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Preface 
 

 

The structural systems or their parts which are both highly flexible and slender may be found in exceedingly 

diverse applications in various engineering fields including aeronautical, automotive, biomedical, civil, 

mechanical and textile engineering continually opening new and exciting industrial challenges for scientific 

advancement in experimental methods, theory, numerical procedures and software development. 
 

The applications may include multi-filament cables, multi-wired harnesses, taut stranded wires or composite 

beams in which main challenges arise in constitutive modelling on the stress resultant-strain measure level due 

to cross-sectional material heterogeneity, which is one important area of research to which the conference will 

be devoted. Another research area is geometrically consistent spatial discretisation schemes as well as 

modelling interactions of slender structures in self-contact and with their environment in operating conditions 

including frictional contact effects. System-level simulation methods and geometric time-integration 

algorithms able to deal with dynamic interactions between many flexible slender elements and their 

environment in large-scale models while respecting and preserving non-linear mathematical structure of a 

problem, involving also those defined on Lie groups, make yet another research area of particular importance 

for the conference. 
 

The conference is organised in mini-symposia devoted to constitutive modelling, contact mechanics, geometric 

integration, coupling of beams and solids, textile and fibrous materials and layered structures, as well as a 

general programme to include wider applications of highly flexible slender structures. The importance of 

modernising graduate-level curricula in modelling slender structures will also be discussed during a conference 

mini-symposium, while another one is devoted to the role Prof. Miran Saje had in promotion of computational 

mechanics in this geographic area, particularly in establishment or development of competent research teams 

at the Civil Engineering faculties in Ljubljana and Rijeka. 
 

This Book of Extended abstracts collects all the contributions contained within the general programme and the 

mini-symposia as well as those provided by eight world-renowned scientists of all generations coming from 

the most prestigious research centres in Europe and America: These eminent researchers have provided 

cutting-edge scientific contributions in numerical modelling of highly flexible slender structures throughout 

their career and in recognition of their achievements they have been invited to the conference as key-note 

speakers. 
 

In addition, special conference sessions are devoted to the future of the young researchers nearing the 

completion of their early-stage development, in which two dedicated professionals will help them prepare both 

for the continuation of their career in academia as well as industry. The sessions will be designed to provide 

specific horizontal skills related to preparation of future job applications and writing research-grant proposals. 

In the year in which the University of Rijeka celebrates its 50th anniversary we are proud to welcome you at 

HFSS 2023 and wish you a successful professional event that will strengthen existing and help create new 

collaborations as well as spur new research ideas and initiate fruitful scientific debate. In addition, we hope 

that you will enjoy your stay in Rijeka, return from the conference with a number of memorable experiences 

and a desire to visit it again. 

 

On behalf of HFSS 2023 Scientific Committee 

Gordan Jelenić 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

Dear participants of the HFSS 2023 conference, 

 

The Marie Skłodowska-Curie Actions (MSCA) are the European Union’s reference programme for doctoral 

education and postdoctoral training. In October 2019, we started the MSCA Innovative Training Network 

THREAD - Numerical Modelling of Highly Flexible Structures for Industrial Applications that has received 

funding from the European Union’s Horizon 2020 research and innovation programme (https://thread-etn.eu/). 

THREAD is a network of ten universities, one research institute and one small industrial enterprise from 

Austria, Belgium, Croatia, France, Germany, Norway, Slovenia and Spain who cooperate with twelve 

industrial partners from most of these countries as well as Finland, Italy and Sweden. After four years of joint 

work, we will complete THREAD’s network-wide training programme at this International Conference on 

Highly Flexible Slender Structures (HFSS 2023). 
 

The THREAD network with its 14 projects for early-stage researchers (ESRs) brought young mechanical 

engineers together with mathematicians to develop mechanical models and numerical methods for designing 

highly flexible slender structures, and to support the development of future virtual prototyping tools. At HFSS 

2023, the currently active early-stage researchers of the THREAD project as well as all THREAD early-stage 

researchers who have already completed successfully their 36-month ESR projects plan to report on recent 

research results. Most of them are now on the way to the final phase of their PhD projects. The list of topics 

being addressed in the extended abstracts of their contributions to HFSS 2023 is impressive, focussing on the 

three THREAD research work packages on constitutive modelling, on contact and friction in mechanics of 

flexible slender structures and on geometric integration methods for non-linear structural dynamics. 
 

