cylinder with a rubber bottom (W. Wang et al., 2011b). 

Volumetric contact methods are mostly exploited for a single spot measurement on constructed 

roads, or for the evaluation of achieved pavement texture on the laboratory produced samples. 

They are widely used, relatively simple and inexpensive. The contact methods are static and 

relatively slow, demanding the traffic regulation if they are performed on-site (Kumar & Gupta, 

2021). Test results are related to a very small area of surface texture; therefore, they cannot 

present an overall texture characteristic of a larger road section. They are also very sensitive to 

operator performance. 

The non-contact measurements are conducted with laser or other sensor devices detecting the 

heights of the texture profile along the measuring path (Wang et al., 2011). The most common 

non-contact stationary device is Circular Texture Meter – CTM, operating as a rotational device 

and generating surface texture profiles along the circular path. Non-contact sensor technologies 

are widespread for dynamic measurement systems. Such devices are usually mounted on 

vehicles and operate at normal vehicle speeds characteristic of the particular road on which the 

texture measurements take place. 
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Table 3.3. Volumetric contact methods for macro-texture characterization 

Macro-texture 

measurement method 
Measurement procedure 

Macro-texture 

performance 

indicator 

Sand Patch Method 

a known volume of sand or glass beads is spread over the 

pavement surface and macro-texture indicator is calculated 

from the ratio of the volume and the circular area where the 

measuring sand was spreaded 

Mean Texture 

Depth – MTD [mm] 

Outflow Meter Test 

the flow time of water released from a specific cylindrical 

device is an indirect macro-texture measure. The water 

drainage rate evaluated through this test is a representation of 

surface hydroplaning potential 

Outflow Time – 

OFT [s] 

 

High-speed automated measurement systems enable fast and relatively simple acquisition of 

large datasets, without the need for traffic regulation. There is a vast number of such devices 

used worldwide for road network monitoring and they are usually combined with other 

pavement performance measurements, for example roughness on mega-texture level, rutting, 

pavement friction etc. European standard EN ISO 13473-3: Characterization of pavement 

texture by use of surface profiles — Part 3: Specification and classification of profilometers 

gives a general classification of non-contact texture measurement devices with respect to the 

mobility of devices and operating principle. Furthermore, the EN standard specifies the texture 

wavelength range classes in horizontal and vertical direction and provides an information about 

applicability of a specific profilometric device for measurements of a certain texture class 

(Table 3.4).  

Table 3.4. Properties of profilometric devices  for pavement texture characterization (EN ISO 13473-3) 

Profilometric 

device type 

Measurement procedure 

requirements 
Operating speed 

Wavelength range 

covered by 

measurements [mm] 

Stationary – 

slow 

Single-spot measurements, requires 

traffic closure on the measurement site 

Required measurement 

time for a single-spot 

measurement is ≥ 60 s 

0.05 – 0.16 

0.20 – 0.50 

0.63 – 2.0 

> 2.5 

Stationary - fast 

Single-spot measurements, does not 

require traffic closure on the 

measurement site 

Required measurement 

time for a single-spot 

measurement is < 60 s 

0.20 – 0.50 

0.63 – 2.0 

> 2.5 

Mobile – low 

speed 

Vehicle-mounted devices, continuous 

measurement of texture features, 

suitable for roads of lower category 

(urban roads) 

< 60 km/h 

0.20 – 0.50 

0.63 – 2.0 

> 2.5 

Moble – high 

speed 

Vehicle-mounted devices, continuous 

measurement of texture features, 

suitable for roads of higher category 

(highways, primary roads) 

≥ 60 km/h 
0.63 – 2.0 

> 2.5 
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3.4.2. Macro-texture performance evaluation 

The standard volumetric indicator for macro-texture performance evaluation mean texture 

depth - MTD is calculated following the standard EN 13036-1 as  

𝑀𝑇𝐷 =
4𝑉

𝜋𝐷2
  [𝑚𝑚] 

where V is the known volume of a cylinder filled with the measuring material (sand or glass 

spheres) and D is the average measured diameter of pavement surface covered by the measuring 

material.  

The standard profile-related texture indicator Mean Profile Depth – MPD is determined by 

following the European Standard EN ISO 13473-1: Characterization of pavement texture by 

use of surface profiles — Part 1: Determination of mean profile depth which defines the terms, 

expressions and parameters relevant for the calculation of MPD as an average value of profile 

depth. It is evaluated over a 100 mm long baseline, calculated from the peak profile height 

determined on the first and the second half of profile baseline (Figure 3.8) as   

𝑀𝑃𝐷 =
𝑀1 + 𝑀2

2
 − 𝑃𝑃 [𝑚𝑚] 

where M1 is the peak profile height on the first baseline half, M2 is the peak profile height on 

the second baseline half and PP is the mean profile level. 

 

Figure 3.8. The physical meaning of MPD profile-related texture parameter (Kovač et al., 2015) 

MPD is used to calculate another common macro-texture indicator, estimated texture depth 

(ETD). This indicator is an approximation of texture depth, evaluated from the profilometric 

measurements and established as a comparison of non-contact texture profile measurements 
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and contact volumetric texture measurement. ETD is calculated by an expression defined in EN 

ISO 13473-1 as 

𝐸𝑇𝐷 = 0.8 𝑀𝑃𝐷 + 0.2 

MTD and MPD are the most common macro-texture indicators for performance evaluation on 

road network in Europe. The ROSANNE project Final Output Summary (Birkner et al., 2016) 

showed that the texture evaluation in terms of frictional performance assessment is not included 

in skid resistance policies in all participating countries. Not even half of the countries involved 

in the project had defined texture threshold values, even though texture is acknowledged as one 

of the crucial pavement properties for friction realization. Aavik et al., 2013. analyzed the 

existence of threshold texture values in several European countries (Table 3.5) and showed that 

only four countries had the fully developed limit values for measured texture parameters MPD 

and SMTD (Sensor-measured Texture Depth). 

Table 3.5. Summary of macro-texture evaluation in European countries for road authorities decision making 

policies and data analysis (Aavik et al., 2013) 

Country 
Macro-texture 

measurements 

Macro-texture 

parameters 

Limit values for macro-texture 

parameters 

Belgium yes MPD Under development 

Lithuania yes MPD no 

Slovenia yes SMTD yes 

Norway yes - Under development 

France yes MPD yes 

UK yes SMTD yes 

Italy yes MPD (and others) Under development 

Latvia yes MPD no 

Finland yes RMS Under development 

Denmark yes MPD yes 

Sweden yes MPD Under development 

Estonia yes MPD, RMS Under development 

 

The COST Action Project 354 described in Chapter 2 resulted in a set of pavement performance 

indicators (PI’s) amongst which is the macro-texture indicator expressed as measured technical 

parameter MPD. Similar to the friction performance indicator (PI_F) expressed through 

technical parameters LFC or SFC, macro-texture performance indicator (PI_T) was defined as 

a range of MPD values categorized from very good to very poor performance with grades from 

0 to 5 (Table 3.6). 
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Table 3.6. Macro-texture performance indicator values expressed in MPD, (Litzka et al., 2008) 

 Very Good > Very Poor 

Macro-texture Performance Index 

(PI_T) 
0 - 1 1 – 2 2 – 3 3 – 4 4- 5 

MPD [mm] for highways and 

primary roads 
1.25 – 1.06 1.06 – 0.87 0.87 – 0.68 0.68 – 0.49 0.49 – 0.30 

MPD [mm] for secondary and 

loacal roads 
1.01 – 0.87 0.87 – 0.72 0.72 – 0.58 0.58 – 0.43 0.43 – 0.29 

 

In Croatia, macro-texture measurement is a standardized procedure described by two European 

normative documents, where the procedures and measurement equipment for the determination 

of volumetric and profilometric macro-texture indicators are defined (Table 3.7).  The threshold 

values of measured macro-texture indicators are defined in Technical specifications for asphalt 

pavements (Tehnički propis za asfaltne konike, 2021), but only for the macro-texture indicator 

determined from the volumetric measurements. The threshold values are defined for different 

asphalt mixture types and road catoegories. By comparing the values given for different road 

categories it can be seen that they have the same threshold value, regardless of the road 

category. 

Table 3.7. Threshold values for macro-texture perfromance assesment in Croatia (Technical specification for 

asphalt pavements, 2021) 

European 

Normative 

document 

Measurement 

procedure 
Measuring equipment 

Macro-

texture 

indicator 

Limit value (following Croatian 

Technical specifications for 

asphalt pavements) 

EN 13036-1 Volumetric 
Sand Patch Test 

apparatus 
MTD [mm] 

Defined for different asphalt 

mixture type (and road category): 

 

AC8, AC11 ≥ 0.35 

 

SMA8 ≥ 0.5; SMA11≥ 0.6 

 

PA8≥ 0.7; PA11≥ 0.9 

 

BBTM 8≥ 0.6; BBTM11≥ 0.8 

EN ISO 

13473-1 
Profilometric 

Profilometer system 

with mechanical, 

electro-optical, 

acoustical sensor type 

or video camera 

capable of moving 

along/across the 

inspected surface 

MPD [mm] 

ETD [mm] 

 

Not specified 

 

The frequency of macro-texture testing is defined as a single spot measurement for every 0,01 

km2 of highways and higher category roads (1st and 2nd category roads), either newly built or 
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in service (Tehnički propis za asfaltne konike, 2021). This survey is part of a quality control 

program conducted prior to road opening or in time periods specific for the road category. For 

example, highways have a predetermined five-year period between two road monitoring 

campaigns, while for other road categories Croatian regulations do not specify this interval. 

Profilometric measurements and resulting macro-texture indicators are not recognized in 

Croatian Tehnical specification. 

MTD and MPD describe a general macro-texture performance, which is often related to the 

pavement friction performance in pavement perfromance assesment programs. However, the 

characterization of pavement texture by traditional indicators can oversimplify the true texture 

properties. They generalize texture's volumetric and geometric properties into one single 

indicator (Li et al., 2017.). For example, two asphalt mixtures can have equal MPD values even 

though the measured frictional performance is completely different (El Gendy et al., 2011). 

Therefore, pavement texture characterization by standard macro-texture indicators might not 

be sufficient for a complete decription of the pavement texture-friction relationship (El Gendy 

et al., 2011; Elunai et al., 2011; Hu et al., 2016; Kogbara et al., 2018).  

3.4.3. Pavement macro-texture prediction models 

Macro-texture prediction models were developed to overcome the absence of 

reccommendations for the design properties of asphalt mixtures which would result in a specific 

macro-texture level of a constructed pavement. The aim of these models was to predict the 

macro-texture level of a given asphalt mixture by considering the most important mixture 

properties listed in Table 3.2. The proposed macro-texture prediction models were mostly 

empirical and developed by inferential statistics methods, where selected asphalt mixture 

properties were used as predictors for the mixture's macro-texture evaluation expressed by one 

of the standard macro-texture indicators.  

Table 3.8 provides an overview of proposed prediction models and resulting statistics based on 

selected asphalt mixture properties. Model outputs are mostly standard macro-texture indicators 

MTD, MPD or ETD. Some authors chose an alternative texture indicator level of texture LTX 

related to the frequency of selected texture wavelength range to evaluate the influence of 

mixture properties to the texture. A recent model (W. Huang et al., 2022) predicted the macro-

texture performance by including other influential factors, such as traffic load and 

environmental effects of temperature, rainfall and humidity. 
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Table 3.8. Macro-texture prediction models based on asphalt mixture properties 

Authors Model formulation Model parameters 
Model 

statistics 

Stroup-Gardiner 

& Brown, 2000 

 

ETD = 0.0198 NMAS – 0.004984 

P4.75 + 0.138 Cc + 0.004861 Cu 

ETD – Estimated Texture Depth 

[mm] 

NMAS – Nominal Maximum 

Aggregate Size [mm] 

P4,75 – percent passing 4,75 mm 

sieve [%] 

Cc – coefficient of curvature 

(aggregate shape) 

Cu – coefficient of uniformity 

(aggregate gradation) 

R2 = 0.65 

Davis et al., 2001 

MPD = −3.596 + 0.1796 NMS + 

0.0913 PP200 – 0.0294 VTMLab + 

0.1503 VMALab 

MPD - Mean Profile Depth [mm] 

NMS - Nominal Maximum 

Aggregate Size [mm] 

PP200 - percentage passing the 

#200 sieve size [%] 

VTMLab - total voids in the mix 

[%] 

VMALab - voids in the mineral 

aggregate [%] 

R2=0.97 

Flintsch et al., 

2003 

MPD = -2.896 + 0.2993 NMS + 

0.0698 VMA 

MPD - Mean Profile Depth [mm] 

NMS - Nominal Maximum 

Aggregate Size [mm] 

VMA - voids in the mineral 

aggregate [%] 

R2=0.965 

Hanson & 

Prowell, 2003 

MTD = 0.6421 FM2 – 5.235 FM + 

11.224 

MPD = 0.4973 FM2 – 3.926 FM + 

8.287 

MPD = 0.2421 FM2 – 1.576 FM + 

2.727 

MTD – Mean Texture Depth 

[mm] 

MPD – Mean Profile Depth [mm] 

FM - fineness modulus (aggregate 

gradation) 

R2 = 0.62 

R2 = 0.84 

R2 = 0.93 

Sullivan, 2005 
MPD = 0.025 Ω2 + 0.037 Ω – 0.0265 

Pb + 0.052 

MPD – Mean Profile Depth [mm] 

Ω – weighted distance from the 

maximum density line (function 

of NMAS and aggregate gradation 

Pb - binder content in the mixture 

[% by weight] 

R2 = 0.96 

Goodman et al., 

2006 

𝑀𝑇𝐷

= 0.24 + 0.981 (
𝐹𝑀 ∙ 𝑉𝑀𝐴

𝑃4,75 ∙ 𝐵𝑅𝐷
) 

MTD – Mean Texture Depth 

[mm] 

FM - fineness modulus (aggregate 

gradation) 

VMA - voids in the mineral 

aggregate [%] 

P4,75 – percent passing 4,75 mm 

sieve [%] 

BRD - bulk relative density of the 

compacted field 

R2 = 0.95 

D’Apuzzo et al., 

2012 
𝐸𝑇𝐷 =  1.287 ∙

𝑉𝑀𝐴1.4 ∙ 𝐶𝑐
0.105

𝑃𝑏
0.786 ∙ 𝑃4.750.899

 

ETD – Estimated Texture Depth 

[mm] 

VMA - voids in the mineral 

aggregate [%] 

Cc – coefficient of curvature 

(aggregate shape) 

Pb - binder content in the mixture 

[% by weight] 

P4,75 – percent passing 4,75 mm 

sieve [%] 

R2 = 0.54 
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Praticò et al., 

2015 

𝑉𝐵 =
𝑄𝐵

𝛾𝐵

∙ 𝑟2 ∙ 4𝛼 

𝐴𝐴𝑅 =
𝑉𝐴 ∙ 𝛾𝐴

𝐴𝑆𝐻

 

𝑆𝐻 =
𝑉𝑆𝐻

𝐴𝑆𝐻

 

VB – bitumen volume [cm3] 

QB – bitumen application rate 

[g/cm2] 

γB – bitumen density [g/cm3] 

r – modelled aggregate particle 

radius [cm] 

α – particle shape coefficient 

AAR – aggregate application rate 

[g/cm2] 

VA – volume of single aggregate 

particle [cm3] 

γA – average specific gravity of 

single aggregate particle [g/cm3] 

ASH – surface elementary area 

[cm2] 

SH – sand height [cm] 

VSH – sand volume [cm3] 

Not 

specified 

D. Chen et al., 

2015 

𝐿𝑇𝑋(𝜆) = 𝑎1 + 𝑎2 ∙ 𝑙𝑜𝑔 (
𝜆

𝜆0

)

+ (𝑎3 + 𝑎4

∙ 𝑙𝑜𝑔 (
𝜆

𝜆0

)) ∙
𝑉𝑉

𝑉𝐹𝐴

+ (𝑎5 + 𝑎6

∙ 𝑙𝑜𝑔 (
𝜆

𝜆0

))

∙
𝐷90

𝐷𝑓 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝛷

+ (𝑎7 + 𝑎8

∙ 𝑙𝑜𝑔 (
𝜆

𝜆0

)) ∙
1

𝑃𝑍𝐿
 

LTX - level of mixture surface 

texture [db(A)] 

λ - central texture wavelength in 

octave band [mm] 

λ0 - central texture wavelength of 

31,5 mm in octave band (covering 

texture levels from 25-50 mm) 

VV - volume of air voids [%] 

VFA - voids filled 

with asphalt [%] 

D90 - aggregate particle size in 

90% passing ratio [mm] 

Df - fractal dimension of 

aggregate gradation 

sin θ - aggregate direction angle 

sine 

Φ - regulation degree of aggregate 

PZL - contact length amongst 

aggregate particles [mm] 

ai – model coefficients 

determined by Levenberg-

Marquardt algorithm (RMS error 

minimization) 

R2 = 0.87 

Praticò&Briante, 

2020 

a) 𝐿𝑇𝑋(𝜆𝑗) = ∑ 𝑎𝑖𝑗 ∙ (𝑃𝑖 −𝑛
𝑖=1

𝑃𝑗) 

b) 𝐿𝑇𝑋(𝜆𝑗) = ∑ 𝑎𝑖𝑗 ∙ 𝑃𝑖𝑗 +𝑛
𝑖=1

𝑐𝑗 

c) 𝐿𝑇𝑋(𝜆𝑗) = 𝑎𝑗𝑁𝑀𝐴𝑆70 +

𝑏𝑗𝑄𝑅,0.9/70 + 𝑐𝑗𝑄𝐹,0.9/70 

d) 𝐿𝑇𝑋(𝜆𝑗) = 𝑎𝑗𝑁𝑀𝐴𝑆70 +

𝑏𝑗𝑄𝑅,0.9/70 + 𝑐𝑗𝑄𝐹,0.9/70 +

𝑑𝑗 

e) 𝐿𝑇𝑋(𝜆𝑗) = 𝐿𝑇𝑋(𝜆 ∗) + 𝑚𝑗 ∙

𝑎𝑏𝑠 [𝑙𝑜𝑔10 (
𝜆𝑗

𝜆∗)] 

f) 𝐿𝑇𝑋(𝜆𝑗) = 𝐿𝑇𝑋(𝜆 ∗) + 𝑚𝑗 ∙

𝑎𝑏𝑠 [𝑙𝑜𝑔10 (
𝜆𝑗

𝜆∗)] + 𝑐𝑗 

g) 𝐿𝑇𝑋(𝜆𝑗) = 𝐿𝑇𝑋(𝜆 ∗) + 𝑚𝑗 ∙

𝑎𝑏𝑠 {𝑙𝑜𝑔10 [(
𝜆𝑗

𝑎∙𝑁𝑀𝐴𝑆70
)]} +

𝑏𝑗 ∙ 𝑁𝑀𝐴𝑆70 

LTX - texture level 

𝜆𝑗  j-th wavelength 

Pi - percentage passing 

at the i-th sieve; Pj - percentage 

passing at the j-th sieve [%] 

NMAS70- largest sieve that retains 

some of the aggregate particles 

but not more than 30 percent by 

weight [mm] 

QR,0.9/70- fraction of aggregate 

passing the NMAS90 sieve and 

retained at a sieve that 

corresponds to 90% of NMAS70 

QF,0.9/70- fraction of aggregate 

passing the 90% of NMAS90 

sieve and retained at a sieve that 

corresponds to 0.063 mm 

λ*- maximum wavelength [mm] 

aj, bj, cj, dj, mj – model constants 

a) R2 = 

0.87 

b) R2 = 

0.86 

c) R2 = 

0.49 

d) R2 = 

0.67 

e) R2 = 

0.81 

f) R2 = 

0.95 

g) R2 = 

0.80 

h) R2 = 

0.78 
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h) 𝐿𝑇𝑋(𝜆𝑗) = 𝐿𝑇𝑋(𝜆 ∗) + 𝑚𝑗 ∙

𝑎𝑏𝑠 {𝑙𝑜𝑔10 [(
𝜆𝑗

𝑎∙𝑁𝑀𝐴𝑆70
)]} +

𝑏𝑗 ∙ 𝑁𝑀𝐴𝑆70 + 𝑐𝑗 

Huang et al., 

2022 

SMTDit = 3.8721 – 0.0588 

log(CSALit) + 0.0008 MATit – 

0.0021 MAHit – 0.0007 MARit – 

4.6375 CAit + 1.0111 FACit – 2.6346 

FAFit + ui 

CSAL - cumulative number of 

axles loads 

MAT - monthly 

average temperature 

MAH - monthly average relative 

humidity 

MAR - monthly rainfall 

CA - coarse aggregate ratio (shape 

of the coarse aggregate portion of 

the gradation) 

FAC - fine aggregate coarse ratio 

(interlocking and filling effects of 

the coarser portion in fine 

aggregate) 

FAF - fine aggregate fine ratio 

(filling compactness of the finer 

portion in fine aggregate) 

R2 = 0.47 – 

0.73 

(R2 strongly 

depends on 

the asphalt 

mixture and 

time scale 

with respect 

to short-term 

or long-term 

predictions) 

3.5. Alternative methods for pavement surface texture characterization  

To extend the standard description of pavement texture properties by traditional texture 

indicators, alternative methods for texture characterization emerged in the research community 

with the aim of a more detailed texture description and more reliable estimation of pavement 

frictional properties based on texture features. Pavement surface is rough and irregular, with 

more or less visible texture features, depending on the scale of observation. Texture roughness 

features can be observed in two-dimensional and three-dimensional framework, with traditional 

texture performance indicators MPD and MTD as the representatives of these two categories, 

respectively. Besides the traditional texture indicators strictly related to the pavement texture, 

there exists several groups of general roughness parameters which could be used for pavement 

texture features characterization. Similar to the traditional parameters, they are distinguished 

for the dimensionality of the analysis framework: 2D or profile-related and 3D or surface-

related parameters (Kogbara et al., 2018). Profile-related parameters are used to characterize 

the texture properties along the inspected profile and surface-related parameters describe the 

texture properties on the inspected surface. Another alternative method of pavement texture 
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characterization is by mathematical functions which can capture the roughness features of an 

observed surface.  

Following sections provide an overview of alternative texture roughness characterization 

methods by two European standards: EN ISO 21920-2: Geometrical product specifications 

(GPS) — Surface texture: Profile — Part 2: Terms, definitions and surface texture parameters 

and EN ISO 25178-2: Geometrical product specifications (GPS) — Surface texture: Areal — 

Part 2: Terms, definitions and surface texture parameters. The former relates to profile-based 

parameters and latter defines the surface-based texture parameters. The standards are not related 

to any specific surface type but provide the definitions of geometrical properties for texture 

profiles and surfaces in general on different roughness scales. The most common mathematical 

representations of surface roughness used for the pavement texture characterization in 

analytical and numerical models for friction prediction are also presented. 

3.5.1. Profile-related and surface-related parameters from European standards 

EN ISO 21920-2 and EN ISO 25178-2 

Profile-related parameters are calculated from 2D surface roughness representations – profiles, 

and categorized in two main groups according to EN ISO 21920-2: field parameters, related to 

the texture features of a full length continuous scale-limited profile and feature parameters, 

related to the texture features of smaller sections of a full-length continuous profile. The full 

length of a continuous profile is addressed as profile evaluation length le and profile sub-

sections are addressed as profile section lengths ls (Figure 3.9). Field parameters are further 

divided into four smaller groups, distinct for the profile property they are describing: height, 

spatial, hybrid and material parameters. Height parameters are calculated from the profile 

ordinate values z(x), spatial parameters are describing the spatial relationship between the 

geometrical irregularities of a profile, hybrid parameters are calculated from the local gradient 

of height dz (x)/dx and material parameters reflect the profile properties related to the material 

ratio functions: material length, material ratio, material ratio curve, inverse material ratio, height 

density, material probability curve, material volume and void volume. Feature parameters 

mostly describe the properties of profile amplitudes Zsc and wavelengths Xsc determined for 

smaller profile sections defined by section lengths. An overview of all texture parameters 

specified in the EN ISO 21920-2 standard is provided in Figure 3.10. The calculation 

expressions for all profile-related texture parameters in corresponding groups can be found in 

the referenced standard.  
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Figure 3.9. Characteristic horizontal and vertical dimensions for profile roughness analysis according to EN 

ISO 21920-2 

Surface-related texture parameters defined in EN ISO 25178-2 are determined from obtained 

surface representations. The parameters are evaluated from the scale-limited primary surfaces, 

which are basically originally captured surfaces filtered by a high-pass F-filter which removes 

the surface form and low-pass S-filter which removes the small scale lateral roughness 

components. Surface-related parameters are distinguished as field parameters, further divided 

into four groups similar to the profile-related roughness description, and parameters resulting 

from the feature characterization procedure. An overview of field parameters is given in Figure 

3.10. Feature characterization doesn't involve any specific parameters definition, as for the 

profile-related characterization. Instead, a five-stage process is defined for the feature 

characterization including the selection of texture feature type, segmentation, significant 

features determination, features attribute selection and quantification of statistics attributed to 

the selected features. Each stage of the process is elaborated in the standard, providing the 

definition for each performed activity or selected feature in a specific stage, the corresponding 

designation and threshold values, if available. The final step of feature characterization 

procedure involves the nomination of obtained feature parameters. The standard defines ten 

feature parameters names, listed in Figure 3.11. 

By comparing the 2D and 3D parameters from Figures 3.10 and 3.11, there are some notable 

similarities. A limited amount of research was found to corroborate this observation. Bitelli et 

al., 2012. stated that most profile parameters defined in ISO 4287 (a former version of ISO 

21920-2 standard) can be extended to surface parameters by applying adequate mathematical 

expressions. However, no such procedures were explicitly defined. Harcarik & Jankovych, 

2016 investigated the relationship between profile and surface texture parameters, obtaining 
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high coefficients of determination for surface parameters calculated from their profile 

equivalents. In their conclusion the importance of further analysis on larger dataset to ensure 

the validity of the promising results was emphasized. Pavement texture characterization by 

profile-related and surface-related parameters is feasible. The most common EN ISO 21920-2 

texture parameters applied to the investigation of pavement texture features are selected from 

the height and feature parameters groups (Bitelli et al., 2012; Callai et al., 2022; Zuniga-Garcia 

& Prozzi, 2019). Pavement surfaces can be characterized as scale-limited surfaces with respect 

to the defined texture level ranges, while the irrelevant texture geometry features can be filtered 

out. Research in the field of pavement texture characterization by alternative texture indicators 

already exists and the analyses showed that alternative texture roughness features could 

improve the understanding of pavement friction phenomenon (Kogbara et al., 2018). Surface-

related parameters give much detailed insight of roughness properties than profile-related 

parameters extracted from the same surface (Hu et al., 2016; Pawlus et al., 2021). However, the 

alternative texture parameters cannot be obtained by standard pavement texture evaluation 

methods. To gain a better insight into pavement texture-friction relationship by including 

alternative texture indicators, research community turned to alternative methods for texture data 

acquisition. These methods produce high precision and realistic digital surface representations 

which can further be analysed in the domain of 2D and 3D texture parameters.   
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Figure 3.10. Profile-related texture roughness parameters from EN ISO 21920-2 
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Figure 3.11. Surface-related texture roughness characterization from EN ISO 25178-2 

Surface-related texture characterization 

(EN ISO 25178-2)
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3.5.2. Mathematical representations of texture roughness features 

Pavement surfaces are considered to be self-affine and randomly rough. This means they have 

a repeated texture fashion regardless of the observation scale. Such surfaces are called fractals 

(Figure 3.12), defined by fractal dimension Df which describes the complexity of an object’s 

geometry (Kokkalis & Panagouli, 1998). Fractal character of an object can be described by 

Hurst exponent, H related to the fractal dimension as Df = 3 - H. The mathematical description 

of fractal geometry of pavement surfaces is given by a fractal interpolation function (FIF). This 

function is used for the calculation of profile’s fractal dimension with a known set of descriptive 

points. The FIF can be related to frictional performance of investigated surfaces (Roh & Rhee, 

2006) or for the estimation of fractal dimension from standard texture indicators such as MPD 

(W. Wang et al., 2011b). FIFs contain specific roughness parameters which indicate surface 

properties related to its frictional performance (C. Huang, 2010). Fractal theory is a basis for 

height difference correlation functions exploited for roughness characterization of pavement 

surfaces (S. Chen et al., 2022; Torbruegge & Wies, 2015). 

 

Figure 3.12. Fractal nature of rough surfaces with an increase of fractal dimension Df, 

(https://www.wikiwand.com/en/Fractal_dimension, accessed 19.5.2023) 

One of the most common mathematical descriptors of self-affine fractal surface roughness 

exploited in contact mechanics models is the power spectral density function - PSD. This 

function enables the identification of different spatial frequencies or wave vectors obtained by 

surface decomposition (Jacobs et al., 2017). Being defined by wavelengths and amplitudes, 

texture can be analysed within the frequency domain. The statistical information on the surface 

topology, without the resolution effect, is contained in the PSD function. Different asphalt 

mixtures produce different PSD functions due to the varieties in the texture features, resulting 

https://www.wikiwand.com/en/Fractal_dimension
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from the mixture properties (Figure 3.12). Characterization of pavement texture properties by 

PSD functions is exploited in contact mechanics theories and applications developed for the 

estimation of target surface properties, for example the evaluation of true contact area or 

calculation of friction coefficient. One of the examples is Persson’s friction theory, where the 

entire PSD of a rough surface is taken as input for calculation of friction coefficient (Lorenz et 

al., 2011; Persson et al., 2005). The estimation of pavement friction performance by PSD 

surface roughness characterization can be found in research by Alhasan et al., 2018; Deng et 

al., 2021; Hartikainen et al., 2014; Kienle et al., 2020; Mahboob Kanafi & Tuononen, 2017; 

Serigos et al., 2014; Yan et al., 2020; Yun et al., 2020 and others.   

 

Figure 3.13. PSD function of different asphalt pavement types (Deng et al., 2021) 

A European Normative document ISO/TS 13473-4: Characterization of pavement texture by 

use of surface profiles — Part 4: Spectral analysis of surface profiles provides three different 

methods for spectral analysis of pavement surface profiles, applicable for all random signal 

types including the pavement surface profiles. Another method for texture features analysis in 

the spectral domain is by using wavelet transformations, enabling the analysis in frequency 

domain with the preservation of spatial reference in 1D or 2D domain (S. Chen et al., 2022). 

The limiting properties of 1D analysis are profile analysis only in one direction and poor 

correlation of derived indicators with micro-texture and 2D analysis enables the separation of 

two texture scales by wavelet decomposition (Q. J. Li et al., 2017; Zelelew et al., 2013). 
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3.6. Advanced methods for pavement texture data assessment 

3.6.1. Photometric methods 

Photogrammetry is an optical imaging technique which utilizes images captured by digital 

cameras for the reconstruction of a 3D model of the photographed object (Sansoni et al., 2009). 

Photogrammetry methods result in 3D object coordinates derived from image measurements 

from which geometric features and graphical information can be derived (Luhmann et al., 

2006). It is mostly used for measurements of feature types on the reconstructed objects, 

generated by the triangulation bundle adjustment principle to produce the point coordinates 

from the acquired images (Han et al., 2012). The geometrical model and the orientation of the 

light rays’ bundles are present in the photogrammetric relationship, developed by analytical 

expressions and implemented by least squares procedure. The photogrammetric procedure 

consists of  five general steps that have to be followed to obtain a representative and meaningful 

result (Sansoni et al., 2009). The first step is equipment preparation and adjustment, which 

includes selection of a proper camera and its calibration. Afterwards, data acquisition is initiated 

by image acquisition following the defined procedures and properties, for example the number 

of images and ratio of image overlapping. The next step is generation of a 3D dense point cloud 

(DPC) object from the geometrical information obtained from the captured images. The DPC 

holds image information in a form of 3D point coordinates describing the object's features and 

presents a basis for the surface reconstruction and texture mapping. By following the 

aforementioned steps, the reconstructed object of interest can be used for further measurements. 