We are very grateful to the European Community on Computational Methods in Applied Sciences 

(ECCOMAS) for awarding the HFSS 2023 conference the status of an ECCOMAS Thematic conference and 

to the International Association for Computational Mechanics (IACM) for supporting HFSS 2023 as an IACM 

Special interest conference. The PhD students of the THREAD network will strongly benefit from the 

opportunity to present their close-to-final scientific achievements in the inspiring atmosphere of such an 

international audience. To support these young scientists who are at an early stage of their scientific career, we 

offer at HFSS 2023 two workshops on preparing job applications and future grant proposals. 
 

The International Conference on Highly Flexible Slender Structures would not have been possible without the 

enthusiasm and extraordinary amount of work put in by the local organisers at the Faculty of Civil Engineering 

of the University of Rijeka. We are very grateful to all of them and look forward to five days of interesting 

presentations and lively discussions on this timely topic of research. 

 

 

Martin Arnold 

Coordinator of THREAD 
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1. Introduction

Sliding beams and cables are used in many engineering applications such as cranes, elevators, or deployable
space structures; furthermore, they can approximate the behavior of biological systems such as human muscles.
In other applications, sliding appendages such as joints, concentrated loads, or rigid bodies move along beams
or cables. For simplicity of the exposition, the term “sliding beams” will be used to refer to both problems:
sliding beams and beams with sliding appendages.

The dynamic behavior of these structures, often treated as geometrically nonlinear beams or cables, has attracted
the attention of numerous researchers in recent years. For simplicity, the axial motion of the beams is often
prescribed a priori. In reality, this axial motion results from the dynamic behavior of the system and hence,
must be determined as part of the solution process. The present paper focuses on this problem.

Hamilton’s variational principle is used to derive the weak and strong forms of the equations of motion for
sliding beams. Due to the presence of sliding motion, the action integral is now defined over a time-varying
material domain and the process of taking variations of this action integral must be handled carefully. The
variation of functionals defined over time-varying domains appears in many engineering applications and nu-
merous researchers have tackled this problem. For instance, variation of the cost functional in free-endpoint
optimal control problems leads to the transversality condition at the free end time, variation of the potential en-
ergy functional of a beam contacting a rigid obstacle yields an additional boundary conditions determining the
contact region, and first- and second-order variations of functionals defined over time-varying material domains
are central to shape optimization.

Theoretically, action integrals defined over time-varying material domains can be transformed into action in-
tegrals over time-invariant reference domains through proper coordinate transformations. The variation pro-
cess then becomes straightforward and the results can be transformed back to time-varying material domains.
Reynolds’ transport theorem expresses this procedure mathematically: it relates the time derivative of an inte-
gral over a given control volume to the time derivative of the integrand and boundary fluxes. Clearly, Reynolds’
transport theorem still holds when replacing the time derivative with a variation.

In general, structural dynamics problems are investigated using the Lagrangian formulation; typically, for beam
problems, the “material” or “Lagrangian coordinate” is selected as the arc-length coordinate of a material
particle of the beam’s axial line in its undeformed configuration. This coordinate is used to track down the
beam’s motion as it deforms in space. For sliding beams, this collection of material coordinates is time varying:
for instance, an elevator cable comprises a time-varying collection of material particles as portions of the cable
are reeled in or out of the capstan.

In finite element implementations, it is convenient to mesh the structure with a constant number of elements
to avoid the costly re-meshing of the entire problem at each time step. The implementation of this approach
requires the introduction of a “mesh coordinate.” For instance, it is expeditious to model an elevator cable with
a fixed number of elements although its length varies in time. Mesh coordinate ξ ∈ [ξ0,ξ f ] is introduced, where
coordinates ξ0 and ξ f identify the root and end points of the variable-length cable and if the cable is modeled
with N elements of equal length, the length of each element is (ξ0 − ξ f )/N. Mesh coordinate ξ varies along
the length of the cable but no longer identifies a specific material particle of the cable. Of course, a one-to-one
map relates the material and mesh coordinates.

This approach, known as the Arbitrary Lagrangian-Eulerian (ALE) formulation, has been developed by numer-
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ous authors for geometrically nonlinear sliding beams [1, 2, 3]. As will be shown in this paper, configurational
forces arise at the sliding boundaries of the structure, affecting the boundary conditions at these points. Failure
to identify these configurational forces properly can result prescribing erroneous boundary conditions.

Configurational forces were first introduced by Eshelby [4] to describe the driving forces acting on defects or
singularities in solids; these forces arise from variations of the material configuration. A number of authors
have investigated configurational forces in beams and cables both theoretically and experientially. Recently, a
novel ALE formulation for dynamics problems of geometrically exact sliding beams was developed by the first
author based on dual quaternion kinematics. Material motions of the rigid-sections are decomposed into mesh
motions (with mesh coordinates held fixed) and convective terms that take into account the relative motion of the
material and mesh coordinates. Integration by parts then yields both strong and weak forms of the mechanical
and configurational momentum equations together with the natural boundary conditions for mechanical and
configurational forces at the endpoints. Although the aforementioned process is clear, integration by parts for
terms involving time and spatial derivatives is complex and error prone.

This paper addresses the problem of sliding beams with special emphasis on situations where the axial motion of
the beam is not prescribed a priori. Hamilton’s variational principle is used to derive the weak and strong forms
of governing equations for sliding beams. Because the action integral is defined on a non-material domain,
Reynolds’ transport theorem is applied to transform the variation of the action integral into the integral of the
variation of the integrand and boundary flux terms then appear.

Consequently, the variation of the integrand yields the strong form of the mechanical and configurational mo-
mentum equations and the boundary flux terms yield the natural boundary conditions for the mechanical and
configurational forces. The configurational momentum equations are shown to be a linear combination of their
mechanical counterparts and hence, are redundant.

A weak form of the same equations is also developed by performing spatial integration by parts. In this weak
form, the configurational and mechanical momentum equations become independent because they combine in
an integral sense the strong mechanical and configurational momentum equations with their respective natural
boundary conditions.

The configurational boundary conditions are scrutinized closely and shown to involve discontinuities in the
axial force and strain energy density. While the first discontinuity was identified by numerous researchers, the
second appears to have been ignored by most, although both are shown to be of the same order of magnitude.

In view of these observations, two formulations are proposed: (1) the domain-based formulation that combines
the weak forms of mechanical and configurational momentum equations and (2) the boundary-based formula-
tion that combines the weak form of mechanical momentum equations with the natural boundary conditions for
the configurational forces.

Numerical examples have been presented to validate and compare the two proposed formulations. The predic-
tions of both formulations are found to be in good agreement with those obtained from an ABAQUS model
using contact pairs. The domain-based formulation has a convergence rate of three or four for three- or four-
node beam elements, respectively, while that of boundary-based formulation is one order lower. Clearly, the
proper treatment of the configurational forces at the boundaries impacts the accuracy of the model significantly.
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of a curly hair wisp with frictional
contact ©ELAN team at Inria, 2023.

What is the common feature between Final Fantasy: the Spirits Within
(2001), Moana (2016), and Avatar, the Way of Water (2022) ? These three
computer-animated movies, though made at different periods of time over
the three last decades, have all requested huge efforts and energy to cap-
ture, as realistically as possible, the motion of one of the most familiar
fibrous object: human hair. Should it be long, braided, wavy, or fuzzy,
hair is one of the most visible and fascinating features of a human char-
acter; as such it greatly contributes to the visual asset of a movie, and
enriches its storytelling. More broadly, since the advent of modern com-
puters in the 1960’s, Computer Graphics has always striven to develop
powerful simulation tools for capturing fascinating phenomena of our ev-
eryday life, such as cloth folding, granular flowing, or plant fluttering in
the wind. Animating hair virtually and giving the illusion that it is real
has become an endless quest since the 2000’s.