Photogrammetry is used for the investigation of geometrical and other spatial features for all 

kinds of objects in very different observation scales. There are two general types of 

photogrammetry, terrestrial and aerial (Luhmann et al., 2006). The difference is in the camera 

position, which can either be on the ground or in the air. A special case of terrestrial 

photogrammetry is the close-range photogrammetry (CRP). This technique is applied for the 

inspection of objects that are up to 300 m far from the camera and from approximately 1 m to 

200 m in size, with accuracies from under 0.1 mm to 1 cm depending on the specifics of the 

field of application. Photogrammetry has a wide variety of applications in many fields; 

architecture, engineering, forensics, medicine, archaeology, industrial manufacturing 

applications and monitoring of geological hazards are just a few to mention. From the 

engineering aspect, some of the most common research problems utilizing photometric 

technologies are related to the monitoring of various structures and analysis of their intrinsic 

properties and evolution due to relevant external or internal influences. 
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Photogrammetry application in civil engineering can be found in different topics and different 

problem scales. Photogrammetry techniques are exploited for the creation of digital terrain 

models with very high accuracy, which enables the analysis of morphological changes in natural 

structures, such as coastal erosion monitoring (Ružić et al., 2014, 2015), monitoring of 

nourished gravel beaches (Pikelj et al., 2018; Tadić et al., 2022). Authors James et al., 2019 

published a guideline paper for the photogrammetry applications in geomorphological research, 

providing a systematic set of recommendations and benchmark standards for an adequate usage 

of photogrammetry, especially SfM technique for various applications in the field of 

geomorphology. Another purpose is the identification and risk assessment for the 

environmental hazards, such as flooding or landslides (Pajalić et al., 2021; Zazo et al., 2018). 

An important photogrammetry application is for the monitoring of civil engineering structures 

and materials and assessment of their physical and functional condition (Barazzetti & Scaioni, 

2010; Han et al., 2012; Maas & Hampel, 2006; Y. Tang et al., 2019). A systematical review of 

the current application of 3D reconstruction methods in civil engineering was done by Ma & 

Liu, 2018. The advantages of using such methods are pointed out, together with the possible 

enhancements and possible applications to other civil engineering areas.  

Photogrammetry is used in the analysis of pavement properties in 2D and 3D frameworks. 

Pavement surface images can be analysed by application of an adequate image analysis method, 

for example grayscale image analysis by PSD functions, wavelets or edge detection techniques. 

Image analysis results are used to explain the effect of asphalt mixture properties on surface 

roughness characteristics. Mixture design parameters such as aggregate gradation, air voids 

content or the bitumen amount in the mixture can be assessed from the surface images. They 

can be correlated to the surface frictional properties determined by standard measurement 

procedures. 2D images cannot provide information about pavement texture morphology as they 

do not contain the surface height information. When the acquired pavement surface images are 

utilized for the 3D reconstruction of the pavement surface morphology including surface 

heights, the obtained digital surface models (DSM) enable the analysis of profile and surface 

related roughness parameters described in Figures 3.10 and 3.11. Photogrammetry applications 

in 2D and 3D framework for pavement texture characterization are overviewed in Table 3.9. 
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Table 3.9. Research results exploiting photogrammetry method for pavement texture characterization and 

analysis 

Research 

framework 
Authors 

Measurement 

methodology 
Texture parameters Results 

2
D

 i
m

ag
e 

an
al

y
si

s 

Ergun et 

al., 2005 

NIAS (New Image 

Analysis System) 

for micro-texture 

analysis, with CCD 

microscopic 

camera, 

illumination system, 

scanner for image 

data digitalization 

and XY positioning 

system 

Texture and spectral 

parameters were 

calculated and usd for 

the development of a 

friction prediction 

model 

Proposed friction prediction 

model based on texture 

indicators calculated from NIAS 

has a good correspondence with 

the measured friction coefficient 

on all investigated road sections 

(R2 = 0.89) 

Elunai et 

al., 2010 

Digital 7.2 MPix 

camera positioned 

80 cm above the 

pavement surface 

2D images were 

analyzed in the 

frequency domain by 

Fast Fourier 

Transform, 

autocorrelation 

function and wavelets 

The obtained texture indicators 

resulting from frequency-

domain analysis showed good 

correlation with the measured 

SMTD values (R2 > 0.8 for all 

three methods) 

Elunai et 

al., 2011 

Digital 7.2 MPix 

camera capturing 

pavement surface 

images at different 

angles (60°and 90°), 

analyzed by means 

of edge detection 

technique - an 

accurate 

determination of 

aggregate size from 

their boundaries 

SMTD values 

determined by the 

laser profilometer 

Results of correlation analysis 

between EDPC values (results of 

edge detection technique for 

aggregate size distribution 

assessment) obtained from the 

image analysis method and 

measured SMTD values on 

pavements in use showed that 

the proposed method is suitable 

for the evaluation of road surface 

macro-texture performance and 

can supplement the traditional 

measurement techniques (R2 = 

0.94) 

Rezaei et 

al., 2011 

AIMS (Aggregate 

Image 

Measurement 

System) - digital 

camera with five 

different zoom 

levels and special 

lighting, mounted 

on a rotating tray 

 

Macro-texture MPD 

and RMS texture 

indicators 

AIMS-derived MPD values have 

a significant correlation 

(R2=0.93) with MPD values 

obtained by CTM measurements 

on pavements in use for 

segments with 50 mm length. 

RMS parameter derived from the 

AIMS has a relatively strong 

relationship with the MPD 

measured in the field (R2=0.75) 

Specht et 

al., 2013 

A conventional 

digital camera (no 

further 

specifications) 

 

Spectral domain 

analysis by FFT 

algorithm to obtain 

spatial data 

Correlation analysis showed that 

an exponential function can 

define the texture parameter by 

using FFT, with R2 = 0.87 for the 

comparison with the 

experimental data evaluated by a 

traditional sand patch test 

(MTD) 
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D. Chen et 

al., 2015 

ITAM (Image 

Texture Analysis 

Method) system 

(office scanner and 

custom made 

software for data 

analysis based on 

Matlab 2014a, 

Visual Studio 2013 

and Install Shield 

2010) 

 

 

 

Spectral domain 

analysis by Fourier 

transform, texture 

distribution spectral 

indicators LTX,m, PSD 

and standard profile 

indicator MPD 

Calculated texture parameters 

obtained from the ITAM system 

were compared to the ones 

obtained by stationary laser 

profilometer SLP, with R2 = 0.92 

for MPD and R2 = 0.93 for LTX,m 

3
D

 d
ig

it
al

 s
u

rf
ac

e 
m

o
d

el
 a

n
al

y
si

s 

Gendy & 

Shalaby, 

2007 

Four-source 

photometric stereo 

technique including 

one 5.1 MPix digital 

camera and four 

light sources 

adaptable by its 

height and angle, 

enclosed in a box 

that isolates the 

ambient light 

MPD 

The correlation analysis for 

MPD obtained on real surfaces 

and on DSM showed a strong 

agreement with R2 = 0.82 – 0.92 

(depending on the zenith angle 

of the camera) 

El Gendy et 

al., 2011 

Non-contact texture 

measurement 

device 

PhotoTexture 

(based on El Gendy 

and Shalaby, 2007) 

MPD, RMS and PSD 

function 

Surface texture indicators were 

correlated to friction 

performance measured on-site 

by a dynamic friction measuring 

device (GripTester), with R2 = 

0.52 for MPD, R2 = 0.55 for 

RMS and R2 = 0.55 for PSD. 

Woodward 

et al., 2014 

 

CRP method with a 

single digital 

10Mpix camera for 

image acquisition 

and Topcon 

ImageMaster 

software for surface 

model 

reconstruction 

MTD 

Obtained R2 = 0.92 for MTD 

calculated from the DSM and 

sand patch measurements. 

McQuaid et 

al., 2014 

CRP method (from 

Woodward et al., 

2014) 

Surface-related 

parameters Vmp, 

Vmc, Vvc, Vvv 

Calculated parameters from the 

CRP method were compared to 

high-resolution laser scanning 

method (HRS) resulting 

parameters, showing good 

agreement between parameters 

detemined by different methods 

for HMA mixtures, when 

adequate filtering procedures are 

applied to the DSMs 

Mahboob 

Kanafi et 

al., 2015 

Optical portable 

non-contact 3D-

profilometer 

featuring a digital 

camera for data 

acquisition and 

illumination system 

and image post-

processing Matlab-

Rq, Rsk, PSD 

function, Hurst 

exponent 

Selected texture parameters were 

evaluated during six-month 

period on different asphalt 

mixtures, represented by height 

maps from the ODSCAD. The 

results showed that the texture 

parameters estimated from 

surface representations could 

represent the texture evolution 
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based software 

ODSCAD, 

capturing 10 

measurements of 

surface topography 

at each test site 

trend due to the polishing effect 

of traffic, pavement age and 

seasonal variations. 

The relationship with texture and 

friction was explored through Rq 

and Hurst exponent evolution, 

showing no significant 

correlation 

 

Puzzo et al., 

2017 

Five different 

digital cameras for 

Structure from 

Motion (SfM) data 

acquisition: one 

reflex camera with 

12 Mpix, two 

compact cameras 

with 10 and 14 

Mpix resolution and 

two smartphone 

cameras with 8 

Mpix and 5 Mpix 

resolution, minimal 

number of images 

was 11 for each 

camera. The digital 

surface models were 

created by Autodesk 

123 Catch computer 

vision software 

MTD, MPD 

A strong correlation between 

DSM calculated MTD and MPD 

and measured MTD for all five 

cameras (all R2 > 0.90) 

Alamdarlo 

& Hesami, 

2018 

Photometric system 

with  a single 12.1 

Mpix camera and 

four light sources 

assembled on a 

circular frame for 

asphalt specimen 

analysis, changing 

the zenith angle 

(relative position of 

the camera and the 

light source) for 

eleven different 

degrees. A total of 

44 images was 

taken for each 

specimen, used for 

the 3D surface 

reconstruction by a 

Matlab-based 

algorithm 

MTD 

For a different zenith angle, the 

calculated value of MTD was 

different (an increase in zenith 

angle decreased the value of 

MTD), an optimal position was 

explored by comparing the 

calculated MTD to the measured 

MTD for different specimen 

types. The results of the study 

indicate that different texture 

depths require different zenith 

angles in order to obtain high 

accuracy results 

Kogbara et 

al., 2018 

CRP method with a 

single camera 

capturing 12 images 

of a test section, 

used for 3D surface 

reconstruction in 

3DF Zephyr 

software 

Surface roughnes 

parameters: Sa, Sq, 

Vmp, Vmc, Spd and 

Spc calculated for five 

scenarios of texture 

morphology 

adjustments: form 

removal (F-filter), 

robust Gaussian filter 

Multiple linear regression 

analysis between surface 

roughness parameters for all five 

scenarios and measured friction 

performance by a dynamic high-

speed tester 

(GripNumber)showed that a 

notable relationship between 

texture parameters and friction 
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for micro-texture 

roughness and macro-

texture waviness and 

top 1 mm and top 2 

mm heights filtering 

to remove extreme 

surface elevation 

points (0.5% of the 

whole DPC) 

performance is obtained for case 

5 scenario, where top 2 mm 

surface was observed: R2 = 0.62 

for Spd and Spc as significant 

texture indicators for the 

prediction model 

Y. Wang et 

al., 2019 

Photometric stereo 

system equipped 

with a camera and 

six light sources 

fixed in different 

directions under six 

angles, resulting in 

six images from 

which the 3D 

surface is 

reconstructed 

MTD, RMS, MPD, 

wavelength-

correlated indicators 

rms-wavelength l, 

average spacing of 

single peak S and 

rough area ratio on the 

surface R, shape-

correlated indicators 

Ssk, average tilt angle 

Θ and anisotropic 

degree K – all texture 

indicators were 

determined for micro- 

and macro-texture 

levels in 2D and 3D 

framework 

MTD, land Ssk determined for 

2D morphology (profile) and 3D 

morphology (surface) were 

different: MTD was higher for 

3D framework and l was higher 

for 2D framework, Ssk showed 

no trend. Macro-texture 

indicators MTD, RMS and MPD 

showed positive correlation with 

measured friction performance, 

higher for macro-texture 

indicators (R2 = 0.81 for BPN 

and R2 = 0.6 for DF60), l showed 

moderate negative correlation to 

friction performance at both 

texture level (R2 = 0.51 – 0.75), 

S showed negative and weak to 

moderate correlation (R2 = 0.38 

– 0.71), R showed positive weak 

to moderate relation (R2 = 0.37 – 

0.61), Θ showed moderate 

positive relation (R2 = 0.43 – 

0.62) and Ssk and K showed no 

correlation to the measured 

friction. 

Edmondson 

et al., 2019 

Photogrammetry 

based method 

Structure from 

Motion (SfM) with 

a single-lens digital 

camera (50 mm) 

capturing images on 

three different 

heights (500, 600 

and 750 mm), 

further processed in 

Agisoft Photoscan 

software for 3D 

surface 

reconstruction 

Surface roughness 

parameters: Sq, Ssk, 

Sp, Sv, Spd and Spc 

determined for 

filtered and unfiltered 

surfaces (the filter 

was applied to extract 

only macro-texture 

related surface 

morphology) 

SfM method performance was 

evaluated with respect to two 

laser scanning methods 

(terrestrial laser scanner-TLS 

and 3D smart laser sensor). The 

performed 2D cross-correlation 

analysis showed good agreement 

between texture parameters 

determined from SFM and 3D 

laser sensor (obtained corell. 

coefficient was 0.73 for filtered 

surfaces) 

J. Chen et 

al., 2019 

Automatic close 

range 

photogrammetry 

(ACRP) system for 

real-time 

monitoring of the 

anti skid pavement 

performance: a 

custom-made 

platform with three 

curcularly arranged 

MTD, RMS 

The ACRP derived texture 

parameters were compared to 

sand patch method for the MTD 

evaluation and laser scanner 

device ZGScan for RMS 

evaluation – the obtained mean 

relative errors were 0.5% for 

MTD and 0.25 % for RMS. The 

obtained R2=0.9945 for MTD 

obtained by sand patch method 

and ACRP. 
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cameras for 

simultaneous image 

acquisition and 

shadowless lighting 

system + 

Matlab/Python-

based 3D surface 

reconstruction 

software module 

Al-Assi et 

al., 2020 

CRP method with 

20.1. Mpix camera 

capturing 9-12 

images of asphalt 

specimen surface 

and used for the 

creation of DSM by 

3DF Zephyr 

Mean micro-texture 

and macro-texture 

depth (in accordance 

to US Standard 

ASTM E 1845-9) 

Texture parameters calculated 

from DSM correlate well with 

measured texture indicators: R2 

= 0.85 for macro-texture 

indicator MTD and R2 = 0.91 for 

indirect micro-texture indicator 

DFT20 (estimated by a low-

speed friction measurement 

device). Derived texture 

indicators were used as inputs in 

friction prediction model based 

on Persson’s theory as PSD 

function, which showed high 

coincidence with the measured 

friction values on both 

laboratory samples (R2 = 0.90)  

and field test sections (R2 = 0.97) 

D. Chen, 

2020 

Non-destructive 3D 

image analysis 

method based on 

asphalt mixture 

design parameters - 

3D ITAM:  a digital 

camera captures 

tricolour images 

(red, grren and blue) 

of asphalt specimen. 

2D tricolour images 

are used for 3D 

surface 

reconstruction by 

Frankot-Chellappa 

algorithm for global 

integration 

MTD and spectral 

texture indicators 

LTX,m (mixture 

surface profile level in 

a specific wavelength 

range m in decibels): 

m = 0.5-31.5 for 

macro-texture and 

0.13-0.5 for micro-

texture) 

3D ITAM calculated MTD and 

LTX,0.5-31.5 correlate well with 

sand patch test MTD 

measurements (R2 = 0.81), 

LTX,0.13-0.5 correlates well with 

friction coefficient measured by 

dynamic friction tester HFM (R2 

= 0.88) 

Huyan et 

al., 2020 

A system equipped 

by two cameras and 

a structured light 

module with a 

control panel for 

asphalt specimen 

testing 

Macro-texture 

analysis (micro-

texture was filtered 

out by robust 

Gaussian filter) by 

profile-related 

roughness indicators: 

Pa, Pq, Psk, Pku, Sm, 

peak distance, rms-

slope, rms-

wavelength, surface 

roughness area ratio 

and MTD 

Ra, MTD, and rms-wavelength 

are the most significant 

indicators that should be 

considered as priorities for 

analyzing the friction levels, 

having correlation coefficients 

higher than 0.7 with measured 

friction expressed in BPN 

Tian et al., 

2020 

Smartphone-

integrated two 12 

MPix cameras, 

taking 20-32 

MPD 

The proposed method was 

validated with laser texture 

scanner LTS measurement of 

MPD, showing a mean 
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pavement surface 

images at each test 

site. Afterwards, a 

DPC object was 

generated to 

calculate texture 

indicator MPD by 

difference of 4% and maximum 

difference of 9% between the 

photometric and laser scanner 

derived texture indicator 

Medeiros et 

al., 2021 

CRP method with 

24.1 Mpix DSLR 

camera capturing 8 

images of a test site, 

used for 3D surface 

reconstruction in a 

photogrammetry 

specialized software 

3DF Zephyr 

MPD and surface-

related parameters Sa, 

Sq, Sp, Sz, Vmp, Vmc 

DSM derived texture indicators 

were compared to MTD from 

sand patch test and BPN from 

pendulum test, showing 

moderate to strong correlation to 

texture measurement (R2 = 0.47 

for Sz to 0.92 for MPD) and no 

correlation with the measured 

friction 

 

3.6.2. Laser scanning methods 

Laser scanning technology is a remote sensing technology based on the triangulation principle, 

where the distance and the angle between the laser source and sensor are known, therefore the 

distance between the laser source and any point on the scanned object surface can be evaluated 

(Mathavan et al., 2015). A similar workflow is typical for all laser scanning devices: the scanner 

emits light beams on the target area of the inspected surface, which reflects the signal back to 

the sensor and from the known geometrical relations between the scanner and the surface, point 

coordinates of the scanned surface can be evaluated (Bitelli et al., 2012; T. Wang et al., 2020). 

After the scanning procedure is finished, the spatial data is stored as a dense point cloud and 

ready for further processing. Laser scanning technology is an efficient way for collecting 

surface morphology data necesary for the calculation of roughness features (Tonietto et al., 

2019). The main advantage of this technology is the ability to collect a significantly large 

amount of data in short time (Pawłowicz et al., 2018).  

Laser scanning technology in civil engineering has a wide variety of applications, including 

structural documentation and digitalization of existing civil engineering structures, creation of 

a current-state benchmark object for the structural analysis under extreme loadings, creation of 

a construction site models, creation of natural morphological structures relevant for the civil 

engineering applications, quantitative surveys, quality control, structural redesign etc (Edl et 

al., 2018). This non-contact method provides very accurate digital representations of real 

structures by a significant amount of data, allowing the reconstruction of a complete scanned 

object, without the need for the object discretization by the reference points (Gonzalez-Jorge et 

al., 2012). 
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The application of laser scanning technology for pavement texture characterization is present 

in standard texture measurement methods such as stationary CTM device or mobile 

profilometers (Yu et al., 2020). It is applied as one-dimensional laser scanner recording the 

surface roughness features along the measurement path. The measurement procedure is fast and 

accurate and the measurement output is mostly the standard macro-texture indicator MPD (S. 

Chen et al., 2022).  

In recent decade, advanced 3D laser scanning technology has been utilized to obtain pavement 

surface digital representations with high precision and accuracy. 3D laser scanning devices are 

capable of capturing high precision surface spatial characteristics and therefore, enable the 

texture characterization by 2D and 3D roughness indicators overviewed in section 3.6. 

(Kogbara et al., 2016; Matlack et al., 2023). Similar to the texture roughness parameters 

obtained by photogrammetry methods, 3D laser scanner derived parameters could provide more 

thorough insight into texture-friction relationship in comparison to standard methods for texture 

performance assessment. An overview of research utilizing 3D laser scanning technology for 

alternative pavement texture characterization is given in Table 3.10. 

Table 3.10. Research results for pavement texture roughness features analysis by 3D laser scanning methods for 

data acquisition 

Authors Research aims 

Texture data 

acquisition 

device and data 

analysis software 

Analyzed 

alternative texture 

parameters 

Research results and 

conclusions 

Bitelli et 

al., 2012 

 

 

 

To develop and 

implement new 

methodologies 

for texture data 

acquisition in 

laboratory and in 

situ monitoring of 

pavement texture 

Next Engine® 3D 

laser scanner, data 

analysis software 

not specified 

Profile-related 

parameters Ra, Rsk, 

Rku, Rk, Rpk, Rvk 

transferred to 

corresponding 3D 

areal parameters by 

adequate 

mathematical 

expressions; 

additionally volume 

parameters  Vmp , 

Vmc , Vvc and Vvv 

 

Laser scanning devices enable 

the acquisition of texture data 

and calculation of new texture 

indicators, which represent a 

complete texture 

characterization and provide 

further possibilities of 

pavement surface 

performances evaluation. 

Čelko et 

al., 2016 

 

 

To test the 

advanced 

methods for 

pavement texture 

characterization 

in 3D framework 

and evaluate 

friction 

performance by 

the tested 

equipment 

3D handheld self-

orienting scanner 

ZScanner®800, 

Matlab-based 

algorithm 

Profile-related 

parameters Rp, Rv, 

Rt, Ra, Rq, Rsk, Rku, 

spectral density – 

PSD ,hybrid 

parameters Texture 

ratio  TR, Root mean 

square slope Rdq, 

spacing parameter 

RSm 

A strong correlation was 

obtained between texture 

parameters determined by 

standard measurement 

methods and standard texture 

parameter MPD calculated 

from 3D scanning surface 

representations (R2 = 0.94 for 

MTD and R2 = 0.85 for MPD). 

Friction performance 

determined by standard 

methods showed moderate 
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correlation to the standard 

texture parameter MPD  

obtained by 3D scanner (R2 = 

0.5-0.69 for different friction 

measurement devices). 

Obtained correlation between 

friction and alternative texture 

parameters was weak to 

moderate, the highest R2 = 0.59 

was obtained for Rp 

parameter) 

L. Li et 

al., 2016 

To develop a 

pavement friction 

prediction model 

based on 

alternative 

texture 

parameters for 

roughness 

characterization, 

including 

amplitude, 

spacing, and 

functional 

parameters 

PaveVision3D 

Ultra system, data 

analysis software 

not specified 

Surface-related 

parameters Sq, Ssk, 

Sku, Texture aspect 

ratio (TAR), Surface 

developed interfacial 

area ratio (Sdr), 

Surface bearing index 

(SBI) 

Pavement friction prediction 

model developed from six 

texture indicators obtained 

strong correlation with 

measured friction values with 

R2 = 0.95 

Hu et al., 

2016 

To analyze the 

influence of 

texture 

parameters 

determined from 

3D surface 

representation on 

pavement 

frictional 

performance. 

3D scanner 

(HandySCAN 

300, Creaform 

Inc, 

Canada), Matlab 

Surface-related 

parameters Sa, Sq, 

Ssk, Sku, root-mean-

Sdq, Sdr, Spd, Spc 

and surface fractal 

dimension (Sfd) 

Spd and Spc parameters 

influence friction coefficient 

significantly and positively, 

therefore dynamic friction 

coefficient models were 

developed based on these two 

parameters, with R2 = 0.76 – 

0.83 for different test speeds. 

Multiple parameters prediction 

models are more reliable than 

the single parameter models. 

Ssk and Sfd have a significant 

relationship with Spd and Spc, 

but no obvious influence on 

friction coefficient based on 

linear regression analysis. 

Parameters Sa, Sku, Sdq and 

Sdr have insignificant effect on 

dynamic friction coefficient. 

Q.J. Li et 

al., 2017 

To characterize 

pavement texture 

attributes and 

develop the 

relationship 

between 

pavement friction 

and texture by 

texture roughness 

surface-related 

parameters from 

EN ISO25178-2 

LS-40 portable 

3-D surface 

analyzer, 

MountainsMap 

software 

23 surface-related 

parameters from 

amplitude, spatial, 

hybrid and material 

volume groups and 

feature parameters 

 

Ssk (amplitude), Vmc (volume 

parameter) and Spd (feature 

parameter) can relate the 

pavement texture at the macro-

level and the micro-level for 

friction in wet conditions at 

high and low speeds, 

respectively. The developed 

prediction models produce 

fairly accurate friction 

predictions with R2 = 0.54-

0.58 for different test speeds, 

but perform better in 

comparison to prediciton 

models based on single texture 

indicator MPD. The selected 3-
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D texture parameters provide a 

better alternative to 

characterize texture attributes 

with respect to pavement 

friction performance and have 

the potential to replace the 

existing contact-based friction 

measurement methodologies. 

Alhasan 

et al., 

2018 

To utilize 3D 

texture digital 

representation for 

the calculation of 

texture 

parameters for the 

friction 

prediction model 

based on 

Persson's friction 

theory. 

Laser texture 

scanner (LTS) 

9400HD, Ames 

Engineering and 

accompanying 

software tool 

PSD function of 

texture, Hurst 

exponent, MPD 

Fractal definition of surface 

texture by Hurst exponent and 

corresponding PSD function 

provide a physical explanation 

of surface texture effect on 

frictional performance when 

combined with the traditional 

texture characterization 

parameter MPD (also 

calculated from digital surface 

representation) in the friction 

prediction model (obtained R2 

= 0.71 for models including 

both roughness definitions) 

Miao et 

al., 2019 

To investigate the 

decay behavior of 

pavement surface 

characterized in 

3D framework 

through the 

entropy theory 

3D scanner 

(HandySCAN 

300, Creaform 

Inc., Quebec, 

Canada), 

Geomagis Studio 

image analysis 

software 

Surface images 

reconstructed from 

the scanned data are 

converted to 

grayscale so the 

entropy 

characterization can 

be applied from the 

probability of the grey 

level G at point x,y 

describing a pixel 

Entropy theory can be applied 

for macro-texture 

characterization as it shows 

significant differences among 

the different pavement types, 

while for the micro-texture this 

is not very obvious. The 

similar conclusion is given for 

the decay characteristics of 

macrotexture described by 

entropy theory. 

Q. J. Li 

et al., 

2020 

To investigate 

and identify 

various pavement 

texture and 

aggregate 

parameters and 

their correlation 

to the friction 

performance 

LS-40 portable 

3-D surface 

analyzer 

Texture entropy 

(Tetp) and texture 

aspect ratio 

(Str), Aggregate 

feature parameters 

Spd, Spc, Sdv, 

Aggregate height 

parameter Ssk, 

Aggregate material 

ratio & volume 

parameter Smr. 

All analyzed texture 

parameters influence friction 

performance significantly, 

especially Tetp (textural 

parameter) and Spc (feature 

parameter). The proposed 

prediction model obtained R2 = 

0.78 in comparison to 

measurement results. Friction 

prediction model is more 

reliable in case if alternative 

parameters are included, and 

not only the standard MPD 

parameter. 

T. Wang 

et al., 

2020 

To investigate the 

effect of 

compactness on 

the texture and 

friction during the 

polishing process 

on asphalt 

specimens 

3D scanner 

(HandySCAN 

300, Creaform 

Inc., Quebec, 

Canada), Matlab 

Surface-related 

parameters Sq and Sdr 

Increase of compactness 

reduces the texture parameters 

and produces smoother 

surfaces, reducing the 

frictional performance of 

pavement surface 
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Yun et 

al., 2020 

To investigate the 

effect of 

pavement texture 

roughness on 

multiple scales on 

the real contact 

area 

3D scanner 

(HandySCAN 

300, Creaform 

Inc., Quebec, 

Canada), data 

analysis software 

not specified 

Surface-related 

parameter Sq 

The contact area decreases 

sharply with the scale decrease 

until the observing scale of 0.6 

mm, when it stabilizes and it is 

considered as the real contact 

area. Real contact area is 

significantly affected by 

surface roughness, decreasing 

with Sq increase following a 

power function. 

Chen et 

al., 2021 

To evaluate the 

spatial 

distribution of 

texture by 

proposed texture 

section method 

for direct 

measurement and 

evaluation of 

texture roughness 

features 

A self-developed 

3D laser scanner 

system, Special 

softwares for data 

acquisition and 

display, Matlab 

for data stitching 

into an image and 

further data 

analysis 

Profile-related 

parameter Rq, texture 

distribution density 

for micro- and macro-

texture levels 

(calculated as the ratio 

between texture 3D 

surface area and plane 

area of the texture 

section) 

Texture distribution density 

index  can be used for the 

characterization of pavement 

surface roughness, and it can 

be a reference for multi-scale 

texture characterization; Rq 

parameter has a great 

fluctuation on different 

profiles and it is difficult to 

characterize the roughness 

using only this profile 

parameter 

Deng et 

al., 2021 

To predict 

pavement surface 

friction 

performance on 

effective contact 

area as a function 

of PSD for 

optimal texture 

wavelengths for 

micro- and 

macro-texture 

levels 

LS-40 3D laser 

scanner and 

accompanying 

software for data 

export in txd files 

Texture surface PSD 

function 

Macro-texture wavelength of 

5.06 mm and micro-texture 

wavelength of 0.33 mm 

wavelength influence 

pavement friction the most. 

Calculated PSD functions of 

the optimal texture 

wavelengths are combined 

with the effective contact area 

for the establishment of 

friction prediction model, 

resulting in model 

performance with R2 = 0.6 for 

predicted versus measured 

friction values. 

Kováč et 

al., 2021 

To investigate the 

possibility of 

friction 

performance 

prediction based 

on the 3D texture 

parameters 

calculated from 

surface 

representations 

obtained by laser 

scanner 

Self developed 

Static road 

scanner (SRS), 

Matlab 

Surface-related 

parameters Spc, Sdq, 

Spk, Smr, Svk,  Sk, 

Vvp, Vmp 

Parameter Smr (valley material 

portion) related to micro-

texture and parameter Sp 

related to macro-texture 

showed the most significant 

individual influence on friction 

performance. From the testing 

of mutual combinations of 

different texture parameters at 

both texture levels for the 

prediction of the friction 

performance, the conclusion is 

that it is mostly influenced by 

the microtexture of the surface. 

The best correlation was 

achieved for the combination 

of micro-texture parameters 

Sdq, Sk, and Smr with macro-

texture parameter Spc with R2 

= 0.84 

Sha et 

al., 2021 

To explore the 

optimal sampling 

interval and 

3D scanner 

(HandySCAN 

300, Creaform 

Surface-related 

parameters Sq, Sdq, 

Spd, Spc, Vmp, Vmc 

Pavement surface evaluation 

area has to be larger than 

80x80 mm2 to ensure that the 
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evaluation area 

for 3D analysis of 

selected texture 

parameters and 

provide a reliable 

reference for 

texture 

characterization 

in 3D framework 

and relate it to the 

road performance 

Inc., Quebec, 

Canada), data 

analysis software 

not specified 

difference between the  

average of five calculated 3D 

parameters and the true value 

is less than approx. 10%. Also, 

parameter sensitivity to the 

size of the sampling interval is 

different, so it is necessary to 

use the same sampling interval 

for highly sensitive 

parameters. 

Zou et 

al., 2021 

To analyze the 

evolution of 

surface texture 

due to the traffic 

polishing effects 

by monitoring 

texture 

parameters 

obtained by 

surface laser 

scanning 

LS-40 3D laser 

scanner (HyMIT 

Measurement 

Instrument 

Technology, 

Austin, TX, 

USA), data 

analysis software 

not specified 

Twenty surface 

related parameters 

calculated for micro- 

and macro-texture 

levels separately, 

including amplitude, 

spacing, hybrid, 

functional and feature 

parameters defined in 

EN ISO 25178-2 

Changes in texture parameters 

under traffic polishing action 

are notable for all groups of 

monitored parameters except 

for spatial characteristics 

Song, 

2022 

To investigate the 

relation between 

friction 

performance and 

texture 

morphology 

parameters 

determined on 

different asphalt 

specimens 

3D laser scanner, 

Matlab 

Profile-related 

parameters Ra, Rsk, 

Rku, Fractal 

dimension (D), Areal 

material ratio curve 

Smr(c) 

Friction performance is higher 

for higher Ra and Rsk values, 

while higher Rku values are 

related to lower friction 

performance; larger fractal 

dimension indicates rougher 

surface with better friction 

performance; the parameters in 

areal material ratio curve don't 

have a unique effect on friction 

performance therefore the 

coupling effect of the factors 

should be taken into 

consideration. 

 

3.7. Pavement texture properties related to friction performance - summary 

Pavement texture is recognized as one of the most influential parameters for the friction 

performance. It mostly results from the asphalt mixture properties and pavement surface layer 

construction method, therefore it is controllable by pavement engineering practice. Texture 

ranges are well defined by unique texture levels from micro-texture to unevenness and the effect 

of each texture level to a driving-related phenomenon is distinguished. Two texture levels 

related to the pavement friction performance are micro-texture and macro-texture. The 

contributions of asphalt mixture constituents and mixture features to each friction-related 

texture level are recognized, however there exists no standardized asphalt mixture design 

procedure which would produce a specific level of macro-texture. The research oriented 

towards the texture performance estimation from the asphalt mixture design parameters seeks 
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for a prediction model where a standard texture indicator would be a function of specific 

mixture parameters, such as aggregate shape property, mixture gradation or bitumen amount.  

Pavement texture is evaluated on constructed roads by established methods for macro-texture 

measurement, resulting in a single texture indicator generalizing a volumetric or geometric 

roughness property. The obtained values of texture indicators characterize texture performance 

according to the defined thresholds for the corresponding indicator, showing a positive or 

negative effect of texture on pavement surface frictional performance. To address the 

generalization of the texture performance by a single indicator, new methods for texture 

characterization and evaluation are utilized in research exploring texture-friction relationship. 

Such methods are based on contactless measurements of 3D pavement surface characteristics, 

from which roughness parameters can be extracted as profile-related or surface-related 

parameters or specific mathematical function, describing the roughness spectral properties.  

The primary objective of advanced methods is to provide a detailed representation of the 

pavement surface morphology so the additional texture descriptors can be evaluated. Two main 

types of devices are used for the texture data assessment: digital cameras and laser scanners. 

Digital cameras are used dually: texture properties can be evaluated in 2D framework directly 

from the captured images or the images are used for the 3D surface reconstruction. 3D laser 

scanners are different from traditional line laser devices in profilometers as they capture the 

areal properties of inspected surfaces instead of just surface profiles. Both data acquisition 

methods require additional analysis of obtained surfaces, contrary to the standard texture 

evaluation methods producing a single texture indicator as the measurement output. However, 

the amount of texture data obtained by the advanced methods is incomparable to the single 

texture indicator derived from traditional texture measurement methods. 

An overview of research utilizing contactless measurements for pavement texture assessment 

showed a promising potential of advanced roughness characterization methods. Both 

photogrammetry and laser scanning methods enable the surface roughness features analysis in 

profile-related and surface-related framework. Correlation analyses showed a very good 

coincidence between traditional texture indicators MTD or MPD calculated from the digital 

surface models and values obtained by traditional measurement techniques. Texture roughness 

parameters described in EN ISO 21920-2 and EN ISO 25178-2 can be evaluated from the digital 

surface models obtained by any of the methods. The advantage of photogrammetry methods is 

the availability of measurement equipment, i.e. digital cameras. Research results showed that 
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even the off-the-shelf technology available in smartphone-integrated cameras can produce 

DSMs with sufficient level of precision and accuracy for the pavement texture roughness 

analysis and evaluation. Laser scanners enable faster data acquisition and DSM creation in 

comparison to digital cameras, but they are less available and more expensive than digital 

cameras. Research results showed that advanced methods for texture assesment could provide 

a detailed insight to pavement texture-friction relationship with a proper selection of texture-

related roughness parameters. 
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4. Preliminary investigation of pavement texture – friction relationship 

 

The investigation of pavement texture-friction relationship establishment was first performed 

for a dataset of texture and friction measurements obtained by traditional measurement 

procedures: high-speed friction tester and high-speed laser profilometer. The analysed data 

was collected on several highway sections in Croatia within a routine road network monitoring 

program and after the pavement surface rehabilitation activities applied to the road sections 

having critical values of friction (Analiza vrijednosti makroteksture i hvatljivosti na definiranim 

dionicama autocesta A3 i A4 nakon hrapavljenja površine kolnika-Izvještaj, 2019). The results 

of the preliminary research are published in a paper by Pranjić et al., 2020. 
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4.1. Friction and texture data collection 

The database used in the preliminary study was collected on highway sections in Croatia 

selected as the road segments having critically low values of friction detected during a routine 

road network monitoring program. Friction and texture measurements were performed before 

and after pavement surface rehabilitation activities applied to the road sections having critical 

values of friction (Analiza vrijednosti makroteksture i hvatljivosti na definiranim dionicama 

autocesta A3 i A4 nakon hrapavljenja površine kolnika-Izvještaj, 2019). The measurements 

took place on selected driving and passing lane sections with the overall length of 10.5 

kilometers (Figure 4.1). All measurements were performed in same environmental conditions: 

air temperature between 10°C and 15°C and no precipitation. 

Measured values before and after the pavement rehabilitation actions were compared to the 

threshold values for pavement friction and texture performance indicators defined in the COST 

354 Action Program Final report, described in Chapters 2 and 3. This was done as no official 

Croatian regulative document recognizes the outputs of dynamic friction and texture 

measurements as pavement performance indicators.  

 

 

Figure 4.1 The  measured highway section A4, junction Popovec – Sveta Helena (Analiza vrijednosti 

makroteksture i hvatljivosti na definiranim dionicama autocesta…, - Izvještaj, 2019) 
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Friction measurements were performed by a high-speed friction tester Surface friction trailer 

ASFT SFT0532 (Figure 4.2a). The friction tester was a trailer-type device, mounted on a towing 

vehicle. The measurements were performed following the CEN/TS 13036-2: Road and airfield 

surface characteristics – Test methods – Part 2: Assessment of the skid resistance of a road 

pavement surface by the use of dynamic measuring systems standard. Wet surface friction was 

evaluated, therefore the water supply tank had to be mounted on a towing vehicle. A continuous 

dynamic evaluation of longitudinal friction coefficient was performed with average 

measurement speed of 65 km/h. The device measures friction performance by a fixed slip 

principle. The measurement output is friction coefficient evaluated for 10 meters long section. 

Texture measurements were performed by a high-speed laser profilometer Hawkeye 2000 

(Figure 4.2b). It is a vehicle-installed profiler system for continuous monitoring of pavement 

properties with measurement and data processing unit. The measurement unit is equipped with 

five lasers distributed on a specific distance along the beam. The lasers enable longitudinal high 

precision linear scanning of road surfaces in the direction of travel. This measurement system 

enables the characterization of several pavement performance indicators: International 

Roughness Index (IRI), Rut Depth, texture parameters Mean Profile Depth (MPD) and Sensor 

Measured Texture Depth (SMTD). The system is equipped with a video camera producing high 

resolution video frames, Garmin GPS system, accelerometers for the real-time speed and 

distance calculations and an interactive real-time data acquisition software Onlooker Live. Data 

processing is performed by a specialized inbuilt data analysis software Processing Toolkit, 

which enables the calculation and visualization of collected data (Hawkeye 2000 Manual, 

2015). Hawkeye 2000 system enables continuous dataset collection without the traffic 

disruption, as it operates under normal driving speeds and has no additional requirements for 

the data acquisition procedure. It requires a driver and another operator for the data collection 

and analysis. The system is not suitable for the single-spot texture measurements as the 

indicators are calculated for a specified processing interval of 10 meters. Texture measurements 

were performed following the EN ISO 13473-1: Characterization of pavement texture by use 

of surface profiles – Part 1: Determination of Mean Profile Depth standard. 
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a) b) 

Figure 4.2. Data collection devices: friction measurement device (a) and texture measurement device (b) 

4.2. Data analysis 

The highway sections were selected from the existing database of friction and texture data 

before the pavement rehabilitation program, collected as a part of a routine pavement 

performance assessment procedures performed by road authority Croatian highways. The 

database contained friction measurements for 100 m long sections expressed as LFC.  The 

corresponding texture values were expressed as MPD. Friction and texture data were measured 

on selected highway sections characterized by a critical friction performance indicator before 

the pavement rehabilitation procedure. The threshold value for a critical friction performance 

indicator LFC (longitudinal friction coefficient) was LFC ≤ 0.46, adopted as the lower limit 

value of performance indicator classification grade “Satisfactory”, following the defined grades 

in the COST 354 Action Final report. The 100 m sections were marked as measurement 

positions and the measured friction and texture performance after the pavement rehabilitation 

procedure were expressed for the same positions as the mean values of measurements. Overall, 

105 positions were evaluated for friction and texture data (Figure 4.3). 

Friction values increased after the rehabilitation procedure on all positions, in average for 

approximately 50% (Figure 4.3a). Friction values were generally lower for passing lane before 

the rehabilitation and slightly higher after the rehabilitation. All evaluated positions obtained 

LFC higher than the threshold value after the rehabilitation. Pavement texture didn’t follow the 

same trend as the friction values (Figure 4.3b). A better performance was recorded for passing 

lane before the surface remediation. In general, pavement performance increased after the 

rehabilitation, but not for all inspected positions. Some positions in driving lane obtained lower 

texture values after the rehabilitation. The increase rate was lower in comparison to friction, in 
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average approximately 20%. All measured texture values expressed as performance indicator 

MPD were higher than the texture threshold defined in the COST 354 Action Final report, MPD 

≥ 0.68 for a satisfactory texture performance. 

a) 

b) 

Figure 4.3. Friction (a) and texture (b) measurement results compared before and after the pavement 

rehabilitation 

To investigate the correlation between friction and texture data, a Pearson’s correlation test was 

performed with obtained correlation coefficient of 0.302 (Table 4.1). A scatterplot of texture 

and friction data confirmed the obtained correlation analysis result, indicating no significant 

correlation between the texture and friction values (Figure 4.4). 

Table 4.1 Correlation analyses results for different dataset size 

Observed dataset Pearson’s correlation coefficient Significance (p-value < 0.05) 

Full dataset 0.302 < 0.0001 

Before pavement rehabilitation -0.447 < 0.0001 

After pavement rehabilitation 0.218 0.026 
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Figure 4.4. Scatterplot of texture and friction data for all measurement results 

The scatterplot showed two data clusters, one for the LFC values below the threshold 

performance indicator value and one for the LFC values measured after the rehabilitation 

measure. Data was therefore further analysed with respect to different friction performance – 

before and after the pavement rehabilitation. Correlation analyses were again performed with 

Pearson’s correlation coefficient as the output (Table 4.1). A negative correlation was observed 

for texture and friction values collected before the rehabilitation, while the obtained correlation 

coefficient for the texture and friction data collected after the pavement treatment was even 

lower than for the whole dataset. 

The dataset was down sampled to a lower project level analysis, investigating the correlation 

between the texture and friction values measured on separate lanes. The dataset collected on 

driving lane was not observed, as the texture values showed inconsistent behavior (Figure 4.3). 

The scatter plots for texture and friction data collected on passing lane before and after the 

pavement rehabilitation are presented in Figure 4.5. The obtained Pearson’s correlation 

coefficients for passing lane data before and after the rehabilitation were 0.566 and 0.40, 

respectively. 

a) 
b) 

Figure 4.5.Scatter plots for MPD and LFC values for passing lane, before (a) and after (b) the rehabilitation 

procedure 
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4.3. Discussion  

The performed analyses of dataset obtained by traditional measurement methods showed no 

significant correlation between texture and friction performance indicators. Both data collection 

devices operated on high-speeds, therefore it can be assumed that the micro-texture effect on 

friction performance was not taken into account as an influencing factor to the friction 

performance. The characteristic texture and friction performance indicators were determined 

for a single position as the mean of measured values for a 100 m long section. Averaging of 

measured values on such long sections could discriminate the actual relationship between 

texture and friction derived from the measured values for a defined measurement or processing 

interval. Friction measurements were performed under wet surface conditions, so the effect of 

water presence on the texture morphology cannot be excluded.  

By reducing the size of dataset sample and dividing the data from the full dataset to the dataset 

collected on a specific lane for a certain pavement performance indicator threshold, the obtained 

correlations were better. The obtained results were in a good agreement with several previous 

research exploring texture-friction relationship by simple empirical models, where no 

significant correlation between traditionally evaluated texture and friction indicators was 

observed (Basu & Chowdhury, 2017; Chou et al., 2017; G. Yang et al., 2018). A similar 

procedure of dataset down sampling was performed in a research by Islam et al., 2018, where 

more significant correlation was obtained for smaller and focused dataset.  

The results of preliminary analysis motivated further research of texture-friction relationship. 

To be able to provide a more reliable prediction of pavement friction performance from the 

texture features, a more detailed description of roughness-related properties is needed. In recent 

two decades advanced methods based on remote sensing technologies are used for pavement 

texture characterization, as described in Chapter 3. Further research in this thesis was focused 

on the development of photogrammetry-based methodology for texture roughness 

characterization by non-standard parameters, presented in Chapter 5. 
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5. Methodology development for pavement texture data analysis 

 

To investigate the applicability of advanced methodology for pavement texture roughness 

characterization described in Chapter 3, a photogrammetry-based method for 3D texture data 

acquisition was utilized in this research. Photogrammetry method was selected due to the 

existing expertize previously applied to larger scale problems of coastal morphology 

monitoring and landslide analysis (Ružić et al., 2014, 2015; Pajalić et al., 2021; Tadić et al., 

2022). The first research goal in the methodology development was to investigate if the 

available photogrammetry equipment was adequate for analysis of pavement texture roughness 

features from the created 3D digital surface models (DSM). The results of this research were 

published in a paper by Pranjić & Deluka-Tibljaš, 2022. The proposed texture data acquisition 

method was evaluated by performance testing of different acquisition settings and the resulting 

DSM properties. The determined texture roughness features were evaluated for different 

resolutions of  the created DSM, resulting in a proposal for the optimal data acquisition and 

analysis procedure. The proposed method was verified by performance comparison with 

another photogrammetry-based method and a 3D laser scanning device.  
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5.1. Photogrammetry method applicability for pavement texture characterization 

The investigation of photogrammetry method applicability was performed on a laboratory 

produced asphalt specimen. The specimen's surface roughness properties were evaluated by 

standard low-speed friction measurement with pendulum device (EN 13036-4). 

Photogrammetry method performance was investigated for two data acquisition procedures, 

different for the relative position of the photographic equipment to the analysed specimen. The 

data acquisition procedure and properties of created DSM for each method were compared to 

select the optimal method. The DSM resulting from the selected method was analyzed in terms 

of texture roughness parameters, correlated to the measured friction performance. Following 

sections provide  a detailed description of performed procedures. The results of this research 

were published in Pranjić & Deluka-Tibljaš, 2022. 

5.1.1. Asphalt specimen properties and friction performance evaluation 

The investigated asphalt specimen was produced by a roller compaction device (Controls 

Group, model 77-PV41C05, 2014) following the procedure defined in EN 12697-33: 

Bituminous mixtures – Test methods for hot mix asphalt – Part 33: Specimen prepared by roller 

compactor. The selected asphalt mixture for specimen preparation was dense-graded Hot Mix 

Asphalt (HMA) surface layer, commonly used on heavy trafficked roads such as motorways, 

primary roads or urban high-speed roads (bypasses) in Croatia. Mixture properties relevant for 

the friction performance are given in Table 5.1. Volumetric and mechanical properties of the 

asphalt mixture were not inspected prior to the specimen production. 

Table 5.1 Asphalt mixture properties for the produced asphalt specimen 

Asphalt mixture type HMA 

Mixture gradation Dense-graded 

Aggregate type Eruptive (Fužinski 

Benkovac) 

Maximum aggregate 

grain size 

11 mm 

Bitumen type BIT 50/70 

Bitumen amount 5.5% 

 

The produced specimen was rectangular, 300 mm wide and 400 mm long. The compaction 

energy and target specimen density settings applied in the production procedure resulted with 
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a final specimen thickness of 40 mm. Figure 5.1 shows the roller compaction device and 

resulting asphalt specimen. 

  

a) b) 

Figure 5.1 Roller compaction device (a) and produced rectangular specimen in a mold (b), Transportation 

laboratory Faculty of Civil engineering Rijeka, 2021 

Friction measurements were performed several days after the specimen production. Friction 

performance was measured by a standard stationary low-speed friction measurement device 

Skid Resistance Tester – SRT (Controls Group, model PV0190/E, 2014), presented in Figure 

5.2a. SRT device measures frictional performance of the inspected surface as the resistance to 

sliding motion of the pendulum arm provided by the surface roughness. The operating principle, 

measurement procedure and interpretation of measurement results are given in EN ISO 13036-

4. Friction was evaluated on produced asphalt specimen by four SRT measurements, performed 

on four smaller rectangular sections of the specimen's surface (Figure 5.2b). The dimensions of 

each section were selected to satisfy the required sliding length of  125 mm +/- 1 mm for the 

SRT procedure. The sections were marked as I - IV, and friction performance was determined 

for each section as an average of five consecutive SRT readings. The test was performed 

without wetting the specimen surface to exclude the effect of water on the friction performance. 

The obtained SRT results (Table 5.2) showed a high friction performance of the inspected 

specimen, resulting from the following specimen properties and test conditions. The specimen 

was produced from asphalt mixture with nominally good frictional properties and the surface 

was not worn out, since it was not exposed to any kind of polishing procedure. The test was 
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performed in dry surface conditions, for which it can be presumed that the measured friction 

values would be higher in comparison to wet surface conditions. 

a) b) 

Figure 5.2. SRT low-speed friction measurement device(a) and friction measurement assembly on produced 

asphalt specimen (b) 

Table 5.2. Friction performance of asphalt specimen evaluated by SRT measurements 

 
SRT measurement [-] SRT mean [-] 

 
Section no. 1 2 3 4 5 

I 75 75 76 77 76 75.8 

II 79 77 79 79 77 78.2 

III 84 84 83 84 83 83.6 

IV 89 90 90 92 90 90.2 

 

5.1.2. Selection of data acquisition procedure 

Photogrammetry method applicability for the pavement texture analysis was first investigated 

by two different data acquisition methods. The difference between two tested methods was the 

relative camera position to the asphalt specimen. The same photographic equipment was used 

in both methods, with characteristics specified in Table 5.3. Prior to the data acquisition 

procedure, the specimen was mounted on a fixed stand, brushed to remove any loose aggregate 

grains or other debris and sprayed with an antireflective agens, to remove the light reflection 

effect caused by surface layer bitumen. 
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Table 5.3. Photographic equipment specifications 

Photographic equipment Nikon D500 DSLR single lense digital camera + 

height-adjustable tripod 

Camera resolution 20.9 Mpix 

Camera lens focal length 11-20 mm 

Aperture f/1.8 

ISO 100 

 

The two data acquisition procedures were named Turntable and Ortho, with respect to the 

relative camera position during the image acquisition process. In Turntable procedure, the 

camera was moving around the specimen in a circular motion on several different heights. In 

Ortho procedure, camera was moving horizontally and vertically over the specimen on a fixed 

heigh (Table 5.4).  

Table 5.4. A schematic representation of camera movement for Turntable and Ortho image acquisition mode 

and images of performed data acquisition process with two different methods 

Data acquisition mode Turntable Ortho 

Relative camera position 

(schematic) 

  

Image of data acquisition 

procedure 
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In Turntable mode, the specimen's surface images were captured by camera rotation for 25° for 

each image on three different heights and camera angles. The height and angle adjustments 

were made so the captured image contained the entire specimen surface. For each camera height 

15 images were acquired so overall, 45 images were captured with the Turntable data 

acquisition method. In Ortho mode 2, the camera was translated in horizontal and vertical 

directions at a fixed height, capturing orthogonal specimen surface images. Each captured 

image represented only a portion of the entire specimen surface. The consecutive images 

overlapped by approximately 60% side overlap and 80% forward overlap. 20 surface images 

were captured in the orthogonal camera position: five images along the specimen length in four 

rows and four images along the specimen width in five columns. Images were captured in RAW 

format in both acquisition procedures, so the image information collected in the data acquisition 

process and stored in a pixel was preserved in the original form. The RAW images were 

optimized for its brightness and contrast settings to obtain the high quality images for further 

data processing and stored in TIFF format with pixel size 4.45 × 4.45 μm, containing all the 

data acquired from the camera sensor. The stored images were prepared for the surface 

reconstruction procedure performed by a specialized photogrammetry software Agisoft 

Metashape.  

Agisoft Metashape (v.1.5 Pro, Agisoft LLC, St. Petersburg, Russia) is an advanced stand-alone 

software for the creation of 3D digital models of objects captured on still images. It enables the 

fully automatic object reconstruction process from the arbitrary images taken from random 

positions, with a condition that the object is visible on at least two images. The reconstruction 

workflow for any object of interest contains four main stages: camera alignment, sparse point 

cloud adjustments, dense point cloud creation and surface reconstruction. Each stage results in 

an object that can be analyzed according to the demands of the reconstruction procedure and 

the final expected outcome. The reconstruction process is automated and the user defined inputs 

are captured images and reconstruction parameters set prior to the initiation of the 

reconstruction process, whose values depend on the desired outcomes. In this research phase, 

the settings were defined from the automatic software reccommendations, as the functional and 

performance assessment of the Metashape created models was not analyzed thoroughly. This 

was done later in the performance optimization procedure, described in section 5.2. A simplifed 

Metashape workflow for the creation of a digital model is given in Figure 5.3. 
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Figure 5.3. Agisoft Metashape workflow scheme for 3D object reconstruction from photogrammetry-based data 

acquisition method 

The resulting digital models' properties can be inspected from the Metashape report document, 

where the properties of each reconstruction stage are presented. Table 5.5 compares the results 

from the generated reports for models created with Turntable and Ortho data acquisition 

procedure. 

Table 5.5. Resulting DSM properties for two data acquisition modes (from generated Agisoft Metashape 

Processing reports) 

Image acquisition mode Turntable Ortho 

Tie points 21,533 5,423 

RMS reprojection error 0.598153 pixel 0.549274 pixel 

Max reprojection error 4.51687 pixel 3.65751 pixel 

Average tie point multiplicity 5.28681 4.87589 

Depth maps processing time  25 minutes 10seconds 4 minutes 3 seconds 

Point cloud generation time 28 minutes 38 seconds 2 minutes 23 seconds 

Number of points 25,648,555 5,945,252 

Model reconstruction time 5 minutes 54 seconds 4 minutes 15 seconds 

 

To evaluate the performance of two different data acquisition procedures, the acquisition 

procedure proces and the properties of resulting digital models were compared. The adjustments 

of different camera heights and corresponding angles to capture the specimen surface were 

more time consuming than the translation of camera along the horizontal and vertical specimen 

axes. In Ortho mode, the camera was fixed at a certain height. The image acquisition procedure 

was less susceptible to uncertainties and lower quality of captured images in comparison to 

C
a

m
er

a
 a

li
g

n
m

en
t

Captured images 
are aligned by a 
seek-and-match 
procedure for 
common points 
detection, with 
defined accuracy 
level and 
maximum number 
of the selected 
points 

The resulting 
entity is sparse 
point cloud

S
p

a
rs

e 
p

o
in

t 
cl

o
u

d
 

a
d

ju
st

m
en

ts

Filtering of 
obtained sparse 
point cloud points 
with error 
reduction features: 
reprojection error, 
reconstruction 
uncertainty and 
projection 
accuracy 

The resulting 
entity are best-fit 
tie points 

D
en

se
 p

o
in

t 
cl

o
u

d
 

cr
ea

ti
o

n

Reccommended 
adjustments are 
quality and depth 
filtering

The result is 3D 
dense point cloud 
(DPC)

S
u

rf
a

ce
 r

ec
o

n
st

ru
ct

io
n

3D DPC can be the 
final analysis 
object

DPC can be a basis 
for 3D Mesh 
object 
reconstruction 



Ivana Ban: A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters 

108 

 

Turntable mode, where camera heights, angles and positions were changing during the rotation 

around the specimen. By observing the resulting DSM properties in Table 5.5, it can be seen 

that the Turntable produced a larger number of tie points from the alignment procedure due to 

the larger number of acquired images. Consequently, the processing time and DPC generation 

time is longer and the number of points in the final DPC is five times larger than for the Ortho 

mode. The values of reprojection errors (RMS and Max) are in favour to Ortho mode, despite 

the significantly smaller amount of data available for the model reconstruction. From the 

obtained DSM properties and the image acquisition process analysis, the Ortho mode was 

selected as having better performance. Further analyses were done on DSM produced by Ortho 

data acquisition mode.  

5.1.3. Surface roughness characterization for created digital surface model (DSM) 

The DPC entity created from the Ortho image acquisition mode consisted of approximately 

6×106 points. The final result of the reconstruction procedure was a 3D mesh object, created 

from the DPC with 1.25×103 points/cm3 density (Figure 5.4 a, c). The mesh object's elements 

are faces, describing its 3D geometry. Mesh models enable a more realistic description of 

surface depths in comparison to point cloud objects. This model consisted of 1.19 ×106 faces. 

The mesh DSM was further analysed to investigate the surface roughness features for pavement 

texture characterization. 

The analysis of DSM was done in Cloud Compare (v 2.11.3 (Anoia), 2021) an open-source 

software for 3D point cloud and mesh processing and analysis. The resulting mesh was 

imported to Cloud Compare (CC) and subjected to the initial leveling, scaling and filtering 

operations. Leveling was performed by adjusting the object's plane to be parralel to the 

horizontal plane. Scaling was performed so the digital model units correspond to the 

millimeters. Filtering was performed to remove the data outliers falling outside the surface 

model and threshold values of macro-texture level. The final step was surface segmentation. It 

was done by selecting the central part of the model and removing all the peripheral parts that 

might have some redundant data due to the weaker model performance on the edges. The final 

mesh object was sampled to dense point cloud object to obtain the surface morphology data in 

a form of 3D point coordinates (Figure 5.4 b, d). The mesh sampling was done by selecting the 

maximum possible number of points to describe the model's geometry. The resulting DPC was 

created with 1.5×106 points, having 2.041×103points/cm3 density.  
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3D DSM Mesh object 3D DSM Dense Point Cloud object 

  

a) b) 

c) d) 

Figure 5.4. 3D Mesh object (a) and a close-up of mesh structure (c) and 3D DPC object (b) and a close-up of 

DPC struxture (d) in millimeters 

The DPC was divided in four sections, corresponding to the sections where the frictional 

performance was evaluated, as described in section 5.1.1. A central part of each smaller section 

was extracted as a separate DPC with dimensions corresponding to the SRT sliding area of 

approximately 100 cm2. From each DPC section, five surface profiles were segmented out to 

calculate the standard profile-related texture indicator MPD (Figure 5.5). The segmented 

profiles' length was 100 mm, corresponding to the profile baseline length defined in EN ISO 

13473-1 for MPD calculation. Profiles were segmented for each 15 mm of the surface. Overall, 

twenty profiles were extracted from the four sections. The extracted profiles consisted of 

approximately 4,500 points. The average profile's horizontal resolution was 45 points/mm. 

Each point was defined with x and z coordinate, corresponding to the profile's length and height 

values. 
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a) 

b) c) 

Figure 5.5. Segmented profiles' position on DPC model (a) and profile close-up for one section (b) and one 

profile (c) 

To compare the profile-related parameter MPD with the measured friction performance, the 

calculated MPD values for each profile were averaged to represent the surface-related MPD. 

The correlation analysis was performed for surface-related MPD and SRT values (Table 5.6). 

Additional texture parameters were evaluated from the profiles, corresponding to the profile-

related amplitude parameters defined in EN ISO 21920-2 and previously described in Chapter 

3: arithmetic mean height Pa, root mean square height Pq, total height Pt, skewness Psk and 

kurtosis Pku. Selected non-standard parameters values calculated for each section were averaged 

to represent the surface-related feature and to be comparable with the standard texture 

parameter MPD and measured friction performance SRT determined for each section. 

Correlation analysis was performed for standard texture parameter MPD and non-standard 

parameters listed before, with results presented in Table 5.6. 

The obtained Pearson's correlation coefficients indicate a significant relationship between the 

measured friction performance and texture parameters calculated from the profiles extracted 

from the DSM. SRT highly correlated with MPD. The calculated non-standard texture 

parameters showed a very strong correlation to the MPD. The obtained result agrees with the 

previous research conclusions where photogrammetry methods were utilized for pavement 
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surface roughness characterization, presented in Chapter 3. Parameters Pa, Pt and Pq obtained a 

positive correlation to the MPD, while Psk and Pku showed a strong but negative correlation to 

the MPD. The highest positive correlation coefficient value between friction and non-standard 

texture parameter was obtained for Pq and the lowest positive correlation was for the Pt 

parameter. 

Table 5.6. Pearson's correlation coefficients for analysed profile-related texture parameters and measured 

friction 

  SRT MPD Pa Pt Pq Psk Pku 

SRT 1 
      

MPD 0.807 1 
     

Pa 0.706 0.978 1 
    

Pt 0.699 0.983 0.969 1 
   

Pq 0.728 0.988 0.998 0.981 1 
  

Psk -0.770 -0.928 -0.845 -0.941 -0.876 1 
 

Pku -0.751 -0.935 -0.861 -0.953 -0.890 0.999 1 

 

The Psk > 0 value indicates the predominance of the surface peaks, while negative values of Psk 

indicate the prevailing valley structure. The Pku parameter describes the “flatness” of the profile 

height in a way that Pku > 3 values indicate sharper peaks and/or valleys on the analyzed surface 

and Pku < 3 are representing smaller texture height variations ( Li et al., 2016). Psk can be used 

to characterize quantitatively the surface texture profile contour shape and indicate the texture 

capacity (Chen et al., 2022). The results from recent studies analyzing the effect of Psk and Pku 

parameters on surface friction performance are ambiguous: some researchers didn’t find any 

significant relation of these parameters to the friction (Zuniga-Garcia & Prozzi, 2019), some of 

them found a positive and significant correlation for both parameters (Huyan et al., 2020; Ji et 

al., 2022) while others reported a positive correlation for the Psk parameter and negative 

correlation with the Pku parameter (Song, 2022). 

The obtained results provided a promising potential for pavement texture characterization from 

the DSM obtained by photogrammetry method. The comparison of two different data 

acquisition setups showed that the Ortho mode produced a DSM with better performance for a 

smaller number of acquired images and simpler acquisition procedure. Therefore, the Ortho 

mode was adopted for further application in research. Both investigated methods fall within the 

close-range photogrammetry range, as the distance between the camera lens and the specimen's 

surface was within one meter. The adopted Ortho mode for image acquisition was named Close-
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Range Orthogonal Photogrammetry method – CROP and it will be adressed by this acronym 

further in the text. 

5.2. CROP method performance testing 

To investigate the performance of CROP method for surface data acquisition and digital 

representation of texture roughness features, four DSMs were created as a result of different 

photographic equipment used for the data acquisition. The same digital camera Nikon D500 

was used with four different camera lenses.  The adopted camera settings remained equal for 

all four equipment setups: aperture f/4.0, shutter speed 1/10 s, ISO 100, white balance manually 

selected and selected color profile Nikon standard. The properties of each setup are given in 

Table 5.7. Different setups were named Mode 1 – Mode 4. 

Table 5.7. Camera lens properties for different CROP method data acquisition equipment 

CROP acqusition 

mode 
Mode 1 Mode 2 Mode 3 Mode 4 

Lens type Tokina SD 11-20, 

f2.8 (if) DX. 

Tokina SD 11-20, 

f2.8 (if) DX. 

AF Nikkor 50 mm 

f1.8 D 

AF-S Micro Nikkor 

105 mm f2.8 G 

Focal length 11 mm 20 mm 50 mm 105 mm 

Camera height 300 mm 300 mm 500 mm 700 mm 

 

The performance was tested on the same asphalt specimen as described in section 5.1. To 

improve the resulting DSM performance, twelve Metashape-related markers were generated. 

The markers enable precise object scaling with respect to the known target distance (Over et 

al., 2021). The markers were grouped in a line of three, where the distance between two 

consecutive markers in a line was set to be 88.50 mm (Figure 5.6a). The markers were arranged 

around a smaller surface portion, marked with a 3D printed frame with inner dimensions 

150×150 mm2. A smaller surface section was selected to reduce the amount of data and 

consequently the time for the 3D model reconstruction procedure. The dimensions were 

selected with respect to the skidding length of the SRT device for a future comparison of texture 

roughness features to the friction performance and to be able to extract a full length profile for 

MPD evaluation, corresponding to 100 mm. Previous research showed that average values of 

pavement texture roughness parameters can be evaluated with high reliability if the pavement 

texture evaluation area was larger than 80×80 mm2 (Sha et al., 2021), therefore the selected 

inner frame dimensions correspond to this condition.  
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5.2.1. Image acquisition and DSM creation 

The image acquisition procedure followed the same camera translation scheme as described in 

section 5.1.2 for Ortho mode. For each Mode, the camera height was adjusted by a tripod and 

all the images were acquired from the same height (Figure 5.6b). The images were captured by 

following a grid marked on the reference frame, with 60% side overlap and 80% forward 

overlap. For each Mode, 25 images were acquired – five more than for the „original“ Ortho 

mode described in section 5.1. Images were captured in RAW format to preserve the full 

information stored in a pixel and pre-processed in Nikon Capture NX-D software by white 

balance and lens corrections, without any geometry corrections. The processed images were 

exported in 16-bit TIFF format, compatible with the Metashape software.  