From very distinct fields... Computer scientists were not the first to draw their attention to fibre systems.
Many physicists and mathematicians aimed for centuries at understanding the principles governing those com-
plex mechanical phenomena, providing a number of continuous models for thin elastic rods [1] and frictional
contact [2]. In the XXth century, industrial applications such as process automatisation and new ways of trans-
portation boosted the field of Mechanical Engineering, and in particular the finite-element modelling of elastic
fibres – called ’beams’ in that community. There however, not much room for fantasy nor entertainment: ma-
terial strength, reliability of mechanisms, and safety, stood for the main priorities. Assimilated to failure cases,
large displacements of structures, buckling, tearing, entanglement, and even dynamics, were at that time con-
sidered as undesirable behaviors, thus restraining the search for corresponding numerical models. In contrast,
Computer Graphics, from its very beginning, was eager to capture such peculiar phenomena, with the sole aim
to produce spectacular images and create astonishing stories.

... to recent convergences Nowadays however, although the image production still remains the core activity
of the Computer Graphics community, more and more research studies are directed in this community towards
the virtual and real prototyping of mechanical systems, notably driven by a myriad of new applications in
the virtual try-on and fashion industries, e.g., hairstyling or personalised textile manufacturing. Furthermore,
the advent of additive fabrication is currently boosting research in the free design of new mechanisms for
various applications, from architecture design [3] to the fabrication of metamaterials [4]. Computer scientists
are hence faced with new challenges including methodology and skills for quantitative validation and predictive
simulation.

In parallel, the Mechanical Engineering industry has recently shown some growing interest into the modelling
of dynamic phenomena prone to large displacements, buckling, contact and friction. For instance, vehicle and
aircraft manufacturers encounter large-scale problems involving buckling or entanglement of thin structures
such as nylon or carbon fibers [5]; they clearly need predictive, but also robust and efficient numerical tools
for simulating and optimising their new fabrication processes, which shares many common features with the
large-scale simulation scenarii traditionally studied in Computer Graphics applications.

Furthermore, since a few decades, a new generation of physicists became interested again in the understanding
of visually fascinating phenomena, and started investigating the tight links between geometry and elasticity [6].
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Common fibrous objects such as twined plants, knitted cloth, bird nests or human hair, have thus regained some
popularity among the community in Nonlinear Physics [7, 8, 9]. The term ’extreme mechanics’ [10] has been
coined precisely to designate all kinds of phenomena involving large displacements, nonlinear deformations,
buckling instabilities, or dynamics with dry frictional contact – thus falling outside the standard, well-studied
regimes. A major breakthrough was to show that instabilities emerging from such nonlinear (and even nons-
mooth) regimes, previously considered as the first route toward failure in engineering structures, could in turn
be harnessed to activate matter and program new materials with specific functions: the field of functional ma-
terials was born [11], together with a myriad of applications ranging from deployable structures and new meta-
materials to soft locomotion [12, 13, 14]. Beyond offering a formidable tool for complementing experimental
investigations when laboratory experiments are too cumbersome or costly to perform, numerical exploration
rapidly started being perceived by physicists as a valuable tool for getting insights into the early search for
analytic solutions, thus fully participating in the modelling stage and physical understanding. Here again, the
simulation of fibrous materials turns out to become crucially requested for improving the understanding of
physical phenomena unexplored so far, and for designing new materials with controlled properties.

Overall, it turns out that over the last decades, Computer Graphics, Mechanical Engineering, and Nonlinear
Physics have finally ended up sharing a strong common interest for simulating extreme mechanical phenomena
– and in particular fibrous systems – in a predictive way, while possessing very complementary skills. Unfortu-
nately, in spite of all these observed convergences, Computer Graphics and Computational Mechanics/Physics
remain today desperately compartmentalised.

Predictive simulation of fibre assemblies In this talk I will show that although building a simulator that
is both predictive and scalable remains an open challenge when dealing with extreme mechanics, advances
towards this goal can be made possible thanks to a pluridisciplinary modelling approach combining skills across
Physics, Mechanics, and Computer Graphics. In particular, I will present the numerical models that we have
been building in the ELAN group at Inria for the last ten years in order to achieve reliable dynamic simulations
of fibre packings subject to large displacements, should it be for special effects, virtual prototyping, or physical
exploration [15, 16, 17, 18, 19]. Our methodology draws inspiration from Nonlinear Physics for the simplicity
and elegance of the reduced rod models, the scaling laws, and the controlled experiments developed there;
Mechanical Engineering for the convergence properties of discrete element formulations and the robustness of
frictional contact methods, especially within the context of nonsmooth mechanics; and Computer Graphics,
for the efficiency and agility of the algorithms and free softwares deployed for optimisation solvers, contact
detection, and code benchmarking.
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1. Introduction