  

a) b) 

Figure 5.6. Metashape markers arrangement(a) and image acquisition procedure example(b) 

The DSMs were created in Metashape for every data acquisition Mode with the same alignment 

procedure settings applied: Accuracy set to high, Key point limit set to 40,000, Tie point limit 

set to 4,000. High accuracy setting provides more accurate camera position estimations and 

enables the usage of original size images. The limit values set for key point and tie point 

represent the upper limit value of feature points and matching points respectively, that should 

be considered on each image during the alignment procedure. These specific values are selected 

as recommended to satisfy the demands of performance optimization and avoid the possibility 

of reducing the quality of the resulting model (Metashape User Manual, v1.5 Professional 

Edition, 2019). The result of the alignment procedure is a sparse point cloud (SPC) entity. The 

SPC entity is further filtered to exclude the points that do not fall within the defined threshold 

values. For this purpose, three error reduction features were adjusted to select and remove the 

“outliers” or low-quality tie points, based on the camera geometry of the images (Over et al., 

2021). With application of such features, the intention is to produce a high-quality tie points set 
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and more accurate final model. The quality assessment features for the selection of high-quality 

tie points are reconstruction uncertainty, projection accuracy and reprojection error.  

Reconstruction uncertainty removes the points resulting from poor geometric camera relations, 

whose removal reduces the noise and disables the influence of the points with large uncertainty 

to the points delivered from good camera geometry. The reconstruction accuracy value is 

gradually selected starting from the target value of 10 and increasing towards the maximum of 

50% selected tie points to be removed in the filtering procedure. The optimization of 

reconstruction accuracy value is performed by evaluation of the reprojection error value (in 

pixels), where smaller value indicates better performance. The projection accuracy filter selects 

the points that were assigned with poor match accuracy by the software matching algorithm. 

The performance measure of this error reduction feature is the measure of Mean Key Point Size 

(in pixels). Smaller values indicate a better precision of key point location in the image. Again, 

the value is gradually selected, starting from level 1 of projection accuracy, which represents 

the highest possible accuracy. The amount of removed points should not exceed 50%, as for the 

reconstruction accuracy metric. Reprojection error is the final point filtering procedure, which 

sorts out the tie points that are resulting from false matching procedure. A higher value of 

reprojection error indicates weaker estimation of the original point location in its projection 

after the alignment procedure. Reprojection error is optimized by evaluating the obtained RMS 

reprojection error (in pixels), where smaller value indicates better performance. A sufficient 

level of model optimization is reached when the RMS reprojection error is approximately 0.3 

pixels (Over et al., 2021). This value was set as a threshold for reconstruction uncertainty and 

reprojection error metrics in the performance evaluation of all four DSM produced by different 

Modes. 

The values of the error metrics were gradually selected to filter out 10% of the original tie points 

used for the SPC creation having weakest performance for all four Modes, so the comparison 

between the DSM performance can be made. For each step of the point removal procedure, the 

accuracy for the remaining tie point set was updated and the optimization procedure was 

repeated. With the final set of best-fit tie points for all four Modes, the creation of a DPC object 

was initiated. The reconstruction procedure started with the quality adjustment set to ultra-high, 

providing more detailed and accurate geometry of the reconstructed object. Another adjustable 

feature in the DPC creation is depth filtering. For the analysis of texture details in small scale 

such as pavement surfaces, the recommended setting for the depth filtering is mild (Over et al., 
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2021). In this way, the applied filtering doesn’t exclude the details of the analysed object as 

outliers and won't reduce the sharpness of an object in focus. When all the reconstruction 

parameters were defined, the 3D DPC model was created. In this research, the reconstruction 

process was defined with equal settings for all four Modes so the comparison between the 

resulting DPCs can be made, regardless of the differences in the data acquisition process. 

5.2.2. Resulting DSM properties 

To evaluate the performance of the created DSMs, a comparative analysis of key features 

reported in the Metashape Processing report was done. The Processing report contains the 

information related to the image acquisition process such as number of images, number of 

markers, image resolution and pixel size, the alignment procedure properties with error metrics, 

the resulting objects - DPC and mesh features and the data related to the computational process, 

such as memory usage or processing time. Each report is specific for a corresponding model 

and by comparing some of the features provided in the report, the model with superior 

performance can be selected. The aim of this analysis was to evaluate the DSM features 

different for the generated models and to select the one with the best performance with respect 

to the analysed parameters.  

The analysed properties were grouped into three sections, each one describing a specific step 

of the 3D model reconstruction and the properties of resulting entity. The first section contained 

the alignment procedure properties, including error metrics RMS reprojection error and Mean 

Key Point Size value for the projection accuraccy assessment and the resulting SPC properties. 

In the second section, the reconstruction properties were provided and the last section observed 

the properties of the resulting DPC and mesh objects.  

From the SPC properties obtained for all four data acquisition modes presented in Table 5.8 it 

can be seen that the Mode 4 DSM obtained the smallest values of RMS Reprojection Error 

within the defined threshold value. The Reprojection Error parameter for Mode 1 is almost three 

times higher. The value of  Mean Key Point Size is also the smallest for Mode 4. The parameters 

describing the computational complexity of the reconstruction procedure (computational time 

and file size) obtained the highest values for Mode 4. The properties of resulting 3D entities are 

different for all four analyzed acquisition modes. The Mode 1 model obtained the highest 

number of points in the DPC entity and the smallest number of faces in the mesh entity. Mode 

4 acquisition procedure resulted in the DPC with the smallest number of points and largest 

number of mesh elements. 
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Table 5.8. DSM properties for models generated from different data acquisition procedures (from Metashape 

Processing Reports generated for the created DSMs, 2022) 
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5.2.3. Surface roughness features analysis 

The DSMs created by four different data acquisition Modes were subjected to roughness 

features analysis to determine if the resulting texture parameters differ significantly. The 

analyses were performed on DPC objects resulting from the reconstruction procedure in 

Metashape. The DPC models were imported in the Cloud Compare software and subjected to 

pre-processing: leveling to horizontal position and scaling to correspond the millimeters units. 

Afterwards, the DPCs were aligned by a point picking algorithm, where three points on the 

reference object and the corresponding points on the objects to be aligned were selected (Figure 

5.7). The selected reference object was Mode 3 DPC. The other three DPCs were aligned with 

respect to the reference points defined on the Mode 3 DPC. The alignment procedure was 

controlled by a RMS error value, whose threshold was set to be < 10%. 

a) 

 

b) 

Figure 5.7. DPC alignment procedure in Cloud Compare: aerial view (a) and side view (b) 

5.2.3.1. DPC properties and profile extraction settings optimization 

When the DPCs were aligned with RMS < 10%, they were subjected to segmentation to 

investigate the geometrical features of the resulting profiles. For each DPC, three 100 mm long 

sections were extracted from a central surface area at the same position at a distance of 37 

millimetres, corresponding to the grid markings on the reference frame (Figure 5.8). The 

sections were extracted as DPCs, representing surface profiles at the selected positions. This 

procedure required the definition of the extracted section thickness, i.e. the width of a DPC 

section from which the profile will be generated. The selected section thickness depends on the 

density of the DPC, where in general the DPCs with higher point density require smaller section 

thicknesses.  Larger section thickness will include larger number of points. In case when the 
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section thickness is too narrow for a given DPC density, the resulting profile will consist of an 

insufficient number of sparsely distributed points and the roughness features won't be described 

precisely enough or realistic. Such a profile will be discontinuous and a significant number of 

points should be extrapolated to represent a profile. On the opposite, if the section thickness is 

too wide for a given DPC density, specific profile segments will contain points with different 

height coordinates for the same x-coordinate value, resulting in a noisy dataset which should 

be interpolated to be able to obtain a linear profile. Such data wouldn’t represent a profile but 

a surface section, which leads to 3D instead of 2D analysis. 

Two different section thicknesses were defined in the extraction procedure to investigate the 

optimal thickness for a specific model, 0.01 mm and 0.005 mm for all extracted sections. This 

value represents the width of the extracted surface segment in y direction. Larger value of 

section thickness would imply a smaller precision and possibly generate a redundant point 

dataset describing surface and not profile features. Smaller section thickness implies smaller 

number of data points for the description of a surface profile. This would decrease the 

computational demands and enable the profile representation without the possible data 

redundancy present for larger section thickness. 

 

Figure 5.8. Aligned DPCs and the position of extracted sections 

Table 5.9 shows the number of points in each extracted section and average horizontal 

resolution calculated for different section thickness settings for all four DPCs. The number of 
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points in a profile was significantly smaller for profile section thickness of 0.005 mm and the 

values of average horizontal resolution are higher for this section thickness property. The 

average horizontal resolution (point-to-point distance in x direction was the smallest for the 

Mode 1 DPC resulting profiles. This is in coincidence with the number of points in DPCs from 

which the sections were extracted, so it was expected that the Mode 1 resulting profiles would 

have the largest number of points. 

Table 5.9. Number of points in extracted sections for DPCs obtained from different data acquisition modes and 

resulting horizontal resolution of profiles 

DPC Mode Mode 1 Mode 2 Mode 3 Mode 4 

Point density [pts/cm3] 2.5 E+06 2.02 E+06 2.56E+06 1.96E+06 

section thickness 0.01 mm 

Profile 1 17,548 13,742 11,833 9,865 

Profile 2 18,583 14,485 12,666 10,585 

Profile 3 17,923 14,485 12,316 10,214 

average horizontal resolution [mm] 0.0057  0.0073  0.0084  0.0101  

section thickness 0.005 mm 

Profile 1 8,857 7,126 5,885 5,000 

Profile 2 8,733 7,356 6,430 5,277 

Profile 3 8,889 7,164 6,067 4,986 

average horizontal resolution [mm] 0.0113  0.0570  0.0733  0.0752  

 

The average horizontal resolution value was calculated to investigate the methods' capability of 

capturing relevant surface wavelengths in micro-texture and macro-texture range. For both 

section thicknesses, the obtained values were below the macro-texture lower limit value. As the 

micro-texture doesn't have a lower limit value, the section thickness setting providing smaller 

resolution values is preferrable as it captures micro-texture more in detail. From Table 5.9 it 

can be seen that the average horizontal resolution values obtained for the section thickness of 

0.01 mm are in general smaller than the ones obtained for section thickness of  0.005 mm. 

Moreover, they are all below 0.01 mm except the Mode 4 profile resolution which indicates the 

sub-millimeter precision of the obtained profile data. A comparison of profile's resolution with 

different section thicknesses is given in Figure 5.9. Roughness features were further analysed 

on profiles extracted with section thickness of 0.01 mm. 
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Figure 5.9. An example of profile portion segmented from the DPC with two different section thicknesses: 

section thickness 0.01 mm (upper) and section thickness 0.005 (lower) 

5.2.3.2. Profile geometry and roughness analysis 

To perform a comparative profile data analysis, the original profile data was corrected to have 

the same absolute x coordinate of the first profile point, x = 0. Height coordinates were adjusted 

with respect to the calculated mean height value for a given profile so they fluctuate around the 

mean level equal to zero. The corrected profiles were plotted to evaluate the profile geometry 

for different data acquisition methods. The profile plots obtained from Mode 1 and Mode 2 

surface models showed that the extracted profiles have a convex form. The profiles obtained 

from Mode 3 showed a minor deviation from the horizontal plane, resulting from the manual 

procedure of DPC alignment in CC software. The profiles extracted from Mode 4 DPC were 

perfectly horizontal (Figure 5.10). 

A difference in the surface roughness description was also observed for extracted profiles. A 

smaller portion of overlapped profiles was observed, where it can be seen that the roughness 

representation from Mode 1 and Mode 2 profiles is different than for the Mode 3 and Mode 4 

profiles (Figure 5.11). The roughness on smaller scale (i.e. micro-texture) is captured more in 

detail with the Mode 3 and Mode 4 resulting profiles. The differences in profiles' geometry are 

due to the convex form of the profiles fromMode 1 and Mode 2 and the precision tolerance in 

the DPC overlapping procedure. 
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Figure 5.10. Comparison of profile geometry for different data acquisition modes 

 

 

Figure 5.11. Comparison of profiles' roughness representation for different data acquisition modes 

Further analysis of the characteristic texture parameters was performed only for the profiles 

extracted from the DPCs generated by Mode 3 and Mode 4 acquisition methods. The other two 

methods were excluded as the profiles extracted from the resulting surfaces showed a geometry 

distortion which could affect the values of the texture parameters. These profiles would have to 

be subjected to additional adjustments and filtering of original data points, requiring additional 
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time for data analysis and a possible unrealistic relation to the surface frictional performance. 

Surface roughness features were captured more in detail by Mode 3 and Mode 4 acquisition 

methods, therefore they were found ot be more suitable for the inclusion of micro-texture effect 

on the texture roughness characteristics.  

5.2.3.3. Comparison of texture parameters values  

DSMs produced by Mode 3 and Mode 4 were further analyzed by additional profile 

segmentation from which the selected texture parameters were calculated. The purpose of this 

analysis was to investigate the difference in the texture parameters values derived from the 

DSMs obtained by different data acquisition methods. To acquire the best possible overlap 

between the DSMs, additional alignment was performed following the same procedure as 

described in section 4.2.3. From the aligned DSMs, ten sections were segmented with section 

thickness of 0.01 mm and 100 mm length, representing the surface profiles (Figure 5.12). 

Extracted profiles' coordinates were corrected to start from x = 0 and to have the height values 

fluctuating around mean height value equal to zero. The corrected profiles were saved as .csv 

files and imported to MountainsMap software (version Lab Premium 9.0, Digital Surf, 2023) 

for surface and profile texture analysis by roughness parameters defined in EN ISO 21920-2 

and EN ISO 25178-2 standards. MountainsMap enables the calculation of texture parameters 

on roughness and waviness level separately, by applying the Gaussian filters with 

corresponding threshold levels. This feature enables the exclusion of the micro-texture or 

macro-texture effect on the profile roughness properties prior to the calculation of selected 

parameters. The software contains all the profile-related and surface-related texture parameters 

described in Chapter 3 for the characterization of any surface roughness performance on the 

selected roughness scale. 

This research focused on the evaluation of the profile features on both friction-relevant texture 

scales. Therefore, the selected texture parameters were calculated on the primary profiles so 

none of the texture levels was excluded from the analysis. Prior to the parameters calculation, 

the profiles were subjected to automatic leveling to remove any remaining vertical slope from 

the obtained profiles and filtered with a Gaussian S-filter to remove the small lateral scale 

profile components below 2.5 µm. In this way, the profiles were de-noised and the points within 

the defined method precision range of 0.01 millimeters were still preserved. 
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Figure 5.12. Aligned DPCs from Mode 3 and Mode 4 and marked positions of ten sections for profiles extraction 

The profile-related texture parameters evaluated by MountainsMap software were selected 

from the amplitude group and feature group: arithmetic mean absolute height Pa, root mean 

square height Pq, total height Pt, mean height Pz, maximum peak height Ppt and maximum valley 

depth Pvt and mean height of profile element Pc. The traditional pavement profile-related 

parameters MPD and ETD were also evaluated for the inspected profiles, calculated in 

Microsoft Excel for the leveled and filtered profiles according to EN ISO 13473-1. The 

calculated profile parameters values are given in Table 5.10. An example of profile plots for 

two different data acquisition modes after the profile adjustments in MountainsMap software is 

given in Figure 5.13. 

 

Figure 5.13. Profile P9 geometry extracted from Mode 3 and Mode 4 data acquisition modes 

To adress the difference between the texture parameters calculated from the same profiles 

extracted from different data acquisition modes,  the mean absolute difference was calculated 

for parameters' pairs (Table 5.11). For most of the analysed parameters, the calculated mean 

absolute difference was ≤ 5%. The exceptions were the parameters Pt (total height), Pvt (max. 

valley depth) and Pz (mean height), amongst which the parameter Pt showed the greatest mean 

absolute difference of 16% between the values determined for Mode 3 and Mode 4 profiles. 

The values of standard texture parameters MPD and ETD showed low variations in the mean 

difference values with 2% and 1%, respectively. 
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Table 5.10. Profile-related parameters extracted from DSMs from Mode 3 (M3) and Mode 4 (M4) data 

acquisition setup 

 Profile parameters EN ISO 21920-2 [mm] 

Profile  parameters 

EN ISO 13473-1 

[mm] 

Profile 

no. 

Mode 

no. 
Pa Pq Pt Ppt Pvt Pz Pc MPD ETD 

1 
M3 0.151 0.194 1.040 0.337 0.703 0.869 0.513 0.296 0.436 

M4 0.160 0.205 1.161 0.296 0.865 0.971 0.551 0.270 0.416 

2 
M3 0.211 0.283 2.191 0.426 1.765 1.189 0.725 0.391 0.513 

M4 0.205 0.277 2.100 0.393 1.707 1.186 0.721 0.367 0.493 

3 
M3 0.242 0.334 2.191 0.467 1.724 1.387 0.897 0.436 0.549 

M4 0.226 0.312 2.062 0.444 1.617 1.322 0.830 0.418 0.534 

4 
M3 0.155 0.202 1.190 0.294 0.896 0.937 0.490 0.288 0.430 

M4 0.160 0.217 1.368 0.292 1.076 1.048 0.495 0.282 0.426 

5 
M3 0.259 0.338 2.067 0.471 1.596 1.185 0.894 0.433 0.546 

M4 0.251 0.327 2.010 0.485 1.525 1.156 0.892 0.435 0.548 

6 
M3 0.269 0.389 2.358 0.531 1.826 1.393 0.849 0.474 0.579 

M4 0.262 0.371 2.182 0.472 1.710 1.318 0.819 0.456 0.565 

7 
M3 0.293 0.408 2.419 0.491 1.928 1.545 1.088 0.458 0.566 

M4 0.283 0.390 2.405 0.497 1.908 1.514 0.999 0.449 0.559 

8 
M3 0.355 0.517 2.757 0.731 2.026 1.468 0.999 0.544 0.635 

M4 0.340 0.495 2.498 0.666 1.832 1.367 0.887 0.499 0.599 

9 
M3 0.271 0.355 2.221 0.613 1.607 1.513 0.810 0.517 0.613 

M4 0.257 0.336 2.062 0.595 1.467 1.422 0.767 0.499 0.599 

10 
M3 0.225 0.276 1.360 0.447 0.914 1.110 0.692 0.428 0.543 

M4 0.233 0.295 1.737 0.467 1.270 1.253 0.778 0.446 0.557 

 

Table 5.11. Mean absolute difference for profile-related parameters for Mode 3 and Mode 4 (Table 5.10) and 

average value MADaverage for each calculated parameter 

Profile 

no. 

1 2 3 4 5 6 7 8 9 10 

MADaverage 

[%]  Mean absolute difference (MAD) for parameters calculated for M3 and M4 

profiles 

Pa 0.009 0.007 0.017 0.005 0.009 0.006 0.011 0.015 0.014 0.008 1% 

Pq 0.011 0.006 0.023 0.015 0.011 0.018 0.018 0.022 0.019 0.019 2% 

Pt 0.121 0.091 0.129 0.178 0.057 0.176 0.014 0.259 0.159 0.377 16% 

Ppt 0.041 0.034 0.023 0.002 0.014 0.059 0.007 0.065 0.018 0.021 3% 

Pvt 0.162 0.058 0.107 0.180 0.071 0.116 0.020 0.194 0.140 0.356 14% 

Pz 0.102 0.003 0.065 0.111 0.029 0.075 0.031 0.101 0.091 0.143 8% 

Pc 0.038 0.004 0.067 0.005 0.001 0.031 0.089 0.112 0.043 0.086 5% 

MPD 0.026 0.024 0.018 0.006 0.002 0.018 0.008 0.044 0.017 0.018 2% 

ETD 0.021 0.019 0.014 0.005 0.002 0.015 0.007 0.036 0.014 0.015 1% 
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The profile parameters values were subjected for descriptive statistical analysis to evaluate the  

variation between the obtained values from different DSMs. In this way, profile-related analysis 

was extended to surface-related analysis by calculation of mean values for profile-related 

parameters as the surface roughness representations. This was done only for the parameters 

describing an overall roughness feature, while the parameters describing an extreme profile 

feature total height Pt, maximum peak height Ppt and maximum valley depth Pvt were not included 

in this analysis. The results of performed analyses are given in Table 5.12. In general, profiles 

extracted from Mode 4 DSM have lower variability of calculated mean parameters evaluated by 

variability statistics values: standard deviation, variance and coefficient of variation. The highest 

values of standard deviation and variance were obtained for parameters Pz and Pc, while the 

average roughness parameter Pa obtained the smallest variation in case of both data acquisition 

modes. The mean parameters' values calculated for all ten profiles are slightly higher for the Mode 

3 DSM.  

The effect of the number of extracted profiles was evaluated by comparing the mean values of six 

roughness parameters, separately for even and odd profiles and for the total number of profiles. 

Statistical variability indicators standard deviation s, variance s2 and coefficient of variation CV 

were calculated and the obtained results are given in Table 5.13. From the obtained results it can 

be seen that the number of profiles or profile spacing doesn't have a significant effect for the 

estimation of overall surface-related texture parameters as the variability measures are low. 

Generally, the parameters values calculated for the profiles extracted from two different data 

acquisition modes were not significantly different, as the average absolute difference between the 

calculated mean parameters' values in Table 5.13. was 0.01 mm.  

By observing the properties of DSMs created by Mode 3 and Mode 4 data acquisition setups, the 

resulting point density and profile resolution for the optimal section thickness of 0.01 mm, Mode 

3 performed better. The calculation of profile-related parameters and the results of statistical 

analyses for the parameters determined from Mode 3 and Mode 4 profiles showed that there was 

no significant difference between the obtained values. From the results of the performed 

comparative analyses between the DSMs performance, the mode selected for further application 

was the Mode 3. By comparing the DPCs created by Mode 3 and Mode 4, former has 

approximately 60 million points more and thus provides a more detailed representation of the 

analyzed surface. The selected data acquisition method verification is described in the next section 

5.3.
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Table 5.12. Calculated descriptive statistics for profiles extracted from Mode 3 and Mode 4 DSM 

 M3 M4 

Profile 

parameter 

Mean 

[mm] 

Range 

[mm] 

s 

[mm] 

s2 

[mm2] 

CV 

[%] 

Mean 

[mm] 

Range 

[mm] 

s 

[mm] 

s2 

[mm2] 

CV 

[%] 

Pa 0.243 0.204 0.058 0.003 0.240 0.237 0.180 0.052 0.003 0.22 

Pq 0.329 0.323 0.092 0.008 0.280 0.322 0.290 0.080 0.006 0.25 

Pz 1.259 0.676 0.226 0.051 0.180 1.256 0.543 0.159 0.025 0.13 

Pc 0.796 0.598 0.184 0.034 0.231 0.774 0.504 0.146 0.021 0.19 

MPD 0.426 0.256 0.079 0.006 0.186 0.412 0.230 0.077 0.006 0.19 

ETD 0.541 0.205 0.064 0.004 0.117 0.530 0.184 0.062 0.003 0.12 

 

Table 5.13. Calculation of mean parameters values for a different number of profiles for both data acquisition 

setups 

Mean 

value 

[mm] 

M3all 

profiles 

M4all 

profiles 

M3 

even 

profiles 

M3 

odd 

profiles 

M4 

even 

profiles 

M4 

odd 

profiles 

Mean 

[mm] 

s 

[mm] 

s2 

[mm2] 

CV 

[%] 

Pa 0.243 0.237 0.243 0.243 0.240 0.235 0.241 0.002 0.000 0.98 

Pq 0.329 0.322 0.333 0.326 0.331 0.314 0.328 0.004 0.000 1.20 

Pz 1.259 1.256 1.219 1.230 1.234 1.277 1.254 0.027 0.001 2.17 

Pc 0.796 0.774 0.751 0.840 0.740 0.808 0.780 0.036 0.001 4.57 

MPD 0.426 0.412 0.425 0.428 0.410 0.414 0.420 0.007 0.000 1.79 

ETD 0.541 0.530 0.540 0.542 0.528 0.531 0.532 0.006 0.000 1.12 

 

5.3. Verification of the proposed CROP method  

The established CROP method for pavement texture data acquisition was evaluated by comparing 

the method's performance with two similar data acquisition methods: 3D laser scanning method 

and photogrammetry method utilizing a specialized photogrammetric camera. The aim of this 

analysis was to investigate the accuracy of the proposed method and to determine the extent of 

the micro-texture range that could be investigated by the CROP method. Accuracy is an important 

feature of DSM models created by photogrammetry-based methods and used for measurements 

on various scales (Sapirstein, 2016). Adequate CROP method's accuracy is the precondition for a 

realistic reconstruction of surface morphology from which the texture parameters relevant for 

friction performance can be determined. The accuracy of created DSMs described in section 5.2 

was based on Metashape markers arranged around the analysed surface and later evaluated by 
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error metrics. The analyses showed that DSM created by Mode 3 acquisition setup obtained the 

lowest valus of error metrics, therefore it was adopted for further accuracy analysis.  

The verification was performed on a reference object, a custom-designed 3D frame constructed 

by using a CNC milling machine, intended for precise cutting of CAD-designed objects (Figure 

5.14). The selected material for the frame construction was aluminium because it is a solid, 

lightweight material, doesn't deform and can be precisely cut. The design dimensions of the 

reference frame were defined as 230×230 mm2 for the outer edge and 150×150 mm2 for the inner 

edge, selected to correspond to the dimensions of the pavement surface area analysed in section 

4.2 (Figure 5.14a). The maximum frame thickness was 5 mm on the outer frame edge. The inner 

edge of the frame was designed to have three different thicknesses: 2 mm for the outer steps 

(marked blue and yellow) and 1 mm for the middle step (marked magenta). Several reference 

shapes were designed on the frame to enable precise determination of frame dimensions and to 

ease the selection of the reference points on the frame (marked green in Figure 5.14b). Two 

triangular shaped objects were designed in the middle of the inner frame height and at the lower 

inner corner for a precise dimension measurement. A square shaped object on the upper edge of 

the frame was designed for the determination of the frame orientation.  

The frame was referenced by two different sets of markers: one for the 3D laser scanning data 

acquisition method (marked yellow in Figure 5.14b) and one for the photogrammetry methods 

data acquisition (marked blue in Figure 5.14b). The markers were utilized for the alignment and 

model calibration in the DSM creation procedure. Laser scanner markers were randomly 

distributed to cover the entire frame surface, while photogrammetry markers were positioned on 

approximately equal distances close to the inner edge of the frame. The distance between the 

photogrammetry markers 1 and 2 (lower left corner and the adjacent right) was a reference 

distance for alignment procedure. This distance on the frame was measured with a digital calliper 

and recorded as 87.94 mm. The dimensions of the produced reference frame were slightly 

different than the design dimensions. The reason is the precision of the CNC milling machine, 

however the inner frame dimensions showed an acceptable deviation from the original design of 

0.63 mm measured between two reference objects on the frame. 
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b) 

Figure 5.14. CAD design for the reference frame (a) and the produced reference frame with attached markers prior 

to the data acquisition procedure (b) 
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5.3.1. 3D laser scanning procedure and the resulting DSM properties 

3D laser scanning data acquisition was performed by a high precision ATOS III Triple Scan 3D 

optical measurement system (Center for Advanced Computing and Modelling, University of 

Rijeka) (Figure 5.15). The scanner enables a precise 3D object scan, capturing point spacing up 

to 0.01 mm precision, exported as a surface model convertable to a 3D Mesh or a DPC object (Li 

et al., 2017). The equipment is fast, robust and flexible in terms of scale adjustment with respect 

to the size or precision demands of the analysed object. It is considered as a benchmark equipment 

for the geometrical features analyses of scanned objects (Eiríksson et al., 2016).  DSMs produced 

by photogrammetry methods are commonly compared to the laser scanning produced DSMs for 

the evaluation of method's accuracy (Sapirstein, 2016). 

 

Figure 5.15. ATOS III Triple Scan laser scanning system assembly, Centre for advanced modelling and 

calculations, University of Rijeka, 2022 

The reference frame was scanned by ATOS III Triple Scan and stored as a 3D mesh object with 

2.5×105 faces (Figure 5.16. a,b). The mesh model was further processed in Cloud Compare 

software by following the procedure described in the previous section: alignment to a horizontal 

plane and scaling to correspond the dimensions in millimeters. The processed mesh object was 

sampled to a DPC object with approximately 51×103 points/cm3 density (Figure 5.16 c,d).  
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a) b) 

  
c) d) 

Figure 5.16. A DSM of 3D laser scanning result object: Mesh (a,b) and DPC (c,d) 

The accuracy of the DSM was evaluated by control measurements on the actual frame. The plane 

dimensions were determined for selected characteristic points (Figure 5.17a). The calculated 

absolute difference between the measurements on actual frame and 3D DSM resulting from 3D 

scanning procedure were within 0.01 mm, except the outer frame dimension which obtained larger 

dimension deviations (Table 5.14). The DSM height accuracy was validated on a DSM cross 

section where the characteristic heights were measured (Figure 5.17b). The cross section was 

extracted at the central position of the frame where the thickness was meaured on different 

positions (Figure 5.17c, d). Calculated absolute differences between the measured values on the 

frame and DSM objects were up to 0.03 mm (Table 5.15). 

Table 5.14. Calculated absolute differences between the plane dimensions determined on frame and DSM created 

from 3D laser scanning procedure 

Dimension Length on frame [mm] Length on DSM  [mm] Absolute difference [mm] 

A 150.63 150.62 0.01 

B 19.55 19.54 0.01 

C 99.53 99.52 0.01 

D 229.98 229.91 0.07 
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Table 5.15. Calculated absolute differences between the height dimensions determined on frame and DSM created 

from 3D laser scanning procedure 

Position Height on frame [mm] Height on DSM [mm] Absolute difference [mm] 

1 4.77 4.75 0.02 

2 2.83 2.85 0.02 

3 1.84 1.86 0.02 

4 4.79 4.82 0.03 

5 4.88 4.85 0.03 

 

a) b) 

c) d) 

Figure 5.17. Dimensions (a, b) and height measurement positions (c, d) on DSM selected for the comparison with 

the measurements on actual frame, determined with respect to the reference frame objects for precise 

measurements 

5.3.2. Photogrammetry procedure and resulting DSM properties 

Photogrammetry-based data acquisition procedure was performed with two different cameras:  

professional photogrammetry camera Canon 5D Mark III with 20 mm lens and previously used 

Nikon D500 with 50 mm lens. The data acquisition followed the same procedure as described in 

section 4.2. The camera settings were set to a standard mode with automatic brightness and 

contrast adjustments, light sensitivity set to ISO 100 and aperture size f/4.0. A trial image was 

taken for each equipment setup before the data acquisition was prompted to manually adjust the 

brightness and contrast camera settings if necessary. The selected camera properties and image 

acquisition settings specific for both performed procedures are listed in Table 5.16. 
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The image acquisition was performed on asphalt specimen to obtain a better contrast between the 

reference frame and environment (Figure 5.18). This was important for later frame extraction, 

which was done more precisely for sharp boundary between the smooth frame edge and rough 

pavement surface. If the frame was photographed on a smoother surface, the frame edge wouldn't 

be so emphasized. To disable the light reflection effect, the frame was sprayed with an 

antireflective agens. The images were captured by translating the camera across the target surface 

with respect to the defined grid, without changing the camera height or angle. The camera heights 

were specific for each acquisition procedure, selected as the closest possible focus distance 

specific for each camera that still provides sharp images of captured surface. Images were taken 

consecutively, starting from upper left corner and moving horizontally towards the opposite 

corner with standard 60% side and 80% forward overlap. The images were taken in five rows and 

the inspected surface was covered by 25 images. One additional image was taken at 370 mm 

height for Canon Mode to capture the whole reference frame. The same was done for the Nikon 

Mode with camera height adjusted to 650 mm. In this way, the conditions for the calibration 

procedure were enhanced so the resulting model could be more precise. 

Table 5.16. Properties of different photogrammetry acquisition devices 

 Acquisition Mode CROP Canon CROP Nikon 
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Camera Model Canon EOS 5D Mark III 22Mpix Nikon D500 20 Mpix 

Lens Type EF 20 mm f2.8 USM AF Nikkor 50 mm f1.8 D 

Focal Length 20 mm 50 mm 

Aperture f/4.0 f/4.0 

Shutter Speed 1/15 s 1/20 s 

ISO 100 100 

Camera Height 250 mm 500 mm (650 mm) 

Camera Angle 0° 0° 

Nr.of Images 25 25 

Nr. Of Markers 8 8 

Camera resolution 5760x3840 5568x3712 

Pixel Size 6.44 x 6.44 µm 4.31 x 4.31 µm 

 

The DSM reconstruction in Metashape was done by applying the same settings as described in 

section 5.2. In this way, a comparison between the specific features of all three DPC's could be 

made, regardless of the differences in the data acquisition process. The properties of DSMs 

extracted from the Metashape Processing report are given in Table 5.17. Besides the previously 

analysed DSM properties in section 5.2., the residual error vector properties were plotted for both 

DSMs. For the residual error vectors shorter than 1 pixel which do not follow a certain pattern, a 

DSM is considered as a valid representation of the actual object (Over J., et al, 2021).  
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Another property was evaluated, related to the scale control obtained by reference markers and 

evaluated by the calculated error in distance between two markers. From the DSM properties in 

Table 5.17, it can be seen that Nikon Mode DSM satisfied the residual error vector condition and 

obtained smaller value of scale control error. 