In the standard forward dynamics problem of mechanical systems the forces acting on the system are assumed

to be given and the goal is to determine the motion of the system. In contrast to that, in the inverse dynamics

problem the motion of the system is partially prescribed and the goal is to determine the actuating forces along

with the motion of the whole system. The talk will focus on the inverse dynamics of flexible multibody systems

including geometrically exact elastic strings and beams. While numerical methods for the forward dynamics

problem are well-established, the inverse dynamics problem is particularly challenging and reliable numerical

methods still have to be developed.

Numerical methods for the solution of the forward dynamics problem commonly rely on the semi-discretization

approach (also called ‘method of lines’). In the semi-discretization approach the underlying system of partial

differential equations governing the motion of geometrically exact structural models is first discretized in space,

typically by applying finite elements, and subsequently discretized in time by applying some time-stepping

scheme. In the talk we will point out that the semi-discretization approach is not particularly suitable for the

inverse dynamics problem.

2. The Inverse Dynamics Problem

An example of the type of inverse dynamics problem under consideration is shown in Fig. 1. The planar

flexible manipulator consists of two rigid links (B1,B2) and an elastic link B3, which is modeled by applying

the geometrically exact (or Simo-Reissner) beam formulation. In the inverse dynamics problem the trajectory of

the end-effector (γγγ,Θ) ∈ R
2
×S1 is prescribed over time. Here, γγγ refers to the translational motion of the right

boundary of the beam, while Θ characterizes the orientation of the cross-sectional area at the right boundary of

the beam. The goal is to determine the three joint-torques mA, mB and mC actuating the system such that the

prescribed motion of the end-effector is realized. In the wake of determining the three actuating joint-torques,

the motion of the whole system needs to be determined as well.

mA

mB

mC

A

B

C

B1

B2

B3

Θ

Θ1

Θ2

γγγ

Figure 1: Planar flexible manipulator consisting of two rigid links (B1,B2) and an elastic link B3.
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3. Simultaneous Discretization in Space and Time

To prescribe the motion of the end-effector, the notion of ‘servo-constraints’ [1] can be applied. In the context

of finite-dimensional mechanical systems the application of servo-constraints leads to differential-algebraic

equations (DAEs) governing the inverse dynamics problem. In comparison to standard holonomic constraints,

servo-constraints often lead to an increase of the index of the DAEs. The increased index of the DAEs is

typically related to the notion of ‘differential flatness’ [2]. In fact, the differential flatness of the system is

an important property which ascertains the controllability of the system. Applying the semi-discretization

approach to flexible bodies such as elastic strings or beams converts the infinite-dimensional mechanical system

into a finite-dimensional one. Appending servo-constraints to the semi-discrete equations of motion again

yields DAEs describing the inverse dynamics problem. However, this approach can lead to (i) an excessively

high index of the resulting DAEs and, (ii) may affect the differential flatness of the resulting discrete system.

To solve the inverse dynamics problem of infinite-dimensional mechanical systems we propose a simultaneous

discretization approach in space and time [3, 4]. In particular, we propose a space-time finite element method

in which (i) both test and trial functions are continuous and, (ii) servo-constraints are enforced weakly. Numer-

ical examples demonstrate that the newly devised method is capable to accurately solve the inverse dynamics

problem under consideration.

References

[1] W. Blajer, K. Kołodziejczyk. Control of Underactuated Mechanical Systems with Servo-Constraints, Non-

linear Dynamics, 50 (2007) 781-791.

[2] R. Altmann, P. Betsch, Y. Yang. Index Reduction by Minimal Extension for the Inverse Dynamics Simulation

of Cranes, Multibody System Dynamics, 36 (2016) 295-321.

[3] T. Ströhle, P. Betsch. A Simultaneous Space-Time Discretization Approach to the Inverse Dynamics of

Geometrically Exact Strings, Int. J. Numer. Meth. Engng, 123 (2022) 2573-2609.