  
Figure 5.18. CROP procedure performed for reference frame DSM acquisition 

The Nikon mode DSM obtained lower values of the observed error metrics RMS reprojection 

error and Mean Key Point Size. It obtained higer point density and higher number of points in the 

DPC. It was computationally more demanding than the Canon Mode DSM, with longer overall 

processing time for all reconstruction phases and required more memory. 
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Table 5.17. Resulting photogrammetry 3D DSMs properties, Metashape Processing reports 

 Acquisition Mode CROP Canon CROP Nikon 
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n
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l Error in distance 

(Marker 1-Marker 2) 

[m] 

5.23822 E-05 6.4795 E-05 
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Point density 438 pts/mm2 981 pts/mm2 

Nr. Of Points 17,201 23,244 

Tie Points 9,790 15,905 

Projections 52,397 77,809 

RMS Reprojection 

Error 
0.368194 pix 0.30455 pix 

Max Reprojection 

Error 
2.11893 pix 1.40683 pix 

Mean Key Point Size 2.77345 pix 2.49148 pix 

A
li

g
n

m
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t 
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a
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m
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s 

Accuracy High High 

Key Point Limit 40,000 40,000 
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The DSMs created by two photogrammetry methods were compared to the reference DSM created 

from the 3D laser scanning procedure. The aim of this analysis was to inspect which of the CROP 

created models is more accurate in comparison to the reference DSM created by a benchmark 

method. The comparison was done by applying the DPC alignment procedure in Cloud Compare 

software. Three points were selected for the alignment (Figure 5.19). The selected points were the 

specific reference points on the frame: two of the points are the peaks of the triangles in the middle 

of the frame length (R0 and R1), and another one is on the peak in the lower right corner of the 

inner frame (R2). These points were chosen as easily recognizable on both objects so the 

alignment could be done more precisely. The points on the reference DPC were defined by the 

same coordinates for the performed alignments. For the CROP models, the corresponding points 

were slightly different for each alignment procedure, since the number of points in each DPC was 

different and it was not possible to select the exact same points. However, the points were selected 

to have as close as possible coordinates to the alignment points defined on the reference frame. 

When the reference points were selected on the frame to be aligned, the alignment procedure was 

performed until the calculated RMS error value for the obtained alignment was below the 

threshold value, set to RMS < 10% or 0.1. 

 

Figure 5.19. Reference DPC (left) and DPC to be aligned (right) with marked alignment points 

After the alignment procedure, an algorithm for the calculation of cloud-to-cloud distances (C2C) 

was utilized to determine which DPC obtained better coincidence with the reference DPC. The 

Cloud Compare software calculates the distances by using „nearest neighbor distance“ algorithm, 

which calculates the euclidean distance between two points subjected to comparison (one in 

reference DPC and the corresponding nearest neighbour in the compared DPC). This method 

enables simple, fast and direct distance estimation between the points (Lague et al., 2013).  
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A threshold value of maximum distance can be defined, so the true distances greater than this 

value won't be computed but replaced by the threshold value itself. A threshold value of maximum 

distance between the compared DPC's was set to 1 mm. The reason was the data acquisition 

procedure by 3D laser scanner, in which the frame was attached to an arm holding the frame in 

the air. The upper left corner of the frame was not reconstructed in the DSM creation, as can be 

seen in Figure 5.16a, c. The C2C algorithm could not converge to a solution if the threshold value 

was below 1 mm, because the distance between the aligned DPCs in the upper left corner would 

be infinite (as the reference DPC doesn't contain these points). 

After the C2C distance was calculated, obtained values were represented as the resulting color 

scale scalar field on the DPC compared to the reference frame. The corresponding histograms 

where calculated C2C distances were grouped into classes with range 0.05 mm were generated as 

a result (Figure 5.20). Each C2C distance class is presented with a different color and the height 

of each class resembles the number of DPC points falling within that specific class. The blue color 

marked the smallest calculated C2C distances (below 0.05 mm) and red color marked the 

distances closest to the defined threshold (> 0.95 mm). From the scalar field in Figure 5.20 for 

both aligned DSMs, it can be seen that the upper left corner is fully red, as the C2C distance 

exceeds the threshold value in this DSM area since there were no reference points for the 

comparison.  

From the obtained results it can be observed that both DPCs have a better performance on the 

inner edge of the frame, with higher concentration of blue and green colored C2C distances. The 

resulting histograms were not directly comparable, as they described different number of points. 

To be able to compare the performance of each DPC, the percentage of points falling within the 

upper range classes with C2C distances < 0.5 mm was calculated for both DSMs (Table 5.18), 

with number of points falling in a certain class was approximated from the histograms. 
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a) 

 
 

b) 

Figure 5.20. Color scale scalar field of C2C distances for DPC of the reference frame and corresponding 

histograms for Canon Mode (a) and Nikon Mode (b) DSM 

Table 5.18. Calculated C2C distance ranges and percentage of DPC points falling within each distance range for 

C2C distance < 0.5 mm 

   number of points percentage of points [%] 

C2C distance 

ranges [mm] 

Canon 

Mode 

Nikon 

Mode 

Canon 

Mode 

Nikon 

Mode 

0-0.05 760,000 2,100,000 6.50 7.22 

0.05-0.1 930,000 5,000,000 7.95 17.18 

0.1-0.15 1,250,000 4,250,000 10.68 14.60 

0.15-0.2 1,250,000 3,600,000 10.68 12.37 

0.2-0.25 975,000 2,800,000 8.33 9.62 

0.25-0.3 770,000 2,500,000 6.58 8.59 

0.3-0.35 650,000 2,100,000 5.56 7.22 

0.35-0.4 625,000 1,550,000 5.34 5.33 

0.4-0.45 525,000 1,100,000 4.49 3.78 

0.45-0.5 375,000 600,000 3.21 2.06 
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A graphical representation of calculated percentages for each data acquisition mode is presented 

in Figure 5.21. It can be seen that Nikon Mode DPC obtained larger number of points within lower 

C2C distance ranges, indicating better coincidence with the reference DPC. 

 

Figure 5.21. Percentage points (%) falling within C2C distance ranges < 0.5 mm for DPCs created by two different 

data acquisition setups 

Aligned DPCs were compared with respect to the height distances between the reference DPC 

and the photogrammetry produced DPC on the same cross section positions as in Figure 5.17c, d. 

The measured values of point-to-point distance with respect to the reference DPC in selected 

positions are given in Table 5.19, indicating better coincidence between Nikon Mode DPC and 

reference DPC. 

Table 5.19. Measured point-to-point distances on selected positions for both aligned DPCs and reference frame 

DSM 

Position 
Point-to-point distance for Reference DPC 

versus Canon DPC [mm] 

Point-to-point distance for Reference DPC 

versus Nikon DPC [mm] 

1 0.20 0.15 

2 0.32 0.12 

3 0.42 0.07 

4 0.66 0.12 

5 0.69 0.11 

 

Additional performance evaluation was done by comparing the distances measured on the 

reference DPC and actual frame with those determined on the Nikon Mode DPC (Figure 5.22). 

The absolute difference between measured values on Nikon Mode DPC and actual frame were 

similar to the absolute differences obtained for the reference DPC, except for the outer frame edge 
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(dimension D), where the absolute difference was much larger than for the reference DPC (Table 

5.20).  

 

Figure 5.22. Distance measurements on Nikon Mode DPC  

Table 5.20. Comparison of absolute differences between actual measurements on reference frame and distance 

measurements ond DSMs created with different data acqusition methods (3D laser scanning and photogrammetry) 

Dimension 
Length on 

frame [mm] 

Length on 

Nikon Mode 

DPC  [mm] 

Absolute difference 

for 3D scanner DPC 

[mm] 

Absolute difference 

for Nikon Mode DPC 

[mm] 

A 150.63 150.66 0.01 0.03 

B 19.55 19.54 0.01 0.01 

C 99.53 99.52 0.01 0.01 

D 229.98 229.14 0.07 0.84 

 

Height values were evaluated on Nikon Mode DPC and compared to the actual height values on 

the reference frame, defined by the thickness of the frame steps on upper and lower frame edge 

(Figure 5.23). The actual height values and measured values from the Nikon Mode DPC differ in 

sub-millimeter range values, with better model performance closer to the inner frame edge (Table 

5.21).  

A 

B 

C 

D 
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a) b) 

Figure 5.23. Measured heights (Dz coordinate) for upper (a) and lower (b) edge of reference frame DPC crated by 

Nikon Mode 

Table 5.21. Comparison of frame thicknesses measured on actual frame and DPC frame created by Nikon Mode 

CROP method 

Actual height on reference 

frame [mm] 

Measured height on DPC of 

reference frame [mm] 
Absolute height difference [mm] 

1.00 1.01 0.01 

2.00 1.97 0.03 

1.00 0.995 0.005 

2.00 2.03 0.03 

5.4. Discussion  

The proposed photogrammetry-based method for pavement texture data acquisition provides 3D 

digital surface representation from images captured at the same height orthogonally to the surface. 

Therefore, the method is named CROP – Close Range Orthogonal Photogrammetry. In 

comparison to the photogrammetry method where the images were captured under different 

angles, the CROP method showed better performance in terms of DSM reconstruction error 

metrics, despite the smaller amount of points forming the DPC object. The applicability of the 

method for pavement texture data analysis was shown by calculating several texture-related 

roughness parameters and comparing them to the measured friciton performance of the same 

surface. The obtained correlation coefficient of 0.807 indicated a significant relationship between 

texture performance indicator MPD calculated from the DSM and friction expressed as SRT 

value. The results are in good agreement with previous research where texture-friction relatonship 

was investigated by texture parameters derived from DSM obtained by photogrammetry methods 

(D. Chen, 2020; Huyan et al., 2020; Kogbara et al., 2018; Y. Wang et al., 2019). This motivated 

further analysis and optimization of CROP method. 
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To investigate the CROP method performance for different types of photographic equipment, four 

different camera lenses were used for image acquisition and creation of DSMs.  

The resulting DSMs properties were analysed and compared by selected error metrics, digital 

model's properties and resulting texture features. Two methods were excluded as they resulted in 

a distorted geometry of captured surface, providing a concave-shaped profile. The acqusition 

mode using 50 mm lens showed the best performance in terms of resulting DSM properties, 

therefore it was selected for further analysis and data acquisition. The performed analyses also 

served for the selection of optimal section thickness and number of profiles segmented from the 

DPC surface representation. A comparison between two different section thicknesses for profile 

data segementation showed that optimal profile representation by data points is obtained for 

defined section thickness of 0.01 mm. The calculation of selected profile-related roughness 

parameters showed that the number of profiles or profile spacing does not have a significant effect 

for the determination of a mean value of overall roughness parameter, calculated from the 

extracted profiles. The selected profile's spacing defined for further analyses was 10 mm between 

each profile segmented from a single surface. 

To verify the proposed CROP method for accuracy, two data acquisition setups with same image 

acquisition procedure and different photographic equipment were tested. Their performance was 

compared to the benchmark method for 3D data acquisition and reconstruction, a high precision 

3D laser scanner system. The benchmark method accuracy was evaluated by comparing the 

selected dimensions of a reference object to the measurements of DSM created from laser 

scanning procedure. The obtained differences in plane dimensions and height differences were on 

submillimeter range, with the highest difference value for the outer edge of the frame of 0.07 mm. 

Therefore, the created reference frame DSM was defined as suitable for the analysis of pavement 

texture morphology on whole macro-texture level and to some extent of the micro-texture level. 

The comparison of two DSMs created by application of CROP method for data acquisition was 

performed by analysis of resulting DSM properties in terms of error measures RMS reprojection 

error and Mean Key Point size, number of points generated in the DPC and number of elements 

in the Mesh object resulting from the DSM creation. The analysis showed that the model produced 

by Nikon Mode CROP method obtained better properties, with lower values of error metrics and 

more detailed representation of the reference object in both DPC and Mesh entity, having higher 

number of DSM elements (faces and points). Both DPCs were subjected to a performance 

comparison with the DSM produced by benchmark method, whose accuracy was previously 

determined. The Nikon Mode showed better performance by having higher amount of points with 
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smaller C2C distances: Nikon Mode DPC obtained 87.97% points with C2C distance below 0.5 

mm and Canon Mode DPC obtained 69.32% points with C2C distance below 0.5 mm.  

Previous research utilizing photogrammetry methods where the accuracy of the proposed data 

acquisition method was verified is very sparse.  J. Chen et al., 2019 validated the proposed close-

range photogrammetry method by calculating selected texture parameters MTD and root mean 

square roughness (RMSR) on the DSM obtained by CRP on three pavement surfaces, where 

texture was evaluated by sand patch test and laser scanning device. The obtained error metrics 

and correlation analyses for texture parameters evaluated by different data acquisition methods 

showed good performance of the proposed CRP method with relative errors below 5% and R2 = 

0.995 for measured versus calculated MTD. Authors Tian et al., 2020 compared the performance 

of photogrammetry-based method for pavement texture analysis with a conventional laser texture 

scanner and showed that the MPD values calculated from the DSMs differ from the values 

obtained by traditional measurements by an average of 4%. To evaluate the accuracy of the 

proposed method, they calculated the RMS reprojection error for the created model, which was 

1.550 pixels. In comparison to the obtained RMS reprojection error of 0.301 for the DSM created 

in this research by CROP method, this value is approximately five times higher. Medeiros et al., 

2021 designed a calibration plate with different heights and evaluated the proposed 

photogrammetry-based method performance by comparing the CAD design measures with the 

dimensions measured on the DSM. The accuracy was reported as percent error between the CAD 

and DSM dimensions, equal to 4.2%. The method was additionally validated by calculating the 

texture surface roughness parameters on DSMs obtained from the photogrammetry method and 

laser scanning method, with calculated errors expressed as percent difference below 15%. The 

created calibration plate was not used in the texture data acquisition procedure, so it was not 

possible to perform the method validation simultaneously during the data collection. 

The method verification procedure performed in this research was applied to an independent 

object with strictly defined dimensions in CAD design, which showed minor deviations from the 

dimensions measured on the actual object, all below 0.1 mm. The verification was not related to 

pavement-surface morphology or traditional texture performance evaluation methods. In this way 

the uncertainties stemming from the measurement procedure or complex surface morphology 

were avoided. The absolute difference values obtained for the comparison of actual dimensions 

and CROP DSM dimensions were all below 0.05 mm, except the outer edge of the reference frame 

where the difference was 0.84 mm. However, as the reference frame will be used for the pavement 

texture analysis on surface within the inner edge of the frame, this deviation was found to be 

irrelevant.  
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The design of the reference frame used for the verification of the CROP method enables the 

simultaneous texture data acquisition and accuracy evaluation. This means that the accuracy of 

the CROP method can be checked for every created DSM, consisting of both reference object and 

pavement surface. This reduces the potential risk of DSM accuracy reduction due to the image 

acquisition procedure deficiencies, caused by manual operating. The proposed and verified CROP 

method for data acquisition was further used to collect the texture data used for the development 

of friction prediction model, described in Chapter 6.     

 

Figure 5.24 A schematic summary of procedures performed in the CROP methodology development and verification 
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6. Development of a friction performance prediction model 

 

The main research aim of this thesis is the development of a reliable friction performance 

prediction model based on non-standard pavement texture parameters. In this Chapter, the 

methodology that was originally developed and verified in laboratory conditions was applied for 

texture data acquisition on road pavement surfaces. This Chapter provides the results of the 

CROP method application for field investigation of non-standard pavement texture parameters 

and development of a friction performance prediction model. The procedures for friction and 

texture data collection, texture data processing and analysis, prediction models’ establishment, 

optimization and proposed models’ validation are presented in a schematic summary in Figure 

6.1. 
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Figure 6.1 A schematic overview of performed procedures and used tools in the friction prediction model 

establishment 

FRICTION AND TEXTURE DATA FOR EXPLORATORY DATA 
ANALYSIS 

Data collection and processing

NON-STANDARD TEXTURE PARAMETERS FOR THE DEVELOPMENT 
OF  FRICTION PREDICTION MODEL

Exploratory data analysis

XLStat software

FRICTION PERFORMANCE PREDICTION MODEL DEVELOPED IN 
PLS REGRESSION FRAMEWORK

Development of prediction model  
(MLR) 

XLStat software

PERFORMANCE EVALUATION FOR ML ALGORITHMS AND 
COMPARISON TO PLS REGRESSION PREDICTION MODEL

PERFORMANCE

Machine learning (ML) for 
prediction model

XLStat software

✓ Friction measurements: Skid Resistance Tester (EN ISO 13036-4) 

✓ Texture measurements: CROP method 

✓ Digital surface model (DSM) creation: Agisoft Metashape 

photogrammetry software 

✓ DSM processing: Cloud Compare software 

✓ Profile roughness characterization: MountainsMap software and 

Microsoft Excel 

✓ Friction data analysis 

✓ Profile-related texture data analysis 

✓ Surface-related texture data analysis 

✓ Correlation analysis for texture and friction data 

✓ Preliminary MLR friction prediction model establishment and 

optimization 

✓ Feature engineering (FE) procedures for MLR models: 

➢ Ridge regression  

➢ PCA regression 

➢ PLS regression 

➢ Multiple polynomial regression (MPR) - a special case of MLR 

✓ MLR models' performance evaluation  

✓ Dataset split: training set and validation set (75/25 rule) 

✓ Selection of ML algorithms suitable for the problem: 

➢ Support Vector Machine regression (SVR)  

➢ Random Forest regression (RF) 

✓ SVR algortihm analysis 

✓ RF algorithm analysis 
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6.1. Application of CROP method - field investigation 

An advanced method for pavement texture data collection and analysis – CROP method, was 

developed and verified in laboratory conditions on produced asphalt specimens which were not 

exposed to any external influencing factors affecting the friction performance. The established 

CROP method showed to be suitable for the analysis of full range of macro-texture and micro-

texture up to 0.01 mm, corresponding to the achieved average horizontal resolution of profiles 

extracted from the DSM of analysed pavement surface. The accuracy of the verified CROP 

method was confirmed for the analysis of texture roughness features on submillimeter range, 

accounting for the whole macro-texture range and micro-texture range up to 0.05 mm. CROP 

method was further applied to field investigation of texture and friction relationship as described 

further in this Chapter. 

Pavement friction and texture data was collected on twenty different asphalt pavement surfaces 

in use (Figure 6.2). Eleven surfaces were selected on secondary urban traffic network on roads 

located in City of Rijeka residential area (marked blue). The selected roads were either collector 

or interzonal, with following characteristics: design speed 30-50 km/h (lower speed is 

characteristic for interzonal road type), no intensive heavy vehicle traffic, high frequency of non-

motorized traffic users, non-semaphorized intersections and presence of parking areas in the road 

profile. The other nine surfaces were selected on a low trafficked parking area in City of Rijeka 

University Campus (marked yellow), used as a service area for the delivery vehicles for the nearby 

Campus facilities.  

The aim was to investigate the possibility of surface frictional performance prediction based only 

on the texture parameters derived from the digital surface models created by CROP method for 

texture data acquisition. The surfaces were selected without the prior knowledge of asphalt 

mixture properties, pavement age or traffic load. The environmental impacts were excluded by 

performing the measurements under similar weather conditions: moderate air temperatures 

between 15°C and 20°C and no precipitation. Friction and texture data collection was performed 

on the same day, with no time delay. First, the friction was measured on selected surfaces by a 

standard low-speed device. The procedure is described in the following section. Afterwards, the 

texture data was collected by established CROP method, as described in Chapter 5. 
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Figure 6.2 Map of sites where friction and texture data were collected. Blue marked sites are located on urban 

road network, yellow marked site is the position of parking area (Google Earth, 2023) 

6.1.1. Friction data collection 

Before the friction measurements, surfaces were visually examined to check for any large texture 

irregularities which could significantly affect the friction performance. They were cleaned with a 

brush so the loose particles, dust or other type of debris potentially present on the surface are 

removed and thus eliminated as an influencing parameter in frictional performance of the 

pavement surface. Friction measurements were performed without the presence of water. This 

was done to exclude the hydrodynamic effect of water film to the pavement frictional performance 

as one of influencing parameters and to investigate the prediction model performance in 

comparison to similar empirical models, where the water effect was not excluded. 

Water effect is usually observed in numerical prediction models by including the viscous 

hydroplaning mechanisms in the friction numerical model (Kienle et al., 2020). In the existing 

empirical research of texture-friction relationship with texture features derived from the 

photogrammetry-based methods, the proposed friction prediction models established from the wet 
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friction measurements where the water effect was not excluded obtained no significant correlation 

between texture parameters and measured friction in general (Kogbara et al., 2018; Medeiros et 

al., 2021; Y. Wang et al., 2019). Research studies where the friction was evaluated without the 

water presence (D. Chen, 2020; Huyan et al., 2020) resulted in texture-friction prediction models 

with better performance in comparison to the ones including the effect of water.  

The surface friction data was collected by a pendulum device SRT, following the procedure 

defined in EN ISO 13036-4: Road and airfield surface characteristics – Test methods – Part 4: 

Method for measurement of slip/skid resistance of a surface: The pendulum test. For each surface, 

five consecutive measurements were performed and the corresponding surface SRT value was 

calculated as the mean of all five measurements. The measured area was marked so the texture 

data can be collected on the same surface. The size of the measured surface was 125 mm x 75 

mm, corresponding to the sliding length of the pendulum rubber and the rubber slider width 

(Figure 6.3). The area of the measured surfaces was approximately 100 cm2. The results of friction 

measurements are given in Table 6.1.  

a) b) 

Figure 6.3 Friction measurement assembly with SRT pendulum (a) and close-up of an example of measured 

pavement surface (b), 2023 

The measured SRT values range was from SRT = 68.4, determined for surface no. 3 located on 

straight road section to SRT = 103.2, determined for surface no. 17 located on parking area. All 

the measured values were higher than the threshold value of SRT ≥ 55 defined by Croatian 

national regulation for the corresponding road category (Tehnički propis za asfaltne kolnike, 

2021.). Such good frictional performance of measured surfaces could be due to the dry surface 

measurement conditions, as the SRT threshold value is defined for wet surface measurements. 

High friction performance on surfaces located on the parking was caused by a low rate of surface 

wear, since the area is not frequently utilized. 
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Table 6.1 Measured values of SRT on all investigated sites and mean calculated SRT values 

Surface no. 
Measured SRT [/] 

SRT_mean [/] 
SRT1 SRT2 SRT3 SRT4 SRT5 

1 84 85 85 85 86 85 

2 85 85 85 85 86 85.2 

3 66 68 68 70 70 68.4 

4 67 70 70 70 70 69.4 

5 80 79 80 80 80 79.8 

6 79 79 79 79 79 79 

7 78 78 78 77 77 77.6 

8 85 85 86 85 86 85.4 

9 80 82 81 80 80 80.6 

10 70 70 69 70 72 70.2 

11 83 84 85 84 83 83.8 

12 90 92 91 90 91 90.8 

13 93 94 94 94 93 93.6 

14 89 89 89 89 90 89.2 

15 89 90 91 90 90 90 

16 94 94 94 95 95 94.4 

17 104 103 103 103 103 103.2 

18 98 97 99 99 99 98.4 

19 90 91 92 92 92 91.4 

20 89 88 87 88 88 88 

 

6.1.2. Texture data collection and determination of surface texture parameters 

Texture data was collected and processed by applying the developed CROP methodology, 

elaborated in Chapter 5. The precision and accuracy of the digital surface model (DSM) were 

assured in the data collection procedure by using the created reference frame. The reference frame 

was positioned to cover the whole area of the marked surface previously measured by SRT. Each 

surface was captured by 25 consecutive and overlapping images, with two additional images of 

the upper and lower half of the reference frame for the improvement of the alignment procedure 

in the model creation process. An example of image acquisition setup is given in Figure 6.4. 

The acquired surface images were imported to Agisoft Metashape software to generate the 

corresponding 3D DSMs by semi-automatic procedure, where the input settings for the alignment 

procedure and model build-up were adopted from the established CROP method optimization 
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procedure. The resulting DSMs were exported as 3D mesh objects and further processed in Cloud 

Compare software.  

 

Figure 6.4 Texture data acquisition procedure by CROP methodology, 2023 

Each DPC was sectioned by profiles, with profile-to-profile distance set to 10 mm and section 

length of 100 mm, so the standard profile-based texture parameters MPD and ETD could be 

determined from the profiles for the later comparison with the non-standard texture parameters. 

The thickness of the DPC section from which the profiles were generated was set to be 0.01 mm, 

corresponding to the optimal thickness obtained in the previous analyses. In this way, the resulting 

profiles contained 7000 points on average and the horizontal resolution requirement equal to or 

less than the defined model precision of 0.01 mm was satisfied. For each surface, nine profiles 

with the previously defined section settings were generated. A total of 180 profiles was sectioned 

from all analyzed surfaces.  

Prior to the calculation of the profile-related texture parameters, the extracted profiles were pre-

processed by relative coordinates correction of the profile points so that each profile starts with a 

point (0, z0) and ends with (100, zn) for n profile points, where 0 and 100 are x-coordinate values 

and z0 and zn are corresponding heights in the first and the last profile point. The profile slope was 

suppressed by leveling the profile heights to a mean height value zmean. Afterwards, the corrected 

profiles were imported to Mountains Map software for profile data analysis. The profiles were 
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first filtered by a Gaussian S-filter with threshold value of 2.5 µm to remove noisy data irrelevant 

for texture properties analysis due to the DSM target accuracy of 0.01 mm. To remove any 

remaining profile slope resulting from the manual leveling procedure of the surfaces performed 

in Cloud Compare software, profiles were once again leveled to the horizontal plane. 

The calculation of the texture parameters was performed on primary profiles, with respect to the 

EN ISO 21920-2 Standard. In this way, neither micro- or macro-texture data was excluded from 

the profile’s performance analysis. The selected texture parameters are listed in Table 6.2. The 

parameters were evaluated with respect to the full profile length or the evaluation length le and 

the section lengths ls, which are basically segments of full profile length divided by the 

characteristic profile heights z(x). The division of evaluation length to section lengths is usually 

performed by profile peak heights, in a way that one section length contains two adjacent profile 

peaks and one pit. Some of the texture parameters were evaluated with respect to the profile 

elements, corresponding to the portions of profile between two consecutive points where profile 

height is equal to the mean profile height (if the mean height of the profile is zero, then the profile 

elements are defined as profile portions between two points with z = 0). They are described by 

their width in horizontal direction Xs and height in vertical direction Zt. A graphical representation 

of profile characteristic geometric features relevant for the calculation of texture parameters is 

presented in Figure 6.5. Traditional texture characterization parameters related to the profile 

features, MPD and ETD, were calculated manually according to EN ISO 13473-1 standard in 

Microsoft Excel software. 

 

Figure 6.5 Characteristic profile geometry dimensions: le is profile evaluation length, ls is n-th profile section 

length, Xs is profile element width and Zt is profile element height 
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Table 6.2. Profile-related texture parameters calculated for the surface properties analysis 

Profile texture 

parameter 
Description Calculation expression 

Pa – arithmetic mean 

height [mm] 

arithmetic mean of absolute ordinate values on the 

evaluation length le 
𝑃𝑎 =

1

𝑙𝑒

∫|𝑧(𝑥)|𝑑𝑥

𝑙𝑒

0

 

Pq – root mean 

square height [mm] 

Square root of the mean square of the ordinate values 

on the evaluation length le 
𝑃𝑞 = √

1

𝑙𝑒

∫ 𝑧2(𝑥)𝑑𝑥

𝑙𝑒

0

 

Pz – maximum 

height [mm] 

Mean value of the per section sum of largest peak 

height and pit depth for all section lengths 

𝑃𝑧 =
1

𝑛𝑠𝑐

∑(max (𝑧𝑝ℎ,𝑗)

𝑛𝑠𝑐

𝑛=1

+ max (𝑧𝑣𝑑,𝑘)) 

𝑗 ∈ 𝑁𝑝,𝑖 = {𝑗 = 1,2, … , 𝑛𝑝| (𝑖

− 1)𝑙𝑠𝑐 ≤ 𝑥𝑗

≤ 𝑖𝑙𝑠𝑐} 

𝑘 ∈ 𝑁𝑣,𝑖 = {𝑘 = 1,2, … , 𝑛𝑣| (𝑖

− 1)𝑙𝑠𝑐 ≤ 𝑥𝑘

≤ 𝑖𝑙𝑠𝑐} 

Pt – total height 

[mm] 

Sum of the largest height and largest depth on the 

evaluation length le 

𝑃𝑡 = max(𝑧(𝑥)) − min (𝑧(𝑥)) 

𝑥 ∈ 𝑋, 𝑋 =  {𝑥 ∈ 𝑅| 0 ≤ 𝑥 ≤ 𝑙𝑒} 

Ppt – maximum peak 

height [mm] 
Largest peak height of all section lengths ls 𝑃𝑝𝑡 = max(𝑧𝑝ℎ,𝑗), 𝑗 = 1, … , 𝑛𝑝 

Pvt - maximum pit 

depth [mm] 
Largest pit depth of all section lengths ls 𝑃𝑣𝑡 = max(𝑧𝑣𝑑,𝑗), 𝑗 = 1, … , 𝑛𝑝 

Psk - skewness 
Quotient of the mean cube value of the ordinate values 

and Pq cube value 
𝑃𝑠𝑘 =

1

𝑃𝑞
3

1

𝑙𝑒

∫ 𝑧3(𝑥)𝑑𝑥

𝑙𝑒

0

 

Pku - kurtosis 
Quotient of the mean quartic value of the ordinate 

values and fourth power Pq value 
𝑃𝑘𝑢 =

1

𝑃𝑞
4

1

𝑙𝑒

∫ 𝑧4(𝑥)𝑑𝑥

𝑙𝑒

0

 

Pc – mean profile 

element height [mm] 

Mean value of profile element heights Zt for a total 

number of profile elements (npe) 
𝑃𝑐 =

1

𝑛𝑝𝑒

∑ 𝑍𝑡,𝑖

𝑛𝑝𝑒

𝑖=1

 

Pcx – maximum 

profile element 

height [mm] 

Maximum value of profile element heights Zt for a 

total number of profile elements (npe) 
𝑃𝑐𝑥 = max 𝑍𝑡,𝑖  𝑖 = 1, … 𝑛𝑝𝑒 

Psm – mean profile 

element spacing 

[mm] 

Mean value of profile elements spacing (Xs) for a total 

number of profile elements (npe) 
𝑃𝑠𝑚 =

1

𝑛𝑝𝑒

∑ 𝑋𝑠,𝑖

𝑛𝑝𝑒

𝑖=1

 

Psmx – maximum 

profile element 

spacing [mm] 

Maximum profile elements spacing on the evaluation 

length 
𝑃𝑠𝑚𝑥 = max 𝑋𝑠,𝑖  𝑖 = 1, … 𝑛𝑝𝑒 

MPD – mean profile 

depth [mm] 

Average value of profile depth over a specified 

baseline (profile evaluation length) divided into two 

equal lengths, for which peak heights are determined 

(z1 and z2) 

𝑀𝑃𝐷 =  
𝑚𝑎𝑥 𝑧1 + 𝑚𝑎𝑥 𝑧2

2
− 𝑧𝑚𝑒𝑎𝑛  

ETD – estimated 

texture depth [mm] 

Estimation of texture depth from the calculated mean 

profile depth (MPD) 
ETD = 0.2 mm + 0.8 MPD 
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Besides the overall roughness parameters analysed in previous Chapter 5, some additional 

roughness parameters were selected for surface roughness description. Profile skewness Psk and 

steepness (kurtosis) Pku were selected as a measure of profile amplitudes distribution and profile 

flatness, respectively. They showed a strong negative correlation with the traditional texture 

indicator MPD in the analysis described in section 5.1. and they were selected to corroborate this 

relationship. Three new profile feature parameters were considered for the texture 

characterization: maximum height of profile elements Pcx and mean and maximum width of 

profile elements Psm and Psmx.  

The selected profile-related texture parameters were separated into two groups, following their 

physical meaning for the profile roughness characterization: overall roughness characteristic 

parameters and extreme roughness characteristic parameters. The first group contained the 

parameters calculated as mean values with respect to a certain profile feature – profile evaluation 

length, section length or profile element number. The second group consisted of profile-related 

parameters evaluated as a maximum or minimum value of the profile height or length feature. 

Therefore, profile-related parameters Pa, Pq, Pz, Psk, Pku, Psm and Pc were characterized as overall 

roughness parameters and parameters Pt, Ppt, Pvt, Psmx and Pcx were characterized as extreme 

roughness parameters. The traditional texture descriptors MPD and ETD were also categorized as 

overall roughness parameters, as they are evaluated as mean value on profile evaluation length. 

The selected texture parameters were calculated for all the extracted profiles and they were further 

used as the input data in the EDA procedure. 

6.2. Exploratory data analysis (EDA)  

The exploratory data analysis (EDA) was performed on mean values of measured friction 

performance and profile-related roughness parameters obtained by Microsoft Excel and 

Mountains Map software. The EDA was performed in XLStat software for statistical data analysis. 

6.2.1. Friction data analysis 

The mean values of measured friction performance for all the investigated surfaces was tested for 

normality by Shapiro-Wilk test (Mohd Razali & Bee Wah, 2011). The obtained p-value of 0.793 

indicated that the friction dataset follows a normal distribution, being significantly higher than the 

p-value significance of 0.05. The generated Q-Q normal probability plot and histogram of SRT 

values confirmed the normal distribution of the friction data (Figure 6.6). 



Ivana Ban: A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters 

154 

 

  

Figure 6.6 Q-Q normal probability plot (left) and histogram of SRT mean values (right) showing normal data 

distribution 

6.2.2. Profile-related texture data analysis  

The calculated profile-related texture parameters were first analyzed to investigate the relation 

between the non-standard texture parameters and texture performance descriptors used for the 

traditional evaluation of pavement surface friction performance. Afterwards, for each inspected 

surface corresponding profiles parameters were analyzed to define how to relate them to the 

surface texture performance. The analysis was oriented on the quantification of the parameters 

variability among the profile dataset describing a single surface, resulting in surface-related 

texture parameters used as input data in the process of friction prediction model development. 

Profile-related data analysis was performed on the entire texture dataset, consisting of 180 profiles 

extracted from the created digital surface models. The aim was to determine the texture data 

distribution type and the relationship between the texture parameters in general. The conclusions 

resulting from the profile data analysis were used as a guidance in the process of friction prediction 

model definition. 

The calculated profile-related texture parameters were analyzed by normality test to investigate 

the data distribution type. The performed Shapiro-Wilk test results showed that none of the 

parameters is distributed normally, therefore additional distribution testing was performed. The 

results are given in Table 6.3, where for each parameter the best fit data distribution is provided 

together with the obtained p-value indicating the significance and resulting histogram.  
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Table 6.3. Profile-related texture parameters distribution fitting. None of the parameters follows the normal 

distribution, most parameters are skewed to the left 

Texture 

parameter 

Shapiro-

Wilk p-

value 

Distribution 

fitting 

p-

value 
Histogram 

Pa <0.0001 Arcsine 1.000 

 

Pq <0.0001 Log-normal 0.385 

 

Pz <0.0001 
Fisher-

Tippett (2) 
0.866 

 

Pt <0.0001 Log-normal 0.500 

 

Ppt <0.0001 GEV 0.361 
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Pvt <0.0001 Log-normal 0.486 

 

Psk <0.0001 Beta4 0.173 

 

Pku <0.0001 Log-normal 0.007 

 

Pc <0.0001 Log-normal 0.928 

 

Pcx <0.0001 Log-normal 0.674 
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Psm <0.0001 
Fisher-

Tippett (2) 
0.570 

 

Psmx <0.0001 Chi-square 0.578 

 

MPD <0.0001 Log-normal 0.253 

 

ETD <0.0001 GEV 0.109 

 

 

The correlation test was performed to analyze the relation between the selected texture parameters. 

As the parameters showed to be non-normally distributed and therefore the condition for the 

Pearson's correlation test wasn't satisfied, a non-parametric Kendall's correlation test was 

performed (Akoglu, 2018). This test measures the strength of the monotonic relationship between 

the two variables, which is not necessarily linear. The test result can be evaluated the same way 

as the Pearson's correlation – the strength of the relation increases if the correlation coefficient is 

closer to +/-1, where positive sign indicates a positive relationship and negative sign shows a 

negative trend between the two confronted variables. No specific interpretation of Kendall's 

correlation coefficient strength was found in the literature for the analysis of the experimentally 

obtained data. In a review paper by Akoglu, 2018, a comparison of different correlation 
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coefficients strength was given where it can be seen that the interpretation of the obtained values 

varies for different disciplines (psychology, medicine and politics). Kendall's correlation test 

results could be compared to the Spearman's test results as both are non-parametric tests observing 

non-normal data. Authors Fredricks & Nelsen, 2007 investigated the relationship between these 

two statistics and found that the ratio between Pearson's and Kendall's correlation coefficients is 

approximately 3/2, meaning that the correlation strength observed by Kendall's test is stronger for 

lower obtained values of correlation coefficient. By considering the values provided by Akoglu, 

2018 and conclusions of the research by Fredricks and Nielsen, 2007, the threshold value for 

Kendall's correlation coefficient adopted in this analysis was set to be 0.4 for an indication of a 

moderate relationship between the observed parameters. The values of correlation coefficient 

above 0.6 were defined to be indicative of a strong relationship between the variables. The 

correlation analysis results are presented as matrices of Kendall’s correlation coefficients and p-

values, given in Table 6.4.  

The obtained results showed that all texture parameters correlate significantly, with exception of 

parameters Psk, Pku, Psm and Psmx. Profile skewness and kurtosis parameters Psk and Pku obtained 

weak and negative correlation coefficients with all the other parameters. The Psm and Psmx 

parameters describing profile characteristics in horizontal direction showed a weak connection to 

other parameters, with positive correlation coefficients below 0.3. The perfect correlation obtained 

for MPD and ETD parameters was expected as they are linearly related by an equation defined in 

EN ISO 13473-1. Therefore, ETD was excluded from the further analysis as it showed equal 

correlation coefficient values as the MPD parameter for all the non-standard parameters. 

 By comparing the correlation coefficients obtained for non-standard texture parameters versus 

traditional parameter MPD, it can be observed that the Ppt parameter representing the peak profile 

height obtained the best correlation with coefficient of 0.879 to MPD and Pvt parameter related to 

the peak valley depth had the weakest correlation to MPD with coefficient of 0.518. Other non-

standard parameters obtained a correlation coefficient with the MPD higher than 0.6. 
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Table 6.4. Kendall's correlation coefficient matrix for profile-related texture parameters. Values in bold are 

statistically significant with p-value below α= 0.05 

 
 

Pq Psk Pku Pt Ppt Pvt Pz Pa Psm Psmx Pc Pcx MPD 

Pq 1             

Psk -0.202 1            

Pku -0.198 -0.416 1           

Pt 0.827 -0.269 -0.055 1          

Ppt 0.674 0.043 -0.308 0.655 1         

Pvt 0.726 -0.403 0.047 0.837 0.495 1        

Pz 0.835 -0.174 -0.194 0.792 0.679 0.692 1       

Pa 0.932 -0.158 -0.261 0.769 0.684 0.673 0.818 1      

Psm 0.247 -0.198 0.098 0.268 0.176 0.292 0.168 0.225 1     

Psmx 0.190 -0.118 0.001 0.212 0.168 0.220 0.105 0.179 0.486 1    

Pc 0.834 -0.226 -0.152 0.802 0.634 0.735 0.817 0.808 0.300 0.186 1   

Pcx 0.792 -0.271 -0.057 0.840 0.604 0.789 0.753 0.742 0.259 0.227 0.787 1  

MPD 0.713 0.031 -0.319 0.670 0.879 0.518 0.722 0.728 0.173 0.135 0.673 0.620 1 

ETD 0.713 0.031 -0.319 0.670 0.879 0.518 0.722 0.728 0.173 0.135 0.673 0.620 1 

 

6.2.3. Surface – related texture parameters 

To relate the profile-related texture parameters to the measured surface friction performance, they 

had to be converted to surface-related parameters. The initial idea was to average the overall 

roughness profile-related parameters values and adopt the mean parameters values as surface-

related parameters. However, this procedure could be performed only if the surfaces were 

homogenous. The established criterion for the homogeneity classification of the surface was 

defined through the threshold value of a selected variability measure applied to the overall 

roughness profile parameter Pa in the following way. If all the profiles extracted from a single 

surface satisfied the defined variability measure threshold value for the surface-related parameter 

Pa, then the surface was classified as homogenous and the calculated mean values of the other 

overall roughness parameters Pq, Pz and Pc could be adopted as surface-related. The same rule was 

applied for the calculation of surface-related MPD and ETD texture indicators. The extreme 

roughness parameters Pt, Ppt, Pvt and Pcx were attributed to the corresponding surfaces as the 

extreme values from all the profiles belonging to the same surface, since the averaging could 

reduce the influence that extreme roughness parameters might have to the friction performance. 

The analyzed variability measure applied to Pa parameter values was the coefficient of variation 

(CV), also known as relative standard deviation - a unitless relative measure of variability, 
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indicating the ratio between the standard deviation σ and the mean value µ of a dataset (Botta-

Dukát, 2023), 

𝐶𝑉 =  
𝜎

𝜇
 

CV enables the comparison of the variability between multiple datasets, therefore it was selected 

as the most appropriate variability measure for the analysis of the homogeneity of the texture 

parameters. Since there exists no universal pre-defined threshold value for the CV, it was 

determined by analyzing the values obtained for the inspected surfaces (Jalilibal et al., 2021). The 

calculated CVs were tested for normal distribution by Shapiro-Wilk normality test. The obtained 

p-value of 0.212 was higher than the significance α = 0.05, thus confirming the normality of the 

CV dataset. A Q-Q normal probability plot for CV and descriptive statistics results are shown in 

Table 6.5.  

Table 6.5. CV (%) statistics for mean values of overall roughness parameter Pa determined for all observed 

surfaces 

Statistic CV [%] CV Q-Q normal probability plot 

Minimum 11% 

 

Maximum 27% 

Range 16% 

1st Quartile 15% 

Median 17% 

3rd Quartile 19% 

Mean 17.6% 

Standard deviation 4.5% 

 

The 3rd quartile value of the CV was estimated to 19% and it was set to be the threshold value for 

dataset homogeneity characterization. This means that if the variability between the calculated Pa 

values for each profile extracted from the same surface was equal to or less than 19%, the surface 

homogeneity condition was satisfied. Otherwise, the surface would be categorized as non-

homogenous and additional analysis would be required. Table 6.6 provides an overview of 

calculated mean values and coefficient of variation for profile parameter Pa for all analyzed 

surfaces. Five surfaces obtained CV higher than the established threshold value: surfaces P4, P6, 

P7, P15 and P20. These surfaces were further analyzed to investigate if there is a potential profile 

outlier in the dataset, and more importantly, could this outlier be excluded to obtain more 

homogenous profiles for the surface representation.  
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Table 6.6. Calculated Pa parameter mean values for all surfaces, corresponding CV (%) and surface classification 

according to the CV value 

Surface Pa, mean [mm] CV [%] Surface type 

P1 0.194 18% Homogenous 

P2 0.320 16% Homogenous 

P3 0.133 16% Homogenous 

P4 0.351 21% Non-homogenous 

P5 0.256 15% Homogenous 

P6 0.350 26% Non-homogenous 

P7 0.233 25% Non-homogenous 

P8 0.203 17% Homogenous 

P9 0.294 17% Homogenous 

P10 0.100 18% Homogenous 

P11 0.271 12% Homogenous 

P12 0.702 19% Homogenous 

P13 0.298 11% Homogenous 

P14 0.272 18% Homogenous 

P15 0.448 27% Non-homogenous 

P16 0.686 15% Homogenous 

P17 0.772 11% Homogenous 

P18 0.447 13% Homogenous 

P19 0.229 18% Homogenous 

P20 0.307 20% Non-homogenous 

 

Before the outlier tests were performed, the data distribution was inspected on the surfaces 

categorized as non-homogenous. The performed Shapiro-Wilk normality test showed that the Pa 

parameter is distributed normally when observed for a single surface with p-values higher than 

the significance α = 0.05 for all the inspected surfaces, therefore an outlier test applicable for 

normal data distribution could be exploited. For this purpose, a Z-score test was used as a measure 

of a single observation divergence from the mean value of the dataset from which it was extracted 

(Aggarwal et al., 2015). The test statistic is calculated by subtracting the actual data point value x 

from the sample X by the mean value of the dataset µX and dividing the result with the standard 

deviation of the dataset σX, 

𝑍 =
𝑋 − 𝜇𝑋

𝜎𝑋
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The threshold value for Z-score is determined by the interval where 95% of the observed values 

in a sample fall into and the rest 5% values are higher or lower than this interval. For normally 

distributed data, the 95% interval is defined with approximately 2 standard deviations from the 

mean, so the threshold value range for the Z-score can be calculated as 

𝑍𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑥 = 𝜇𝑋 ± 2 × 𝜎𝑋 

If the result was higher than the critical value of Z-score, it was considered to be an outlier. The 

results of Z-score test performed for all five non-homogenous surfaces showed that only surface 

P6 was found to have an outlier profile (Table 6.7). However, as the obtained CV for the P6 

surface was not the highest in the dataset and there were two other surfaces with similar CV values 

(P7 and P15), an additional custom outlier test was performed on the selected surfaces.  

Table 6.7. Z-score outlier test results for non-homogenous surfaces 

Surface Z-score test results Surface Z-score test results 

P4 

 

P6 

 

P7 

 

P15 

 

P20 
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For each non-homogenous surface, the minimum, maximum and mean Pa parameter values were 

calculated from the corresponding profiles. Afterwards, absolute differences between the mean 

value and minimum and maximum values were calculated and assigned to be an outlier detection 

method, where the profile having higher absolute difference was selected as a potential outlier. 

By calculating the absolute difference value for all non-homogenous surfaces, four of them 

obtained highest absolute difference for maximum profile parameter value and one surface 

obtained it for the minimum profile parameter value.  

The potential outlier profiles values of extreme roughness texture parameters were compared to 

the maximum values of these parameters obtained for the corresponding surfaces. If the potential 

outlier profile did not contain a maximum value of any of the extreme roughness parameters Pt, 

Ppt, Pvt and/or Pcx with respect to the maximum surface values, it was excluded as an outlier profile. 

On the contrary, if the observed profile was characterized by an extreme value, additional analysis 

was performed. This was done because excluding a profile with extreme roughness parameter 

could have an impact on the prediction model for friction performance if this parameter would be 

a part of the model. The selection criterion was based on the difference between the extreme 

roughness parameter value of the observed profile and the next highest parameter value in the 

surface dataset. The threshold value for the absolute difference was set to be 0.1 mm. If the 

absolute difference between the two peak roughness parameters was below 0.1 mm, this would 

confirm that the profile can be excluded as an outlier as it would not significantly affect the 

prediction of friction performance due to a very similar peak parameter value in the remaining 

dataset. If the difference was higher, this profile would not be excluded from the surface dataset. 

The surfaces P4 and P15 contained profiles that were finally excluded as the outliers since they 

did not contain any extreme value of the peak roughness parameters. The other three surfaces P6, 

P7 and P20 were additionally analyzed and classified since the selected outlier profile contained 

extreme values of observed parameters. The results of the performed outlier analysis are presented 

in Table 6.8. 

The additional outlier analysis showed that surfaces P7 and P20 do have an outlier profile with a 

significantly higher value of peak roughness parameter in comparison to the next highest 

parameter value obtained for another profile (Table 6.9). Therefore, they were not excluded and 

the surfaces were categorized as non-homogenous. For the surfaces whose profiles were excluded 

as the outliers from the dataset (P4, P6 and P15), the mean values of overall roughness parameters 

were re-calculated as the representation of a homogenous surface roughness feature. Surface P6 

obtained satisfactory value of CV after the threshold profile was excluded, while surfaces P4 and 
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P15 still scored CV higher than the established threshold value. Therefore, they were also 

categorized as a non-homogeneous surface. 

Table 6.8 Outlier profiles analysis by extreme roughness texture parameters 

Surface P4 P6 P7 P15 P20 

Pa, Min 0.237 0.224 0.142 0.305 0.189 

Pa, Max 0.472 0.553 0.338 0.657 0.389 

Pa, Mean 0.351 0.350 0.233 0.448 0.307 

abs difference 0.121 0.203 0.106 0.208 0.118 

Potential outlier profile p8 p9 p8 p1 p4 

Pt, profile 2.655 3.548 2.108 3.079 1.341 

Ppt, profile 0.865 0.905 0.654 1.335 0.611 

Pvt, profile 1.790 2.643 1.454 1.744 0.729 

Pcx, profile 2.655 3.548 2.108 2.694 1.163 

Pt max, surface 3.413 3.548 2.122 3.768 2.353 

Ppt max, surface 0.900 0.905 0.728 1.342 1.026 

Pvt max, surface 2.662 2.868 1.454 2.427 1.471 

Pcx max, surface 3.204 3.548 2.108 3.510 2.103 

outlier yes 

no-

additional 

analysis 

no-

additional 

analysis 

yes 

no-

additional 

analysis 

 

Table 6.9. Results of additional outlier analysis performed for non-homogenous surfaces 

Surface Category Pt [mm] Ppt [mm] Pvt [mm] Pcx [mm] 

P6 outlier profile extreme 

roughness parameter value 

3.548 0.905 2.643 3.548 

absolute difference with the 

next highest parameter value 

0.060 0.040 - 0.070 

P7 outlier profile extreme 

roughness parameter value 

2.108 0.654 1.454 2.108 

absolute difference with the 

next highest parameter value 

- - 0.030 0.120 

P20 outlier profile extreme 

roughness parameter value 

1.341 0.611 0.729 1.163 

absolute difference with the 

next highest parameter value 

0.140 0.030 - - 

 

The descriptive statistics results for the remaining overall roughness parameters Psk and Pku and 

Psm calculated for the surfaces showed a high variability of values in comparison to the other 

overall roughness parameters. The values range was significantly wider than for the other 

determined parameters, especially for the Psm and Pku parameters (Figure 6.7). It was concluded 
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that in general, the mean values of the profile-related parameters Psk, Pku and Psm could not be a 

genuine representation of the surface features. Therefore, they were excluded from the further 

analysis and the procedure of the friction prediction model establishment. Similarly, a comparison 

of mean range of values for the extreme roughness parameters pointed out that Psmx has a 

significantly wider range of values within a surface than the other extreme roughness parameters, 

therefore it would be difficult to determine the representative value for a surface. 

  

Figure 6.7 Range values for surface-related overall roughness parameters (left) and extreme rouighness 

parameters (right). 

The final surface-related parameters dataset included the mean values of the overall roughness 

parameters Pa, Pq, Pz and Pc and the maximum values of extreme roughness parameters Pt, Ppt, Pvt 

and Pcx calculated from the profiles extracted from the corresponding surfaces (Table 6.10). The 

standard texture descriptor MPD was also included in the surface dataset. The final surface texture 

parameters dataset was tested for distribution type (Table 6.11). Similar to the profile-related data 

distribution analysis, the obtained results showed that the surface-related parameters were also 

non-normally distributed. In comparison to the distribution type defined for profile-related 

parameters, it can be seen that not all of the parameters exhibit the same distribution type for their 

surface equivalents.  
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Table 6.10. Surface-related texture parameters: final dataset 

Surface SRTmean Pa Pq Pz Pc Pt Ppt Pvt Pcx MPD 

P1 85.0 0.194 0.269 1.044 0.843 2.950 0.805 2.145 2.572 0.564 

P2 85.2 0.320 0.424 1.454 1.149 2.896 0.871 2.181 2.684 0.709 

P3 68.4 0.133 0.171 0.665 0.466 1.324 0.472 0.928 1.102 0.354 

P4 69.4 0.336 0.461 1.347 1.248 3.413 0.900 2.662 3.204 0.596 

P5 79.8 0.256 0.325 1.103 0.852 2.392 0.820 1.710 2.118 0.606 

P6 79.0 0.325 0.449 1.542 1.268 3.485 0.864 2.868 3.478 0.560 

P7 77.6 0.233 0.298 0.942 0.748 2.122 0.729 1.454 2.108 0.539 

P8 85.4 0.203 0.262 0.861 0.644 2.150 0.879 1.654 1.564 0.546 

P9 80.6 0.294 0.374 1.195 0.952 2.342 0.923 1.623 2.258 0.7395 

P10 70.2 0.100 0.132 0.448 0.317 1.225 0.413 0.845 0.828 0.314 

P11 83.8 0.271 0.352 1.158 0.903 2.099 1.012 1.307 1.896 0.696 

P12 90.8 0.702 0.843 2.263 1.979 4.607 1.962 2.708 3.927 1.390 

P13 93.6 0.298 0.366 1.302 0.924 2.200 1.089 1.125 2.200 0.743 

P14 89.2 0.272 0.343 1.282 0.916 2.421 1.064 1.532 2.343 0.709 

P15 90.0 0.448 0.559 1.755 1.469 3.768 1.342 2.427 3.510 0.948 

P16 94.4 0.686 0.824 2.498 2.008 4.886 2.113 2.446 3.889 1.412 

P17 103.2 0.772 0.954 2.724 2.169 4.871 1.885 3.334 4.871 1.480 

P18 98.4 0.447 0.556 1.806 1.407 3.425 1.503 2.202 3.150 1.012 

P19 91.4 0.229 0.293 1.001 0.729 1.795 0.827 1.064 1.686 0.606 

P20 88.0 0.307 0.386 1.398 1.002 2.353 1.026 1.471 2.103 0.704 

 

Table 6.11. Surface-related parameters distribution for the final surface texture dataset 
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type 
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Pq Arcsine 

 

Pz Log-normal 

 

Pc Log-normal 

 

Pt Log-normal 

 

Ppt GEV 

 

0

20

40

60

0 0,5 1

D
e
n

si
ty

Pq

Histogram  (Pq)

0

0,5

1

1,5

0 1 2 3
D

e
n

si
ty

Pz

Histogram  (Pz)

0

0,5

1

1,5

0 0,5 1 1,5 2 2,5

D
e
n

si
ty

Pc

Histogram  (Pc)

0

0,2

0,4

0,6

0,8

1 2 3 4 5

D
e
n

si
ty

Pt

Histogram  (Pt)

0

0,5

1

1,5

2

0 1 2

D
e
n

si
ty

Ppt

Histogram  (Ppt)



Ivana Ban: A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters 

168 

 

Pvt 
GEV 

 

 

Pcx 
Gamma (2) 

 

 

6.2.4. Correlation analysis  

To investigate the correlation between the surface-related texture parameters and measured 

friction performance expressed in SRT values, scatter plots were generated for each pair of texture 

parameters and friction measurement (Figure 6.8). The ETD parameter was not observed as it 

showed a perfect linear relationship with the MPD, as was previously concluded. The scatterplots 

showed that there exists a monotonic and positive relationship between the measured friction 

performance and observed texture parameters. However, none of the scatterplots was indicative 

of a significant linear relationship between the observed variables. The range of obtained 

coefficients of determination for non-standard parameters related to SRT friction values was from 

R2 = 0.146 for parameter Pvt to R2 = 0.587 for Ppt parameter. 

Since the texture parameters showed to be non-normally distributed and there was no indication 

of a significant linear relationship, Kendall's correlation test was applied as a measure of the 

strength of the monotonic and non-linear relationship between the texture parameters and friction 

performance. The resulting Kendall's correlation coefficients matrix is given in Table 6.12. All 

the parameters showed statistical significance for the texture-friction correlation with p-values 

below 0.05 (marked bold), except the Pvt parameter. 
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Figure 6.8 Scatter plots for surface-related non-standard texture parameters versus measured friction performance 

expressed in SRT 

By comparing the obtained values of Kendall’s correlation coefficient to the previously 

established threshold values of moderate relationship of 0.4 and significant relationship of 0.6, it 

can be seen that, among the statistically significant variables, four non-standard texture parameters 

R² = 0,46

60

70

80

90

100

110

0 0,2 0,4 0,6 0,8 1

S
R

T
_

m
e
a

n

Pa

Pa

R² = 0,4394

60

70

80

90

100

110

0 0,5 1

S
R

T
_

m
e
a

n

Pq

Pq

R² = 0,5188

60

70

80

90

100

110

0 1 2 3

S
R

T
_

m
e
a

n

Pz

Pz

R² = 0,4136

60

70

80

90

100

110

0 1 2 3
S

R
T

_
m

e
a

n
Pc

Pc

R² = 0,3266

60

70

80

90

100

110

1 2 3 4 5

S
R

T
_

m
e
a

n

Pt

Pt

R² = 0,5874

60

70

80

90

100

110

0 1 2 3

S
R

T
_

m
e
a

n

Ppt

Ppt

R² = 0,1461

60

70

80

90

100

110

0 1 2 3 4

S
R

T
_

m
e
a

n

Pvt

Pvt

R² = 0,3391

60

70

80

90

100

110

0 2 4 6

S
R

T
_

m
e
a

n

Pcx

Pcx



Ivana Ban: A Model for Skid Resistance Prediction Based on Non-Standard Pavement Surface Texture Parameters 

170 

 

showed a moderate to strong correlation: Pa, Pz, Pc and Ppt. Three parameters were weakly 

correlated to the measured friction performance: Pq, Pt and Pcx. The highest correlation coefficient 

of 0.653 was observed for Ppt parameter, while the weakest strength was observed for Pt and Pcx 

parameters with correlation coefficient of 0.358. All the non-standard texture parameters showed 

to be significantly correlated to each other and to have at least a moderate correlation to the 

traditional MPD parameter, with the highest value obtained for Ppt parameter and lowest value for 

Pvt parameter.  

Table 6.12 Kendall's correlation coefficient matrix for surface-related texture parameters and friction. Values in 

bold are statistically significant. Values higher than 0.4 are indication of a moderate relationship and values 

higher than 0.6 are indication of a strong relationship 

 
Pq Pa Pz Pc Pt Ppt Pvt Pcx MPD SRT_mean 

Pq 1                   

Pa 0.968 1 
        

Pz 0.884 0.895 1 
       

Pc 0.947 0.937 0.937 1 
      

Pt 0.737 0.726 0.747 0.789 1 
     

Ppt 0.632 0.663 0.684 0.642 0.537 1 
    

Pvt 0.632 0.621 0.600 0.663 0.811 0.368 1 
   

Pcx 0.779 0.768 0.768 0.811 0.874 0.516 0.789 1 
  

MPD 0.684 0.695 0.758 0.716 0.547 0.800 0.442 0.589 1 
 

SRT_mean 0.389 0.421 0.484 0.421 0.358 0.653 0.232 0.358 0.663 1 

 

Traditional texture indicator MPD showed a moderate linear relationship with the SRT friction 

value with R2 = 0.592 and a significant correlation with Kendall's coefficient of 0.66. Therefore, 

a basic prediction model with MPD as an explanatory variable and SRT as the output was fitted 

with a linear regression (Figure 6.9). The selected goodness of fit statistics of the prediction model 

was root mean squared error (RMSE), representing the square root of average squared error 

between the measured values Yi and model output values Yi, hat for n number of observations, 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)2

𝑛

𝑖=1

 

The analysis of variance (ANOVA) and sum of squares analysis showed that the established basic 

prediction model was statistically significant with the obtained value of RMSE = 6.162 with 

obtained R2 value of 0.592.  
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Figure 6.9 Linear regression fit for traditional texture parameter MPD versus friction expressed as SRT 

The results of the correlation analysis highlighted four non-standard texture parameters that are 

statistically significant and have a moderate to strong relation to the friction performance: Pa, Pz, 

Pc and Ppt. These parameters will be accounted for in the pursuit for the friction prediction model 

development and the research hypotheses confirmation.  

6.3. Multiple linear regression (MLR) models 

The prediction model for friction performance investigated in this research was based on surface-

related non-standard texture parameters obtained from the DSM created by the established CROP 

methodology for texture data acquisition and analysis. EDA of texture properties evaluated 

through selected non-standard texture parameters showed some peculiarities of the texture dataset: 

- Non-standard parameters do not follow a normal distribution in the observed dataset  

- Non-standard parameters are significantly correlated to each other 

- Non-standard parameters are correlated to the standard texture descriptor MPD to a certain 

extent 

- Non-standard parameters show a positive monotonic and non-linear relationship with the 

measured friction performance in moderate to strong range of correlation coefficients 

values 

The listed properties were utilized as guidelines in the procedure of the prediction model 

establishment via regression analysis framework, as described in the following sections. First, a 

simple multiple linear regression (MLR) was used for the prediction model establishment showing 

better performance than the simple LR model with MPD as a single texture indicator. However, 

the obtained model statistics indicated the need of feature engineering (FE) procedures applied to 

the model input data to overcome the issues of MLR analysis framework. Several regression-
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based methods for the prediction model development were tested. The performance of each 

proposed model was evaluated by the selected error metric, root mean squared error (RMSE). The 

models were validated on a test dataset, selected as 25% of the whole dataset to derive the final 

conclusions about the models’ performance.  

6.3.1. Basic multiple linear regression (MLR) model 

The relationship between the texture parameters and friction performance was first investigated 

by using multiple linear regression (MLR) analysis. MLR is a statistical data analysis technique 

that utilizes more than one independent variable for the prediction of the single dependent variable 

(Permai & Tanty, 2018; Uyanık & Güler, 2013), formulated as 

𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝑒 

Where Y is dependent variable, bi are model parameters, Xi are independent variables and e is 

error term. 

Where Y is dependent variable, bi are model parameters, Xi are independent variables and e is 

error term. 

To perform the multiple regression analysis, the following assumptions of linear regression should 

be satisfied (Korstanje, 2021): independence of observations in the data collection process, usage 

of all relevant explanatory or independent variables, linear relationship between the independent 

and dependent variables, no multicollinearity in the independent variables dataset, normal 

distribution of the model residuals, constant error along the dependent variable values or 

homoscedascity and no correlation between the independent variables and the error term of the 

model.  

For the texture dataset investigated in this research, the first assumption was clearly satisfied, as 

the data was collected on different surfaces which had no mutual dependence. The texture 

parameters that showed statistical significance in the previously performed correlation analysis 

between the measured friction performance and texture dataset were selected for further analysis, 

therefore the second assumption was also satisfied. The linear relationship assumption was 

violated, since the texture parameters showed monotonic non-linear correlation with the friction, 

with coefficients of determination below 0.6 for linear regression plotted on scatterplots in Figure 

5.9. However, the dataset was subjected to multiple linear regression analysis to investigate if the 

combination of several non-standard texture parameters could yield a better prediction of friction 

performance.  
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The initial analysis was performed for the entire dataset, including all four selected non-standard 

texture parameters in the prediction model establishment. The model statistics showed that the 

lowest RMSE of the model was obtained when the parameter Pa was excluded as the independent 

variable. The resulting adjusted R2 for the model based on the remaining three parameters Pz, Pc 

and Ppt was 0.762. In comparison to the R2 obtained for the linear regression with MPD and SRT, 

this value was higher which indicated that the friction could be predicted better if more than one 

texture parameter was included in the model. The sum of squares analysis results pointed out the 

statistical insignificance of parameter Ppt in the model, with p-value higher than the defined 

significance level. Therefore, it was excluded as the independent variable and the model was 

redefined. The second iteration of the MLR model with the remaining parameters Pz and Pc as the 

independent variables resulted in slightly lower adjusted R2 of 0.720 and higher RMSE in 

comparison to the previous model (Table 6.13). 

Table 6.13. MLR models performance comparison 

Regression model 
Model 

parameters 
R2 (adjusted) RMSE [-] 

LR MPD 0.592 6.162 

MLR_V1 Pz, Pc, Ppt 0.762 4.581 

MLR_V2 Pz, Pc 0.720 4.970 

 

One of the assumptions of the MLR analysis is the absence of collinearity between the 

independent variables. The correlation analysis showed that the non-standard texture parameters 

are strongly related, which could affect the reliability of a prediction model if the collinear 

variables were used as explanatory variables. The most common multicollinearity detection 

statistic is the Variance Inflation Factor - VIF (Daoud, 2018). Even though no strict threshold 

value exists for the VIF indication of the multicollinearity, a general observation is that if VIF > 

10, there exists a strong correlation among the independent variables (Yoo et al., 2014). If the VIF 

is over the threshold value, it will cause the increase of standard errors of the independent variables 

and inflation of their variances. Multicollinearity causes unreliable prediction models due to the 

overlapping effect of the independent variables which are in fact, not independent. Therefore, it 

is hard to define what is the unique contribution of each independent variable to the response 

variable modelled by the prediction model.  The obtained VIF values for the prediction model 

with texture parameters that showed to be statistically significant were exceeding the defined 

threshold value, thus clearly indicating that there is a multicollinearity issue for the independent 

variables of the model (Table 6.14).  
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Table 6.14. VIF scores for 1st and 2nd iteration of MLR model 

MLR Model 
Model 

parameters 

VIF scores for explanatory variables 

Pz Pc Ppt 

V1 Pz, Pc, Ppt 60.581 65.305 15.243 

V2 Pz, Pc 47.653 n.a. 