[4] T. Ströhle, P. Betsch. Inverse Dynamics of Geometrically Exact Beams, Proceedings of the ECCOMAS

Congress 2022 – 8th European Congress on Computational Methods in Applied Sciences and Engineering,

Oslo, Norway, 5-9 June 2022.

10



ECCOMAS Thematic Conference and IACM Special Interest Conference
Highly Flexible Slender Structures (HFSS 2023)

25–29 September 2023, Rijeka, Croatia

Experiments and Constitutive Models for Cable Structures in the Automotive
Industry

Vanessa Dörlich

Mathematics for the Digital Factory
Fraunhofer Institute for Industrial Mathematics (ITWM)

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
vanessa.doerlich@itwm.fraunhofer.de

Keywords: Cable Structures, Enhanced Constitutive Models, Experiments, Model Parameterization

1. Introduction

Highly flexible slender structures and their mechanical behavior are relevant in various industries ranging from
aerospace engineering to medical applications. In automotive industry, the relevance of flexible slender struc-
tures grows steadily as new drive systems, assistance systems and on-board electronics require new cable types.
This leads to a total length of up to 9 kilometers of cables and hoses used in a modern car. The mechanical
characteristics of single cables and cable structures need to be considered in computer-aided engineering. Sim-
ulations are for example used in design space analysis, assembly planning and analysis of typical load cases
which occur when cable structures are (repeatedly) deformed during their lifetime.

Figure 1: Examples of single cables (left) and cable bundles with different taping patterns (right).

Cables are compound structures, since they typically consist of at least two different materials (metallic wires
and polymeric coating) with spiral wire strands as inner core. The complexity of the flexible structure increases
further, as cables are usually assembled in bundles using tape, tubes or wrappings in automotive applications,
see Figure 1, right. Thus, interactions between single cables and between cables and the casing occur and affect
the resulting deformations of the structure leading to complex constitutive behavior. Furthermore, cables show
anisotropic behavior due to their structure, e.g. their elastic stiffness parameters for bending, torsion and tension
cannot be converted into each other. Thus, separate bending, torsion and tension experiments are necessary to
characterize the deformation behavior of a cable, assuming their load cases are not coupled.

Cables and cable structures can be modeled using Cosserat rod models [1], where the constitutive laws are
formulated in the sectional quantities of the rod. In continuum mechanics, constitutive laws yield the possibility
to model different kinds of experimentally observed phenomena. Their model parameters connect the model to
reality and can be determined using suitable experiments.

In section 2., the state of the art of experimental methods for cable structures will be explained. Recent de-
velopments in research on non-standard constitutive behavior of cable structures, constitutive models and their
data-based parameterization will be outlined in section 3.

2. Experimental mechanics for cable structures

The experimentally observed deformation behavior of a structure and the specific application load case deter-
mine the choice of a suitable constitutive law. The experimenter will need to decide if the load case requires
taking into account rate-dependent or hysteresis effects. Furthermore, the range of expected deformations is
relevant, i.e. if the deformations will remain small or reach large values. Different load sequences will reveal
different phenomena.

Experiments for highly flexible slender structures are inspired by experimental mechanics for elastic beams,
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e.g. three-point bending, standard torsion or uniaxial tension [2]. In bending, however, large deformations
can occur, such that experiments like standard three-point bending for small deflections are not sufficient to
investigate the full range of practically relevant bending curvatures. To that end, bending load cases such as
pure bending [2] or the geometrically non-linear bending load case presented in [3, 4] are better suited to
investigate the bending behavior of flexible slender structures and parameterize suitable constitutive models,
see Figure 2.

Figure 2: Left: Relevant bending load cases for cable structures: Pure bending (top) and geometrically non-
linear bending (bottom). Right: Results of a cyclic pure bending experiment on a single cable.

Due to their complex multi-component structure, inelastic behavior has to be expected when cable structures
exceed the range of small deformations. In order to investigate such effects properly, cyclic experiments have
to be performed. Even for single cables, static hysteresis curves can be observed for a quasi-static experimental
procedure, i.e. at sufficiently small deformation rates, see Figure 2 [5]. In dynamic load cases where rate-
dependent behavior is relevant, experimental procedures need to be amended further. A practical approach to
determine a suitable set of dynamic parameters in order to consider damping effects in dynamic cable simula-
tions is given in [6].