 

The normality distribution of MLR model residuals was observed by performing Shapiro-Wilk 

test and generating Q-Q plot for the residuals. As the obtained p-value of the Shapiro-Wilk test 

was higher than the p-value of significance and Q-Q residual plot (Figure 6.10a) followed the 

straight line, both methods confirmed that the residuals were normally distributed, therefore this 

assumption was not violated. The homoscedascity assumption was checked by a scatter plot of 

standardized residuals versus model predictions (Figure 6.10b) showing no specific pattern, 

therefore there was no evident relationship between the residuals and the predictions and the 

homoscedascity could be confirmed. The assumption of absence of correlation of the independent 

variables with the error term of the model was checked by scatter plots of each independent 

variable versus model residuals (Figures 6.10c, d). There was no clear correlation evident in any 

of the scatter plots, therefore this assumption was also not violated. 

  

a) b) 

  

c) d) 

Figure 6.10 Confirmations of MLR assumptions: normally distributed residuals (a), homoscedascity (b), no 

correlation between explanatory variable Pz and residuals (c) and Pc and residuals (9d) 
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A summary of MLR analysis assumptions is presented in Table 6.15. Even though no significant 

linear relationship was observed in the correlation analysis between each texture parameter with 

the friction, a linear combination of more than one texture parameter explored in MLR resulted in 

an R2 value higher than the R2 values obtained for single texture parameter versus friction, 

including both standard and non-standard parameters. However, the MLR assumption of no 

collinear variables was violated, which compromises the reliability of the prediction model. 

Therefore, feature engineering (FE) procedures were performed to resolve the multicollinearity 

issue and continue the prediction model development in the regression framework analysis. 

Table 6.15. MLR assumptions overview and evaluation for the texture dataset 

MLR assumption Condition satisfied 

Data independence YES 

Relevance of explanatory variables YES 

Linear relationship between IV's and DV YES (to some extent) 

No multicollinearity in IV's NO 

Normally distributed residuals YES 

Homoscedascity YES 

No correlation between IV's and residuals YES 

 

6.3.2. Feature engineering (FE) procedures  

The multicollinearity problem has been studied in many scientific disciplines and there are several 

effects on the prediction model if the independent variables are correlated: increased standard 

error estimate, confidence intervals widening, increase of test insignificance, mixed effect of 

independent variables to the regression coefficients which causes wrong coefficients signs, 

instability of the defined models detected by a significant change of regression coefficient when 

the model input is slightly changed etc. (Yoo et al., 2014).   

To address the multicollinearity and improve the multiple linear regression model, there exists 

several solutions. The simplest approach would be to remove the highly correlated independent 

variables if they are not significant for the prediction model (Schreiber-Gregory, 2018). However, 

if all the independent variables are important and they provide different types of information 

relevant for the study objective, neither of them should be excluded from the prediction.  

Another possible solution for the multicollinearity issue is the usage of regularization methods, 

which generalize models by adding a penalty term to all the model coefficients except the intercept 

and constrain the coefficients estimates towards zero, thus significantly reducing their variance 

(James et al., 2021). Two most common regularization methods are LASSO (Least Absolute 
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Shrinkage and Selection Operator) regression or L1 and Ridge regression or L2 (Schreiber-

Gregory, 2018.).The difference between these two regularization techniques is that the LASSO 

regression tends to remove the coefficients for which the penalty term λ is too large and thus 

performs a variable selection procedure, where some of the important independent variables could 

be excluded from the model (Melkumova & Shatskikh, 2017). As most of the texture parameters 

showed to be statistically significant (Table 6.12), none of them was to be excluded apriori in the 

FE procedures, therefore LASSO regression was rejected as a possible approach. Ridge 

regression, on the other hand, doesn't remove any of the coefficients but reduces the variances of 

the coefficients estimates and therefore it is more appropriate for the multicollinearity issue where 

all the independent variables are significant for the prediction model (Schreiber-Gregory, 2018.). 

 In LASSO regression, the penalty term λ is introduced in the loss function defined by residual 

sum of squares (RSS) through the absolute value of the model coefficients bj, 

𝑅𝑆𝑆 = ∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 

In Ridge regression, the penalty term λ is introduced through a squared coefficient value bj
2 to 

the error function,   

𝑅𝑆𝑆 = ∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

where Yi is the actual value of the dependent variable, Xijβj is the predicted value of the dependent 

variable calculated from the independent variables Xij and corresponding coefficients βj. 

In Ridge regression, the magnitude of λ regularizes the reduction of the variance. If the value is 

too small (close to zero), there would be no difference between the loss function with and without 

the penalty term, which would converge to the standard form of MLR. On the other hand, if the 

value is too large, the penalty term might have too much influence on the model prediction and 

cause an under-fit issue. Therefore, it is important to adequately select the λ value to obtain the 

optimal fit of the prediction model. In Schreiber-Gregory, 2018. RMSE was selected as a metric 

for the optimization of penalty parameter. By introducing the penalty term in the residual sum of 

squares, the coefficients bj initially determined by the MLR exhibit a size constraint, which 

disables the high variance among them and consequently, eliminates the multicollinearity issue 

(Hastie et al., 2009).  
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Another solution for the multicollinearity issue could be by introducing the dimensionality 

reduction techniques, such as Principal Component Analysis (PCA) or Partial Least Squares 

(PLS) regression (Hastie et al., 2009). The key feature of such procedures is to remove the highly 

correlated independent variables by creating one or more composite variables from the original 

independent variables and use them in the prediction model (Maitra and Yan, 2008). In the PCA 

method, the independent variables are combined linearly into principal components, new 

predictors for the model definition which are not collinear and therefore, do not cause the 

multicollinearity problem (Gwelo, 2019). Each principal component is a result of transformation 

of the original independent variables matrix by spectral decomposition, which creates eigen values 

and corresponding eigen vectors. The number of resulting principal components is equal to the 

number of eigen values of the decomposed data matrix, where several first principal components 

describe the majority of the original independent variables variance, measured by the magnitude 

of the resulting eigen values (Maitra and Yan, 2008.). In this way, the problem dimension is 

reduced from the n number of original independent variables to k number of principal 

components, selected by the number of eigen values that dominantly describe the data variance 

(usually 90% or more). If the eigen value corresponding to a principal component is higher than 

1, this principal component is considered as significant for the further analysis and prediction 

model setup (Joshi & Patil, 2020). After the new set of independent variables is defined from the 

selected principal components satisfying the above-mentioned criterion, they are used for the 

definition of a new prediction model based on multiple regression analysis.  

The Partial Least Squares (PLS) method is addressed as a more efficient method for the 

dimensionality reduction in comparison to PCA method when it comes to multiple linear 

regression analysis with a number of highly correlated independent variables (Liu et al., 2022). 

PLS differs from the PCA method for considering not only the interaction of the independent 

variables with each other, but also their relationship with the dependent variable in the creation of 

the new composite variables. The goal of the PLS regression method is to find the linear 

combination of independent variable coefficients which would maximize the covariance between 

the predictors and dependent variable (Maitra & Yan, 2008). The new variables are called latent 

variables (LV) or components (t) and they are weighted by the coefficients which are iteratively 

calculated to obtain the maximum covariance. These variables weights (w) identify not only the 

importance of each original independent variable to the new LV, but also the contribution they 

have to the dependent variable, measured by the covariance magnitude. This is why PLS is found 

to be more appropriate than the PCA when the research aim is to find which combination of highly 

correlated independent variables best predicts the model output. The number of LV's is usually 
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lower than the number of original independent variables and they are not collinear, therefore the 

multicollinearity issue is resolved. The final model equation is defined with original independent 

variables weighted by the coefficients that resulted from the PLS regression algorithm, which 

iteratively maximizes the covariance between the predictors and the outcome variable. 

To address the multicollinearity issue in the initial MLR prediction model, the described FE 

procedures were applied to the same dataset used for the initial MLR analysis: four non-standard 

texture parameters as independent variables and one dependent variable, i.e. friction performance 

expressed in SRT. Every method was additionally optimized to obtain the best model 

performance. Prior to the model build-up, the independent variables were standardized (with µ = 

0 and Var = 1), since none of the applied methods was scale invariant. The analyses were 

performed in XLSTAT software (Addinsoft, 2023) for statistical analysis.  

Table 6.16 provides an overview of the prediction models established within the MLR framework 

as a result of different FE procedures which showed the best performance after the applied 

optimization procedures. For each observed regression model framework, a short comment in the 

last column of the table is given as an indication of performed optimization procedures, which are 

in detail described further in the text. The statistics of each final optimized model was obtained 

by dividing the dataset into training and validation set, where the validation set was chosen 

randomly from the total number of observations as 25% of the dataset.  

Table 6.16. An overview of optimized regression models’ performance statistics and comparison to the initial MLR 

prediction model 

Regression 

model 

Texture 

parameters 

(independent 

variables) 

Final model equation 
R2 

(adjusted) 
Comments 

MLR Pz, Pc 
SRT = 85.17 + 36.6094 Pz – 

30.3366 Pc 
0.720 Multicollinearity issue 

Ridge 

regression 
Pz, Ppt 

SRT = 83.928 + 3.762 Pz + 

2.899 Ppt 
0.768 

Outlier detection and 

optimization of penalty 

parameter λ 

PCA 

Regression 

PC1 (Pa, Pz, 

Pc, Ppt) 

SRT = 85.9865 + 1.670 Pa + 

1.672 Pz + 1.668 Pc + 1.533 Ppt 
0.617 

Outlier detection and 

optimization of principal 

components (PC) number 

in the model 

PLS 

regression 
Pz, Ppt 

SRT = 85.4377 + 3.9748 Pz + 

3.93478 Ppt 
0.784 

Outlier detection and 

optimization of number of 

explanatory variables in 

the model 
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6.3.2.1. Ridge regression  

Ridge regression was first applied to the entire dataset, including all four non-standard texture 

parameters as explanatory variables. As the goal of Ridge regression is to minimize the model 

coefficients and thus reduce their variance and multicollinearity, the penalty parameter λ has to 

be adequately selected. To avoid manual tuning of the λ value in search of its optimum, a k-fold 

cross validation method was applied (Hastie et al., 2009). In this method, a k number of equal 

folds is created and the dataset is equally divided in each of the created folds. For each k-fold, the 

rest of the folds is used as a training set of the model, and the error of the prediction model is 

calculated by comparing the predicted values with the values stored in that same k-fold. The 

selected number of folds k is typically 5 or 10, but it can be assigned differently. For Ridge 

regression applied to the whole dataset with k values equal to 5 and 10, the model statistics are 

provided in Table 6.17. It can be seen that the adjusted R2 value and RMSE value is lower when 

the penalty parameter is determined by 5-fold cross-validation.  

Table 6.17. Model statistics for Ridge regression with parameter λ optimized by k-fold cross-validation method 

k-fold cross 

validation 

Penalty 

parameter λ 
Adjusted R2 RMSE [-] 

k = 5 0.6873 0.684 4.741 

k = 10 0.5464 0.600 5.028 

 

The residuals of the superior resulting model were tested for outliers since their presence could 

affect the model’s performance. A Z-score test was applied because the residuals were normally 

distributed, with one detected outlier. After the outlier was removed from the dataset, another 

iteration of Ridge regression was performed (V1), resulting in improvement of the test statistics 

R2 and RMSE (Table 6.18). By observing the model coefficients, it can be seen that two of them 

obtained negative sign. This is not in coincidence with the results of initial correlation analysis, 

presented in section 6.2.4, where all the parameters showed a positive relation to the friction 

performance, regardless of the correlation strength (Figure 6.8). Therefore, Ridge regression was 

further optimized by excluding the parameters Pa and Pc as explanatory variables in the model, as 

they were related to negative model coefficients. The final Ridge regression model V2 showed an 

improvement in model statistics in comparison to the earlier iteration, with both positive 

coefficients associated with the parameters Pz and Ppt. 
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Table 6.18. Optimization of Ridge regression by removing the explanatory variables with negative sign of model 

parameters 

Ridge regression 

model version 

Penalty 

parameter 

λ 

Adjusted R2 Model equation 
RMSE [-] 

 

V1 0.68 0.694 
SRT = 86.358 – 1.107 Pa + 3.468 Pz 

– 1.207 Pc + 5.590 Ppt 
4.604 

V2 0.812 0.768 SRT = 83.928 + 3.762 Pz + 2.899 Ppt 4.442 

6.3.2.2. PCA regression  

Being a dimensionality reduction technique, PCA delivers new explanatory variables which can 

be used to fit a MLR prediction model. These new variables called principal components (PC) are 

derived as a linear combination of original variables, thus reducing the number of model 

parameters. All the PCs are orthogonal, which eliminates the multicollinearity problem. The 

number of PCs can be defined by cross-validation for a large number of generated PCs (Hastie et 

al., 2009) or by selecting only those PCs which explain the highest amount of variability (Lafi & 

Kaneene, 1992). The latter criterion was used in this analysis by exploring the cumulative 

variability of the calculated PCs and the eigen values determined for each PC. For eigen values 

close to zero, the corresponding PC could cause a collinearity issue in the prediction model, 

therefore it should be excluded from the model definition (Lafi and Kaneenee, 1992). 

The performed PCA results are presented in Table 6.19, where it can be seen that the first two 

PCs explain the most of the data variability, especially the PC1. The calculated eigen values 

indicate that the PC3 and PC4 should be excluded as they are almost equal to zero. Furthermore, 

the percent contribution of each original independent variable, i.e. texture parameter, showed that 

all four parameters contribute almost equally to the PC1, while parameter Ppt contributes 

significantly more to the PC2 in comparison to other three parameters.  

Table 6.19. Principal components analysis results for dimensionality reduction by selecting the explanatory 

variables with the most significant contribution to the “new” model inputs defined as principal components (PC’s) 

 PC1 PC2 PC3 PC4 

Eigen value 3.736 0.232 0.024 0.008 

Variability [%] 93.403 5.796 0.603 0.197 

Pa contribution [%] 26.033 5.744 53.127 15.066 

Pz contribution [%] 26.054 5.889 46.703 21.355 

Pc contribution [%] 25.969 10.661 0.168 63.201 

Ppt contribution [%] 21.944 77.676 0.002 0.378 
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By using calculated factor loadings for each original variable, the principal components PC1 and 

PC2 were defined and used as new explanatory variables in the MLR framework as 

𝑃𝐶1 = 0,986 𝑃𝑎 + 0,987 𝑃𝑧 + 0,985 𝑃𝑐 + 0,905 𝑃𝑝𝑡 

𝑃𝐶2 = −0,116 𝑃𝑎 − 0,117 𝑃𝑧 − 0,157 𝑃𝑐 + 0,424 𝑃𝑝𝑡 

The MLR model defined with PC1 and PC2 as independent variables was no longer having the 

multicollinearity issue, as VIF values were slightly higher than 1. The obtained model 

performance statistics are presented in Table 6.20. The final model equation was derived by 

subtracting the obtained model parameters with the factor loadings of the original independent 

variables used for the definition of the PCs. From the model equation, it can be seen that three 

parameters have a negative sign which is contradictory to the initial correlation analysis. 

Therefore, the second iteration of the PCA regression model was tested, where only the most 

influential PC was observed as the independent variable. This model was defined within the LR 

framework, having only one independent variable. 

The residuals for model versions V1 and V2 were tested for normality distribution and confirmed 

by Q-Q normal probability plots (Figure 6.11a, b). Z-score tests were performed to check if there 

are any outliers in the dataset (Figure 6.11c, d). For the first model version there was no Z-score 

exceeding the threshold value of 2 for normally distributed data, but for the model with only PC1 

as explanatory variable, an outlier occurred and another model iteration was performed, without 

the outlier. The final PCA regression model V2.1 showed to have better goodness of fit statistics 

in comparison to the previous two models and more importantly, the model parameters were not 

negative which was in coincidence with the physical meaning of texture parameters contribution 

to the friction performance. 

Table 6.20. PCA regression model optimization by analysis of model parameters values 

PCA 

regression 

model version 

Model 

variables 
VIF 

(Adjusted) 

R2 
Model equation 

RMSE 

[-] 

 

V1 PC1, PC2 1.040 0.569 
SRT = 85.170 – 1.217 Pa – 1.239 Pz 

– 2.186 Pc + 11.402 Ppt 

6.164 

 

V2 PC1 n.a. 0.503 
SRT = 85.17 + 1.679 Pa + 1.681 Pz + 

1.676 Pc + 1.541 Ppt 

6.798 

 

V2.1 PC1 n.a. 0.667 
SRT = 85.8609 + 1.8917 Pa + 1.8937 

Pz + 1.8898 Pc + 1.7363 Ppt 
5.757 
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a) b) 

c) 
d) 

Figure 6.11 Normal distribution of residuals confirmed by Q-Q plots for PCA regression models V1 (a) and V2 (b) 

and outlier test Z-score for PCA V1 (c) and PCA V2 (d) regression models 

6.3.2.3. PLS regression  

PLS regression is an alternative to PCA regression which also reduces the number of components 

or independent variables in the model, but unlike PCA which combines only the independent 

variables, PLS uses the power of correlation between the explanatory variables and the model 

outcome to optimize the model parameters (James et al., 2021). The PLS components are 

calculated by weighing the LR coefficients between each explanatory and dependent variable and 

assigning the highest weights to the first component. The next component is calculated by taking 

the residuals of the first model iteration and using them as weights for the next model iteration 

etc. The number of components is chosen similarly to the PCA components selection. The most 

common method for components selection is leave-one-out (LOO) cross-validation (James et al. 

2021). This method is similar to the k-fold cross-validation, with k number of folds equal to the 

number of observations n. The validation set contains only one observation (leave-one-out) and 

the model is fit to all the other observations. The test errors are calculated for each validation set 

and averaged as the cross-validation estimate of means squared error.  

PLS regression analysis was first performed for the whole dataset, resulting in one component 

which contained all four texture parameters characterized by Variable Importance in the 

Projection scores (VIP scores). These scores indicate the importance of each independent variable 
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in the definition of a PLS component, where VIP score > 1 represents a highly influential variable 

and VIP score < 0.8 indicates that the variable has no significant influence on the component 

build-up (Tran et al., 2014). Two of the parameters obtained VIP score > 1, Ppt and Pz and the 

other two parameters’ VIP score was also significantly high, just slightly below 1 (Figure 6.12). 

The model residuals were tested for normality and outliers, with Q-Q plot and Z-score results 

provided in Figure 6.13. It can be seen that the dataset contained one outlier which was removed 

for the second iteration of PLS regression model. The second version of PLS regression model 

showed improvements in the goodness of fit statistics and once again, Ppt and Pz parameters 

obtained VIP score > 1. To explore if the PLS regression model could obtain better performance, 

the final iteration was performed for these two parameters only. The obtained goodness of fit 

statistics was significantly improved when the PLS regression model was defined by the two 

parameters scoring VIP > 1. The obtained model statistics for all three PLS regression model 

iterations are presented in Table 6.21.     

 

Figure 6.12 VIP scores for parameters Pa, Pz, Pc and Ppt used for the creation of PLS regression component 

  

Figure 6.13 Normal probability Q-Q plot and Z-score test for the PLS regression model V1 
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Table 6.21. Summary statistics of PLS regression models optimized by number of explanatory variables in the PLS 

component based on VIP score and outlier test of model residuals 

PLS regression 

model version 

Model 

parameters 

Adjusted 

R2 
Model equation 

RMSE 

[-] 

 

V1 Pa, Pz, Pc, Ppt 0.510 
SRT = 85.17 + 1.6005 Pa + 1.6997 Pz + 

1.5177 Pc + 1.8086 Ppt 

6.571 

 

V2 Pa, Pz, Pc, Ppt 0.594 
SRT = 85.9813 + 1.5896 Pa + 1.6786 Pz 

+ 1.5778 Pc + 1.7203 Ppt 

5.646 

 

V3 Pz, Ppt 0.784 
SRT = 85.4377 + 3.9748 Pz + 3.93478 

Ppt 
4.412 

6.3.3. Multiple polynomial regression (MPR)  

Polynomial regression is a special case of linear regression, used for the description of a non-

linear relationship between the exploratory variables xi and the output variable yi, defined as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯ + 𝛽𝑛𝑥𝑖

𝑛 + 𝜖 

where bi are the model parameters, n is the polynomial degree and e is the error term (James et 

al., 2021). The nonlinearity stems from the definition of independent variables, which can be 

quadratic or higher order expansions of the original variables, or a combination of two (or more) 

variables obtained by multiplication, or any other non-linear function (Hastie et al., 2009). The 

coefficients of the independent variables remain linear and by redefining the original independent 

variables to a new set of independent variables, the model equation becomes linear again and can 

be explored in the MLR analysis framework. The independent variables of the MPR model should 

also satisfy the assumption of the absence of multicollinearity and the model errors should be 

homoscedastic and normally distributed (Ostertagová, 2012). 

The original independent variables can be transformed by means of a so-called basis function 

which can be of any form. The most common are the polynomial functions, logarithmic or power 

functions and nonlinear functions applied separately to non-overlapping regions of the original 

independent variable – piecewise-polynomials and splines (Hastie et al., 2009). The selection of 

the proper basis function mainly depends on the dataset characteristic and the nature of the 

problem to be solved. To address the goodness of fit of the selected function, the resulting 

prediction model can be evaluated by common fitting metric such as MSE.   

Polynomial regression requires the definition of a polynomial of n-th degree. The most common 

are 2nd and 3rd degree polynomials, since higher degree polynomials could cause data over-

fitting, especially for the limited dataset size (James et al., 2021). By over-fitting the model, the 

predictive performance decreases as it becomes hyper-sensitive to changes in the input dataset. 
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The number of independent variables exponentially increases with the increase of the polynomial 

degree, making the regression model more complex and less intuitive.  

To investigate the applicability of a polynomial regression for the establishment of a friction 

prediction model from selected texture parameters, a polynomial of the 2nd order was defined as 

a linear basis expansion function. To avoid the multicollinearity between the original independent 

variables, an alternative set of independent variables was used for the creation of the polynomial 

regression model, i.e. the principal components PC1 and PC2 defined earlier in the MLR 

optimization analysis. The polynomial equation defined for the regression model was 

𝑆𝑅𝑇 = 𝛽0 + 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶1
2 + 𝛽3𝑃𝐶2 + 𝛽4𝑃𝐶2

2 + 𝛽5𝑃𝐶1𝑃𝐶2 + 𝜖 

with six bi, i = 0, …, 5 model parameters. For a higher 3rd degree polynomial, the equation would 

have ten parameters which would significantly increase the complexity of a model.  

As for the models observed in the linear regression framework, the normality distribution and 

outlier tests were performed for the residuals, showing there is one outlier observation (Figure 

6.14). By removing the outlier and performing the MPR analysis on the updated dataset, the 

model’s goodness of fit statistics increased (Table 6.22). The statistics of the final version of MPR 

model were obtained for the dataset divided into training and validation set, following the same 

rule as for the previously tested models in MLR framework. 

  

Figure 6.14 Normal probability plot for MPR model residuals and Z-score test of outliers, showing one outlier in 

the dataset 

Table 6.22. Resulting error metrics for the MPR model iterations: V1 is the model containing the outlier detected 

with the Z-score test, V2 is the model without the outlier in the dataset 

MPR model version RMSE [-] 

V1 4.830 

V2 3.038 
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The final equation of the MPR model is defined as 

SRT = 87.7987 + 1.7916 PC1 – 0.2636 PC12 + 29.6636 PC2 + 14.0581 PC22 +0.3410 PC1 PC2 

If the principal components were expressed as original independent variables, i.e. texture 

parameters Pa, Pz, Pc and Ppt, the model equation would be 

SRT = 87.7987 – 1.6745 Pa – 1.7023 Pz – 2.8925 Pc + 14.1988 Ppt -0.1061 Pa
2 -0.1037 Pz

2 + 

0.0380 Pc
2 + 2.4423 Ppt

2 – 0.1051 Pa Pz – 0.0528 Pa Pc – 0.7841 Pa Ppt -0.0509 Pz Pc – 0.7901 Pz 

Ppt – 1.0284 Pc Ppt 

6.4. Discussion  

The optimization of different models by feature engineering procedures resulted in four multiple 

linear regression models and one multiple polynomial regression model. To address the 

performance of all the optimized prediction models developed in the regression framework, the 

models were evaluated by the resulting error metric root mean squared error (RMSE), 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖,𝑝𝑟𝑒𝑑)

2
𝑛

𝑖=1

 

where yi is the observed value, yi, pred is the value obtained by the prediction model and n is the 

number of observations. 

This error metric is evaluated from the mean squared error (MSE), which squares the residuals of 

the prediction model and provides an average value for the tested dataset. MSE is therefore 

expressed in the squared unit of the model outcome, which may be difficult to interpret (Trevisan, 

2022). Therefore, the square root value of MSE, the RMSE metric, provides the error measure in 

the same units as the value predicted by the model and it is more intuitive for the model error 

estimation. An alternative error metric would be the mean absolute error (MAE), which measures 

the absolute distance between the observed values and the predicted values, 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖,𝑝𝑟𝑒𝑑|

𝑛

𝑖=1

 

By comparing the formulae for RMSE and MAE it can be concluded that RMSE squares the 

distance between the actual and predicted value, giving more weight to larger distances, i.e. 

potential outliers. MAE assigns the same weight to all error terms by observing their absolute 

values and thus it is less sensitive to the outliers (Chai & Draxler, 2014). RMSE is more suitable 
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for normally distributed errors, which is one of the linear regression assumptions followed in this 

research. On the other hands, MAE is more suitable if the errors are uniformly distributed.  

Therefore, the RMSE was selected as more robust and reliable error evaluation method.  

The resulting error metric RMSE evaluated on the optimized prediction models with dataset 

division into training and validation set by following the rule 75/25 is given in a model summary 

Table 6.23. It can be seen that the smallest value of error metric was obtained for MPR regression 

model, RMSE = 3.038 and the highest RMSE = 5.757 was obtained for the PCA regression model. 

Ridge regression and PLS regression obtained similar RMSE values, with prediction models 

accounting for two texture parameters. 

Table 6.23. A summary of the models’ error metric RMSE, model input variables and the resulting model equations 

observed in the optimized MLR framework 

Regression 

model 

Non-standard texture 

parameters 

(explanatory variables) 

Model equation 

RMSE (with 

validation 

dataset) [-] 

Ridge 

Maximum height (Pz) 

Maximum peak profile 

height (Ppt) 

SRT = 83.928 + 3.762 Pz + 2.899 Ppt 4.442 

PCA 

Arithmetic mean height 

(Pa) 

Maximum height (Pz) 

Mean profile element 

height (Pc) 

Maximum peak profile 

height (Ppt) 

SRT = 85.8609 + 1.8917 Pa + 1.8937 Pz + 1.8898 

Pc + 1.7363 Ppt 
5.757 

PLS 

Maximum height (Pz) 

Maximum peak profile 

height (Ppt) 

SRT = 85.4377 + 3.9748 Pz + 3.93478 Ppt 4.412 

MPR 

Arithmetic mean height 

(Pa) 

Maximum height (Pz) 

Mean profile element 

height (Pc) 

Maximum peak profile 

height (Ppt) 

SRT = 87.7987 – 1.6745 Pa – 1.7023 Pz – 2.8925 

Pc + 14.1988 Ppt – 0.1061 Pa
2 -0.1037 Pz

2 + 0.0380 

Pc
2 + 2.4423 Ppt

2 – 0.1051 Pa Pz – 0.0528 Pa Pc – 

0.7841 Pa Ppt -0.0509 Pz Pc – 0.7901 Pz Ppt – 1.0284 

Pc Ppt 

3.038 

 

By comparing the Ridge, PCA and PLS regression models it can be seen that the PLS model 

obtained the smallest error metric RMSE. The result coincides with the fact that the PLS 

regression accounts for the relationship between both independent and dependent variables and 

finds the model parameters by selecting the most significant component, which is iteratively 

calculated from the combination of the most weighted correlation coefficients between the 

independent variables and dependent variable. PCA regression obtained the smallest value of R2 

and highest RMSE for the prediction model, which was not surprising since the principal 
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components created by PCA and used for the MLR/LR model establishment do not account for 

the relationship between the dependent variable with the independent variables. The optimized 

Ridge regression model was defined with two parameters, Pz and Ppt. The other two parameters 

were associated with negative model coefficients, which is contradictory to the initial observations 

of the texture-friction relationship given in Figure 5.9. This is another advantage of PLS 

regression, which resulted in all positive model parameters in the second iteration, where all the 

independent variables were accounted for regardless of the VIP score.  

Despite the fact that the MPR model scored the lowest value of error metric, it is the most complex 

model with fourteen (14) predictors defined by a single texture parameter, squared texture 

parameter or a multiplication of two different texture parameters. By analyzing the MPR model 

coefficients it can be seen that some of them are relatively small in comparison to the others, for 

example the parameter associated with the squared value of Pc equal to 0.038 or the parameters 

corresponding to Pa Pc equal to 0.0528 and Pz Pc equal to 0.059. Removing the independent 

variables associated to the model parameters with smaller values would reduce the model 

complexity, but it could also impact the model’s predictive strength. Further optimization of the 

MPR model wasn’t performed in this research. 

When a prediction model is established from the experimental observations, not only model 

statistics but also the physical meaning of model parameters should be observed for the selection 

of an optimal prediction model (Ahammed & Tighe, 2008). Therefore, the PLS regression model 

with two parameters Pz and Ppt can be adopted as the optimal model for prediction of friction 

performance based on the non-standard texture parameters. In comparison to the model statistics 

of the initial simple linear regression model for friction performance prediction based on the 

traditional texture parameter MPD, the PLS regression model performed better with the RMSE = 

4.412 and adjusted R2 = 0.784 (Table 6.24).  

Table 6.24. Comparison of models’ performance: initial linear regression model with MPD as explanatory variable 

and optimized PLS regression model with two non-standard texture parameters as explanatory variables 

Model 
Model 

Parameters 
R2 (adjusted) RMSE [-] 

LR MPD 0.592 6.162 

PLS regression Pz, Ppt 0.784 4.412 

6.5. Machine learning methods for friction prediction model development  

The friction performance prediction models investigated in the previous section rely on the 

assumptions of the linear regression framework. The original texture data collected by the CROP 
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methodology had to be adjusted by feature engineering procedures so it could satisfy the LR 

assumptions and become suitable for the selected analysis framework. Some of the advantages of 

the LR framework are its simplicity in model establishment and interpretation and good 

performance even for the limited dataset size (Hastie et al., 2009). The LR framework best 

describes the dataset in which independent variables are linearly correlated to the dependent 

variable. It is a parametric method, which means that the prediction model is defined by a function 

f(X) which is assumed to be linear. The function is defined by the parameters β and the goal of 

LR is to find the parameters values in a way that the prediction error is minimized (James et al., 

2021). For parametric methods, the data distribution is assumed prior to the definition of 

prediction model. In case of linearity assumption, the input data should be normally distributed, 

as well as the errors of the model. The EDA of the original texture dataset described in section 

6.2. had to be performed to investigate the appropriateness of the dataset for the LR framework. 

The adjustments of the original data were done by FE procedures, resulting in exclusion of some 

input variables as they did not satisfy the LR framework assumptions, even though they might 

contribute significantly to the prediction of the outcome and thus improve the prediction model 

performance.  

An alternative way to establish the prediction model without the prior assumption of its functional 

form or data distribution type would be by applying the non-parametric methods (James et al., 

2021). These methods do not assume any specific function for which the dataset is fitted, but seek 

for the closest estimate of a fit function in a wide range of functional shapes. The result is a flexible 

but complex function with many model parameters. However, the flexibility of non-parametric 

methods for prediction model establishment might result in data overfitting in case where the 

dataset has a limited size because the prediction model function could also account for outliers 

and noise in the dataset. 

The results obtained via the LR framework showed that the friction performance can be predicted 

from the selected texture parameters to a certain extent. However, the true relationship between 

the texture parameters and the friction performance is showed to be non-linear. This is why some 

additional non-parametric methods for prediction model establishment were investigated in this 

research as a potential improvement of the prediction model. 

Prediction models developed by non-parametric generalized additive models (GAM) are an 

extension of the multiple polynomial regression explored in section 6.3.3. The non-linear 

relationship between each explanatory variable and the model outcome can be defined with a 

smooth and non-parametric function and the contribution of each defined function is added 
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together for an overall model performance evaluation (James et al., 2021). The selection of a 

function which describes the relationship between the explanatory variable and the response is 

done by the scatterplot smoother, which is any smooth function that fits the dataset the best and 

minimizes the error term of the model (Hastie et al., 2009).  GAM does not require the FE of the 

model input data to extract or adapt the predictors to satisfy some characteristic conditions, as for 

the parametric methods explored in previous sections. However, in case when there is many 

predictor variables in the model, the additivity of the GAM approach might result in a very 

complex and non-intuitive model and some more important relations could be lost among the 

others. Alternatively, the predictors could be manually selected, but this would again require FE 

procedures which would reduce the flexibility of the GAM approach (Hastie et al., 2009). 

To preserve the flexibility of non-parametric methods for prediction model establishment, 

machine learning (ML) algorithms are used as the so-called “off-the-shelf methods”, where no 

significant EDA or FE has to be done on the original dataset prior to the model setup (Hastie et 

al., 2009). ML algorithms are supervised learning methods, building a prediction model from 

explanatory variables and the model outcome as the model input data (Cano-Ortiz et al., 2022). 

ML uses statistics theory to develop prediction models with the main goal to make an inference 

from a given data sample (Alpaydin, 2014). The goal of ML algorithm is to provide the 

generalization of an observed problem based on the input dataset by optimizing the model 

parameters and provide a reliable model estimates (Marcelino et al., 2017). In ML methods, model 

parameters are called hyper-parameters and they are defined prior to the model setup. Each ML 

algorithm has a set of specific hyper-parameters and their definition largely affects the model 

performance. Therefore, hyper-parameters are iteratively adjusted or tuned to provide the ML 

model with the most reliable model estimates. The hyper-parameter tuning procedure is performed 

by different cross-validation strategies, again depending on the ML algorithm used for the 

prediction model establishment. 

ML algorithms learn from the input data through a knowledge extraction procedure, where a rule 

(or a model) is learnt based on the properties of the model input dataset (Alpaydin, 2014). 

Therefore, larger dataset will enable the algorithm more examples of different behavior and 

consequently result with more reliable prediction model (Pruksawan et al., 2019). In case when 

the data collected in experimental research is limited in size, the prediction models based on a ML 

algorithm might be more susceptible to errors and fail to produce reliable estimators.  

The applicability of ML for the development of a friction performance prediction model was 

tested by two different algorithms: Support Vector Machine (SVM) regression and Random 
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Forest (RF) regression. The SVM algorithm was developed and introduced in 1992 by authors 

Boser, Guyon and Vapnik as a classification method based on kernels, smoothing functions which 

separate (classify) the data and further extended to the regression problems applicable for a limited 

dataset size (Rivas-Perea et al., 2013). The applicability of this ML algorithm to a small dataset 

and the similarity to linear regression principle were the main motivation for its selection in this 

research.  

The RF regression is an ensemble ML algorithm which combines many decision trees, which are 

a set of hierarchically organized conditions applied successively from the root to the leaf of each 

tree element (Gupta et al., 2022). The decision trees are built from a random subset of data and 

features evaluated by the defined conditions by bootstrapping method. Bootstrapping is a specific 

statistical-based method where a random subset of the original dataset is selected and extracted, 

but also simultaneously replaced in the original dataset. In this way, multiple random datasets are 

created for the model training, increasing its robustness. Another RF characteristic is selection of 

random feature subset for each decision tree. This means that each decision tree is regressed by 

different selected dataset features, which reduces the correlation between the decision trees and 

improves the model performance. In RF regression algorithm, the final model prediction is 

derived as an average of the predictions made by decision trees constructed in the forest.  

Additionally, the RF algorithm provides the variable importance measurements in the context of 

the contribution strength of each explanatory variable to the model outcome (Zhan et al., 2021). 

This approach is similar to the PLS regression VIP scores, observed in the LR framework. RF 

algorithm was selected for several reasons. It was found to be suitable for a small sample size 

problem due to the bootstrapping method for the creation and randomization of a training dataset. 

The RF property of randomization of the model features is useful for the problems with collinear 

input variables present in this research. Finally, the result of RF algorithm could be compared to 

the PLS regression results in the evaluation of the contribution of each texture parameter to the 

friction performance. 

The feasibility of the ML algorithms application for the prediction of pavement frictional 

performance stems from the complexity and non-linearity of friction phenomenon, dependent on 

many versatile influential factors. In the last few years, different ML algorithms were utilized for 

the prediction of friction performance with some examples given in Table 6.25. However, the 

usage of ML methods for pavement performance prediction and monitoring is still relatively new 

and there is still no wide application in the pavement management (Cano-Ortiz et al., 2022). 
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Table 6.25. An overview of ML algorithms, dataset properties and results utilized for the establishment of a friction 

performance prediction model 

Authors 
ML 

algorithms 
Model input data Dataset size Results 

Panahandeh 

et al., 2017 

 

SVM 

(classification), 

Artificial 

Neural 

Network 

(classification) 

Measured friction data 

(historical), Climatic conditions 

9281 friction 

measurements 

(from 

November 2015 

to October 

2016) 

Friction performance 

is evaluated through a 

classification to 

slippery or non-

slippery based on the 

predicted friction 

coefficient, the ANN 

algorithm provides 

more stable results for 

a variety of conditions 

Yang et al., 

2018 

 

Convolutional 

Neural 

Network 

(CNN) 

Raw macro-texture profiles 

504 000 pairs of 

texture and 

friction data 

Obtained model 

accuracy was 96.85% 

for training dataset, 

88.92% for validation 

dataset and 88.37% for 

test set for the 

prediction of friction 

levels 

Zhan et al., 

2020 

 

Deep Residual 

Network DNN 

for 

classification 

2D spectrograms of texture data 

obtained by FFT of profile data 

and corresponding friction 

measure 

33 600 texture 

profiles paired 

to the friction 

measurements 

Classification 

accuracy of 91.3% for 

the predicted friction 

level from the DNN 

based on texture 

spectrogram data 

 

Zhan et al., 

2021 

 

RF 

14 parameters grouped into 

Aggregate type, Traffic load 

(AADT), Pavement condition and 

Climatic conditions variable 

groups 

179 datasets 

containing 

relevant 

parameters 

Obtained value of 

R2=0.79 for friction 

prediction model, 

variable importance 

analysis pointed out 

the most influential 

properties of 

aggregates for the 

friction performance 

Hu et al., 

2022 

 

Light Gradient 

Boosting 

Machine 

algorithm 

(tree-based) 

10 macro-texture parameters 

extracted from two types of 

asphalt mixture specimens with 

different gradation (AC and 

OGFC) 

200 groups of 

texture dataset 

Obtained R2 = 0.98 for 

training set and R2 = 

0.93 for test set when 

predicting pavement 

friction by LightGBM 

method; in 

comparison to other 

ML algorithms (RF, 

SVR and XGboost) 

the proposed 

algorithm had superior 

performance 

 

 6.5.1. Application of Support Vector Regression (SVR) algorithm  

SVR algorithm is an adjustment of the original SVM algorithm developed for binary classification 

problems to the prediction of numerical outputs (Rodríguez-Pérez & Bajorath, 2022).  The 

quantitative predictions of SVR model are derived by projecting the training dataset into a pre-

defined feature space. Afterwards, a regression function is fitted to the projected data as a linear 
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hyper-plane. If the input data is non-linear, the SVR algorithm applies additional transformations 

of the original input variables to account for the non-linearity in the dataset and thus maps them 

in a higher-dimension feature space where linear regression could be applicable. The 

transformation of original variables to higher-dimension feature spaces is done by kernel 

functions. A so-called “kernel trick” has a dominant effect when SVR is used for the prediction 

model establishment. When it is not possible to obtain a linear model for the data in a given input 

space X, the “kernel trick” maps the data to a higher-dimension space H where linear model could 

be possible. The most used kernel functions are linear kernel, polynomial kernel, Gaussian and 

RBF kernel (James et al., 2021; Rodriguez-Perez and Bajorath, 2022).  

To address the errors in the SVR algorithm, a so-called ε-insensitive tube is defined as a 

penalization criterion, where all data values falling outside the ε –tube are the support vectors. 

SVR regression function is of a form 

𝑦 = < 𝑤, 𝑥 >  +𝑏 

where y is the prediction, x is the input data vector, w is the weight vector and b is the bias (Figure 

6.15). The width of the ε –tube has to be selected by specifying the distance from the hyperplane 

defined by the SVR function in a way that all the predictions falling outside the defined width are 

penalized and categorized as support vectors. This is why ε –tube width is an important hyper-

parameter of the SVR algorithm. 

 

Figure 6.15 SVR with linear kernel and ε -tube width, all datapoints outside the ε -tube width are support vectors 

(Rodriguez-Perez and Bajorath, 2022) 

Another important hyper-parameter is the regularization parameter C, which controls the 

relaxation of margin maximization and thus balances model performance by accounting for 

complexity and accuracy (Rodriguez-Perez and Bajorath, 2022). In general, any value of C from 

0.001 to 1000 can be selected for the SVR algorithm, where a large C value might lead to 
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overfitting by a complex model and a small C value could cause model under-fit and low 

complexity. The value of hyper-parameter C is usually optimized by cross-validation methods. 

The performance of SVR algorithm for the development of a friction prediction model was tested 

by defining the input dataset, model hyper-parameters ε and C and linear kernel function. Since 

the ML algorithms are in general non-parametric methods, the dataset contained all calculated 

texture parameters regardless of the previous EDA results and performed FE procedures. The 

dataset was divided to training and validation set, following the 75/25 rule as for the linear 

regression framework. The optimization of the SVR algorithm was performed by k-fold cross 

validation with k = 5 folds. The selection of an optimal model was performed by comparison of 

the resulting error metric RMSE and accuracy expressed in percentage obtained for training and 

validation set for different values of hyper-parameters. The data analysis by SVR ML algorithm 

was performed in XLStat software. The obtained results are presented in Table 6.26. 

 

Table 6.26. SVR algorithm hyper-parameters optimization and the resulting statistics of the friction prediction 

model 

SVR 

algorithm 

C hyper-

parameter 

ε-tube 

hyper-

parameter 

Accuracy 

training 

set 

RMSE 

training 

set [-] 

Accuracy 

validation 

set 

RMSE 

validation 

set [-] 

SVR_auto 1 0.1 65.2 % 5.3136 55.5 % 5.7030 

SVR_V1 0.1 0.1 38.0 % 6.5534 50.5 % 7.8754 

SVR_V2 100 0.1 85.5 % 3.2373 60.5 % 6.5586 

SVR_V3 200 0.1 86.4 % 3.0508 51.1 % 7.8332 

SVR_V4 250 0.1 85.5 % 3.5488 76.3 % 4.0728 

SVR_V5 300 0.1 88.8 % 3.0732 33.8 % 9.2353 

SVR_V6 250 1 47.4 % 5.9165 79.9 % 5.1248 

SVR_V7 250 0.01 89.4 % 3.2938 34.6 % 5.9028 

SVR_V8 250 0.001 85.6 % 3.5058 57.0 % 4.3996 

 

The first iteration was performed for generic values of hyper-parameters C and ε selected in the 

data analysis software. From the Table 25 it can be seen that the model obtained better accuracy 

for a larger value of C hyper-parameter in comparison to the initial value for both training and 

validation dataset. The RMSE value decreased for both datasets if the C hyper-parameter was 

larger than the selected initial value. Further optimization of C hyper-parameter resulted in the 

best model performance for C = 250.  

The tuning of hyper-parameter ε was performed for the optimal value of hyper-parameter C = 

250. By selecting different ε values, the model performance metrics showed that the optimal value 
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of ε-tube width is 0.1, for which the validation set observed the smallest RMSE error metric and 

the obtained accuracy is slightly lower than for the next iteration. 

 6.5.2. Application of Random Forest (RF) regression algorithm  

The RF algorithm is based on the bootstrap aggregation or bagging, which is a reduction technique 

for handling variance of the estimated prediction function (Hastie et al., 2009). The algorithm 

seeks for the variance reduction by random selection of input variables in the tree-growing 

process, which contributes to the reduction of the correlation between them. Random forest 

consists of a specified number of decision trees, holding noisy and complex data interaction 

structures (Figure 6.16). Each regression tree is fitted to each bootstrap sample, which is randomly 

selected from the original training dataset and replaced (Segura et al., 2022). The regression tree 

grows by binary partitioning of the input variables randomly selected from the overall dataset, 

with defined decision criterion. Usually, it is defined through the minimization of residual sum of 

square (RSS) of the resulting tree. The partition process is repeated for the next small set of input 

variables and the data is further split in an iterative procedure which is limited by the RSS 

threshold or by a limited number of trees, maximum depth of each tree in the forest or other 

stopping condition (James et al., 2021). 

 

Figure 6.16 RF regression algorithm- a schematic diagram (Segura et al., 2022) 

There are two important hyper-parameters for the RF algorithm: number of bagging samples and 

number of trees. Number of bagging iterations can be limited to the number of bootstrap samples. 

A recommendation for RF regression is given as m = 2/3 p, where m is number of bootstrap 

samples and p is number of the original data samples (Hastie et al., 2009). However, in practical 

applications the hyper-parameter value largely depends on the problem and therefore it is tuned 
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to provide the best model performance, where a smaller value of m may be particularly useful 

when there is a large number of correlated predictors (James et al., 2021). 

The number of trees is not universally recommended but depends on the size of the dataset, 

number of input variables and nature of the problem (James et al., 2021). The best way to optimize 

the number of trees for a specific problem is to monitor the stabilization of the out-of-bag (OOB) 

sample error estimate, which can be characterized as a cross-validation method for RF algorithm, 

similar to the k-fold cross validation in the SVR algorithm. The random forest predictor is 

calculated for each observation z as an average of the trees corresponding to bootstrap samples 

which did not contain the z sample. Generally speaking, an increase in number of trees can 

significantly improve the prediction accuracy (James et al., 2021).  

The performance of RF algorithm was tested for the development of a friction prediction model 

was tested by defining the input dataset, model hyper-parameters bagging sample size and number 

of trees in the forest in XLStat software. Again, as for the SVR algorithm, the dataset included all 

the calculated texture parameters and it was divided to training and validation sample as 75/25 

ratio. The initial value of bagging sample size hyper-parameter was set to be 7, following the 

recommendation of bagging size equal to 2/3 of the original sample size. The number of trees was 

set to be maximum to investigate which number of trees stabilizes the OOB sample error estimate. 

Figure 6.17 shows that the optimal number of trees would be approximately 110, therefore this 

value was adopted for further algorithm optimization. 

 

Figure 6.17 Stabilization of OOB sample error estimate used for the optimization of number of trees in the forest, 

XL Stat 2023 

The size of bagging sample for an optimal number of trees was tested to assess the model 

performance via selected error metric for the validation sample, which was again RMSE. From 
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the results presented in Table 6.27 it can be concluded that the best performance of the RF model 

is obtained if the number of bagging samples was set to be between 7 and 10. 

Table 6.27. Estimated error metric RMSE for different size of bagging sample of the RF algorithm 

Bagging sample size RMSE (Validation set) [-] 

5 8.1585 

7 5.6540 

10 5.7546 

12 8.2848 

         

As already mentioned, RF algorithm measures the contribution of each explanatory variable in 

the dataset. Figure 6.18 shows the assigned variable importance to all the texture parameters 

included in the dataset, where it can be seen that the most important variables are Ppt and Pz, 

while the variables assigned with a “negative” importance to the prediction model performance 

are Pvt and Pcx. The results coincide well with the PLS regression analysis VIP scores, but also 

with the initial correlation analysis between the surface-related texture parameters and friction 

performance. To investigate the RF model performance if only the most important variables are 

accounted in the dataset, another algorithm iteration was performed with the model hyper-

parameter bagging sample size set to 8. In comparison to the optimized sample size RF algorithm 

which accounted for all the texture parameters, this one showed better performance (Table 6.28).

    

 

Figure 6.18 Variable importance evaluation for the optimized RF algorithm  
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Table 6.28. Evaluation of RF model performance for different input dataset 

RF 

algorithm 

Model input 

dataset 

Number of 

trees 

Bagging 

sample size 

RMSE 

(Validation 

sample) [-] 

V1 
Pa, Pq, Pz, Pc, Pt, 

Ppt, Pvt, Pcx 110 8 
4.6119 

V2 Pz, Ppt 3.4237 

   

6.5.3. Discussion  

By comparing the error metric RMSE obtained for the two optimized ML algorithms explored in 

this research, it can be concluded that the performance of the RF algorithm is superior as the 

resulting error metric is lower. This conclusion follows the results of the performed research 

utilizing RF algorithm for pavement friction prediction by authors Zhan et al., 2021. It is also in 

agreement with the findings from the PLS regression analysis, where the same two texture 

parameters were selected as the most important for the friction prediction model establishment. 

However, the obtained results have to be taken with caution. The results of similar research 

exploring the ML framework for the friction prediction model establishment were training the 

model with a significantly larger dataset than the one explored in this thesis. Moreover, a recent 

research concluded that the power of the friction prediction model based only on texture-related 

parameters is significantly improved if some other influential parameters, such as aggregate 

characteristics and traffic volume were included in the RF regression framework (Yu et al., 2023).  

The resulting error metric of the optimized RF prediction model is smaller in comparison to the 

RMSE of the optimized PLS regression model, which could lead to the conclusion that the ML 

framework gives best predictive power of pavement friction model based on non-standard texture 

parameters. However, the PLS regression model is established on the LR framework, which is 

more suitable for limited dataset size than the ML algorithms.  
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7. Conclusions and further research perspectives 

 

In this chapter a summary of obtained research results is presented and discussed, with a special 

attention to the novelty and the scientific contribution of the performed research. The limitations 

of the research are also discussed. The chapter is concluded with the questions that have emerged 

from the conducted research and obtained results, and some future research perspectives.  
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7.1. Discussion of the overall research results 

The main research aim of this thesis was the development of a pavement friction prediction model 

from the non-standard texture-related roughness parameters. The non-standard parameters cannot 

be determined from the traditional texture evaluation methods, therefore an advanced method 

based on remote sensing technology had to be developed and utilized for alternative texture 

roughness characterization.  

Analyses of existing research in the field overviewed in Chapter 2 showed that research resulted 

in different empirical models with more or less successful prediction of friction performance. 

These models were uniquely classified into simple and complex empirical models, based on the 

number of influencing parameters they accounted for the friction prediction. The preliminary 

research described in Chapter 4 was done to investigate if the traditional friction measurement 

methods can be replaced by texture measurements resulting in a texture indicator that could 

predict the friction performance of a pavement in a reliable way (Pranjić et al., 2020). The 

performance of prediction model resulting from the preliminary research was weak, as the 

obtained correlation between friction and texture was not significant. Friction and texture values 

did not show an equal trend and varied significantly for the measured locations. The results 

indicated that the generalization of the friction prediction from the texture measurements 

regardless of the inspected location is not possible if only one texture indicator was used for the 

model establishment. The result was partially in agreement with previous research where only one 

texture indicator was observed for the friction prediction model establishment, as presented in 

Chapter 2.  

 Due to the described findings, this research direction was abandoned. In the next research phase 

advanced methods for texture characterization were explored as a possible solution for a better 

understanding of texture-friction relationship. 

The first step was to establish a method for pavement surface data collection, which enables 

accurate roughness representation in relevant texture scales. Analyses of recent research in the 

field showed that photogrammetry is a well known remote sensing technology for pavement 

texture analysis, utilized in the last two decades for a detailed characterization of roughness 

properties in 2D and 3D, i.e. for profile-related or surface-related texture parameters. A similar 

technlogy is 3D laser scanning, which in comparison to the photogrammetry equipment requires 

high-end laser scanners for data acquisition.  
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Photogrammetry method was selected because of the existing expertise for large-scale civil 

engineering problems. The photogrammetry-based method utilized in this thesis for the analysis 

of texture roughness properties was developed for small-scale problems and named Close-Range 

Orthogonal Photogrammetry method – CROP. The method name stems from the special case of 

photogrammetry used, related to image acquisition from a close distance with camera positioned 

orthogonally to the inspected surface. Pavement surface images were captured by a single digital 

camera, representing an off-the-shelf device for data collection. Captured images were used for 

the creation of 3D digital surface model, from which the roughness features could be extracted 

and analysed with respect to their effect on the frictional performance. Texture roughness features 

were analysed in 2D framework to be comparable to the traditional texture indicator Mean Profile 

Depth (MPD). The calculated profile-related parameters were converted to surface-related 

properties and compared to the measured friction performance, showing a promising potential for 

texture-friction relationship establishment by using CROP method for texture data acquisition. 

CROP method developed in this research was subjected to an extensive optimization and 

verification procedure. This included the investigation of optimal data acquisition procedure and 

equipment setup, which was not performed in any other similar research overviewed in Chapter 

3.  

Two different methods for data acquisition were explored and compared, using same photographic 

equipment in different ways for texture data acquisition: Turntable and Ortho. The latter showed 

better performance in terms of quality of the reconstructed digital surface model and simplicity of 

the data acquisition procedure. Four camera lenses were tested for image acquisition and creation 

of digital models, whose performance was compared and evaluated by selected error metrics and 

properties of reconstructed digital model. Following the data acquisition procedure optimization, 

a unique workflow for texture roughness features analysis was defined (Figure 7.1). The 

optimized CROP method produced DSM with resolution within sub-millimeter range, making it 

suitable for the analysis of macro-texture effects in the full level range and micro-texture effect to 

a limited range of values up to 0.01 mm.  

The obtained accuracy of CROP method verified by a benchmark procedure for  3D data 

acquisition on sub-millimeter scales was 0.05 mm. To verify the CROP method, a custom made 

reference frame was created and digitalized by 3D laser scanning and CROP method with two 

different cameras. The verification was done on a CAD designed object with known dimensions. 

This enabled a direct comparison of the corresponding dimensions on the digital models created 

by laser scanning procedure and CROP method. In comparison to similar research utilizing 
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photogrammetry-based method for texture surface reconstruction where the verification was done 

by comparison to a traditional measurement method (J. Chen et al., 2019; Tian et al., 2020), the 

effects of measurement method uncertainties were excluded. The verification procedure showed 

that the CROP method does not produce digital surface models with such high level of accuracy 

as the 3D laser scanner for the entire model's surface. The deviations of the plane dimensions and 

height differences were larger on the model margins. However, as the reference frame was also 

created for pavement surface data acquisition, the model anomalies on the outer frame edges were 

not considered as relevant for the method performance in data collection as the observed pavement 

surface was in the central part of the reference frame. 

 

Figure 7.1 A schematic overview of performed workflow for texture data processing for the calculation and 

analysis of profile-related roughness parameters 

Considering the texture data acquisition and analysis, the drawback of the established CROP 

method is an excessive amount of time necessary to derive texture roughness characterization in 

comparison to traditional pavement texture evaluation methods, where texture parameters are 

directly exported after the measurement. The data collection procedure is manual, requiring an 

experienced technician in the field of photogrammetry. The reconstruction of digital surface 

model from acquired images requires time and efficient computational equipment, as well as a 

good knowledge and operating experience with the photogrammetry software. The quality of 

resulting DSM depends on the pre-processing adjustments in the software, selected manually to 

reduce the error metrics analysed in Chapter 4. The resulting RMS reprojection error value for the 
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optimized CROP method model of 0.3 was marginally acceptable value, following the 

reccomendations given in (Over et al., 2021). A digital surface model with higher accuracy could 

be obtained for further fine-tuning of input pre-processing parameters.  

The friction prediction model was developed in regression analysis framework, accounting for the 

texture roughness parameters determined on primary profiles, without the scale separation to 

micro- and macro-texture level. The selected texture parameters were determined from profile 

representations of analysed surfaces and converted to surface-related parameters to be comparable 

to the friction performance determined on the same surfaces. An extensive exploratory data 

analysis was performed to investigate the properties of calculated roughness parameters related to 

profile and surface morphology and to select only those parameters representative for the 

establishment of a friction prediction model. Profile-related parameters were converted to their 

surface equivalents by accounting for the variability in the profile data and excluding the profiles 

which showed an outlier character. Figure 7.2. summarizes the performed procedures in the 

friction prediction model establishment. 

 

Figure 7.2 A graphical summary of data analysis procedures in the process of friction prediction model 

establishment 

The initial friction prediction model was defined for traditional texture roughness indicator, Mean 

Profile Depth. This model showed a moderate correlation with the measured friction performance 
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friction performance (Čelko et al., 2016; Wang et al., 2019). Furthermore, the obtained texture-

friction relationship was significantly higher in comparison to the results obtained in the 

preliminary research described in Chapter 4, where no significant relationship was observed 

between texture and friction indicators.  

As the aim of this research was to establish a friction prediction model from non-standard texture 

parameters, a multiple linear regression model was defined accounting for those that showed the 

most significant effect to friction in the exploratory data analysis: Mean average roughness Pa, 

Maximum height Pz, Mean profile element height Pc and Maximum peak profile height Ppt, 

calculated according to EN ISO 21920-2: Geometrical product specifications (GPS) — Surface 

texture: Profile — Part 2: Terms, definitions and surface texture parameters. The obtained 

regression statistic was higher in comparison to the inital prediction model, with R2 = 0.762 and 

RMSE = 4.581.  

The model had to be additionally processed to satisfy the linear regression framework by feature 

engineering procedures, applied to remove the multicollinearity issue for the predictor variables 

– texture parameters. The final model was established in regression framework by performing 

partial least squares (PLS) feature engineering procedure. The PLS regression algorithm 

accounted for the influence of all four texture parameters on the friction performance and sorted 

out the two most influential parameters: one amplitude parameter - Maximum height Pz and one 

feature parameter – Maximum peak profile height Ppt. The resulting model statistics were R2 = 

0.784 and RMSE = 4.412, indicating better performance of the friction prediction model in 

comparison to initial linear regression model accounting for traditional texture parameter Mean 

Profile Depth. 

Previous research utilizing the photogrammetry-based method for texture data assessment 

resulted in lower friction prediction model performance (El Gendy et al., 2011; Kogbara et al., 

2018; Mahboob Kanafi et al., 2015; Medeiros et al., 2021) and similar or better model 

performance for a complex data acquisition procedure consisting of multiple cameras, additional 

light sources and fixed platforms applicable only for laboratory measurements (D. Chen, 2020; 

Huyan et al., 2020; Wang et al., 2019). Some of the friction prediction models developed from 

texture parameters derived from pavement digital surface models resulting from 3D laser scanning 

procedure showed weaker or similar performance to the model developed in this thesis (Alhasan 

et al., 2018; Čelko et al., 2016; Hu et al., 2016; Q. J. Li et al., 2020; Q. J. Li et al., 2017) and some 

performed much better with very high predictive power (Kováč et al., 2021; L. Li et al., 2016). 

High-performance models utilized surface-related parameters determined directly from the 
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pavement surface morphology as model predictors, mostly by applying laser scanning technology. 

The precision of 3D laser scanners for texture data acquisition is better in comparison to 

photogrammetry method, as was showed in the verification procedure. However, laser scanners 

are high-end data collection equipment, less available than digital cameras utilized in 

photogrammetry methods. Texture data acquisition procedure established in this research is 

simple and easily repeatable, utilizes a single digital camera and a reusable reference frame for 

the precise and accurate digital surface model reconstruction. It is applicable for laboratory and 

field measurements and the inspected pavement surface area is sufficiently large to be comparable 

to traditional texture volumetric measurements and low-speed friction evaluation.  

7.2. Research limitations 

This research was limited to analysis of pavement texture morphology influence to friction 

performance of asphalt pavements. In comparison to some complex empirical friction prediction 

models overviewed in Chapter 2, where other influencing parameters were accounted for the 

prediction model establishment, the performance of the prediction model developed in this thesis 

was weaker. The dataset used for the prediction model establishment was obtained from twenty 

pavement surfaces with unknown properties, except for the friction performance measured with 

low-speed pendulum device Skid Resistance Tester. The measured friction values were in a range 

from SRT = 68.4 to SRT = 103.2 and above the threshold level for friction performance defined 

in Croatian regulations. A larger number of investigated surfaces with wider range of friction 

measurement values, together with the inclusion of other influencing parameters related to 

pavement surface properties such as aggregate type or mixture design and gradation might 

contribute to establishment of a prediction model with better predictive power.    

Selected non-standard texture parameters utilized as predictors in the model were derived from 

profiles extracted from DSMs and converted to surface-related parameters to be comparable to 

the surface's friction performance. Surface roughness representation expressed in surface-related 

parameters derived from their profile equivalents is just an approximation and doesn't reflect true 

surface roughness characteristics. Profile-related parameters were selected so they could be 

compared to the traditional profile-related texture parameter Mean Profile Depth (MPD). 

However, a friction prediction model which accounts for true surface-related parameters 

calculated from the surfaces would be more realistic representation of pavement texture effect to 

the friction performance.    
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7.3. Final conclusions  

The performed research focused on the establishment of a friction prediction model from the non-

standard texture parameters, derived from the advanced method for texture characterization. A 

novel method for texture data acquisition, called Close-Range Orthogonal Photogrammetry - 

CROP method was developed and verified for accuracy by comparing the performance of 

resulting digital surface model with the properties of digital surface model created by a benchmak 

remote sensing technology 3D laser scanner. Texture roughness features were represented on full 

scale of macro-texture wavelength and amplitude range and micro-texture scale larger than 0.01 

mm. A procedure for texture data processing and analysis by specialized softwares was 

established. A set of profile-related texture parameters, describing roughness features on both 

relevant texture scales was obtained from digital surface models of pavement surface. 

Selected texture parameters were utilized for the establishment of a friction prediction model by 

application of feature engineering procedures. This was a novel approach for the development of 

a friction performance prediction model in regression framework, based on uniquely derived non-

standard texture parameters that showed to be the most significant with respect to the applied 

regression algorithms. The resulting model was defined within the partial least squares (PLS) 

regression method. This method selected the most significant texture parameters with the highest 

influence on friction performance: amplitude parameter Maximum height Pz and feature 

parameter Maximum peak profile height, Ppt. Maximum height (Pz) parameter describes an overall 

roughness property and Maximum peak profile height (Ppt) is a description of extreme roughness 

property of a pavement surface. The established model's performance for the prediction of 

pavement frictional characteristics was superior in comparison to the prediction model defined by 

a single traditional texture indicator Mean Profile Depth (MPD). It showed better performance in 

comparison to prediction models developed in previusly performed similar research.  

The results obtained in this research confirmed the research hypotheses defined in Chapter 1, 

proving that: 

H1: Close-range photogrammetry based method is suitable for the determination of non-standard 

pavement texture parameters. 

H2: Non-standard texture parameters enable a more detailed description of surface roughness 

properties related to the pavement friction performance in comparison to traditional texture 

descriptors.  
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H3: Non-standard texture parameters can be used for the definition of a friction prediction model 

which is more reliable in comparison to the prediction models defined from traditional texture 

indicators. 

In this way, the defined research goals were accomplished and the main research aim was reached. 

7.4. Future research perspectives 

In recent few years, research community dealing with pavement friction prediction models' 

development started utilizing machine learning framework, with superior results in comparison to 

the traditional approach for friction prediction, mostly based on regression analysis. The main 

premise of all performed research is a large dataset. The final section of Chapter 6 introduced two 

machine learning (ML) algorithms as a possible framework for friction prediction model 

development. The preliminary results of ML algorithm implementation showed a good 

performance for both tested methods, with obtained RMSE values lower from the error metric of 

the established prediction model in classical regression framework. However, the available dataset 

is too small for the implementation of ML algorithms which would provide reliable results. 

By summarizing the results obtained in this thesis research, the highlighted research limitations 

and current research trends, some future research perspectives are defined as the conclusion of 

this Chapter: 

- CROP method automation for fast, precise and accurate data acquisition 

- Further optimization of DSM reconstruction procedure by adjustment of alignment 

procedure inputs to obtain a DSM with smaller RMS reprojection error value, which 

implies higher model accuracy 

- Texture data analysis extension to 3D surface-related roughness features determined from 

surface morphology  

- Wider range of measured pavement friction values 

- Further development of friction prediction model in regression framework by including 

other pavement texture related influencing parameters, such as asphalt mixture properties 

relevant for friction performance 

- Implementation of ML framework for the development of more robust prediction model 

on a larger dataset 
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Table 6.23. A summary of the models’ error metric RMSE, model input variables and the resulting 

model equations observed in the optimized MLR framework 

Table 6.24. Comparison of models’ performance: initial linear regression model with MPD as 

explanatory variable and optimized PLS regression model with two non-standard texture 

parameters as explanatory variables 

Table 6.25. An overview of ML algorithms, dataset properties and results utilized for the 

establishment of a friction performance prediction model 

Table 6.26. SVR algorithm hyper-parameters optimization and the resulting statistics of the 

friction prediction model 

Table 6.27. Estimated error metric RMSE for different size of bagging sample of the RF algorithm 

Table 6.28. Evaluation of RF model performance for different input dataset 
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