3. Constitutive behavior of cable structures: Characteristics and parameterization

Despite the fact that experimental results show inelastic behavior when cable structures are deformed, it is state
of the art in technical applications, e.g. in the software package IPS Cable Simulation [7], to consider only
linear elastic behavior in quasi-static simulations. While this may seem like a drastic simplification, the linear
elastic model will yield sufficiently accurate results for most applications, especially concerning the shape of the
flexible slender structure [8]. The parameterization of linear elastic models for cable simulations using standard
measurements is well established. However, the measurement of effective linear elastic model parameters for
cable bundles is a time-consuming and tedious task, considering that in one car up to a hundred cable types
are bundled together in several hundred different cable bundles. Thus, the estimation of effective cable bundle
stiffnesses is desirable and was executed in [9]. Here, a data-based approach using Gaussian process regression
was used to train models for the estimation of effective cable bundle stiffnesses based on easily available input
such as single cable parameters and the used taping pattern. The data base used for training consisted of around
500 bundle data sets containing information about the bundle composition, the measured bundle stiffnesses and
the measured parameters of the single cables in a bundle. The authors showed that this approach can be used
to quickly estimate model parameters for cable bundles with sufficient accuracy, but without the necessity for
further measurements once the model is trained. Interactions between single cables and cables and the casing
are implicitly taken into account in this approach, as they influence the training data base.

In certain application cases, enhanced constitutive models are necessary, for example if more exact results for
resulting forces or moments are required. Zhao et al. [3] propose a method to consider non-linear elastic be-
havior in a Cosserat rod model. They present a procedure to determine a state-dependent stiffness characteristic
from experimental measurements using an inverse method. An iterative method is used to implement the non-
linear characteristic in a two-dimensional Cosserat rod model, making it available for numerical simulations.

Model complexity will be increased even further, when cyclic loading and remaining (plastic) deformations
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are relevant. Then, inelastic behavior typically needs to be considered. Due to their complex structure,
(pseudo)damage and plasticity can occur. Inelastic constitutive laws for geometrically exact rods have been
formulated based on the sectional quantities in [5] and [10]. In the former, pure bending experiments on a cable
were the foundation for the parameter determination. Latest research activities consider a more flexible data-
based modeling approach of inelastic effects utilizing hysteresis operators [11], which emulate inelastic effects
in a generic, phenomenological manner without the need of a priori assumptions on the material behavior.

4. Conclusions

The present contribution gives an overview over experimental methods for cable structures as basis for constitu-
tive modeling. Depending on the specific application, the relevant load case and observed effects, an appropriate
constitutive model has to be chosen to connect simulations to reality. Furthermore, model parameters have to
be accessible in experiments.
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1. Introduction

Most formulations of flexible multibody dynamics are based on the assumption that the elastic velocity is
the partial time derivative of the kinematic field. As a result, the set of equilibrium equations governing the
dynamics of the system is a set of second-order equations in time in the form

fff (qqq, q̇qq, q̈qq)+BBBT
λλλ = ppp(t) (1)

which is classically solved using a time integration scheme adapted to second-order system. Complexity of
their explicit expression arises from the convection terms resulting from the large rotations in the system. Such
complexity can be reduced by relaxin compatibility in time, thus recasting the second-order equation system
(1) in the two-field form

fff (qqq, q̇qq,vvv, v̇vv)+BBBT
λλλ = ppp(t) (2)

vvv = hhh(qqq, q̇qq) (3)

where the discretized kinematic and velocity fields qqq and vvv are treated as independent, and with hhh(qqq, q̇qq) being
an appropriate expression of generalized velocity which arises naturally from the development of the time
derivative of the kinematic field.

2. Floating frame of reference formulation of an elastic body undergoing uniform rotation

reeeP rXXXP
X1

X2

X3

x1
x2

x3

(mxxxr,
mRRRr)

r

P

xxxP

kkk
ωmt

rΩΩΩr
mVVV r

rVVV P,e

Figure 1: Kinematic description of a
deformable body in a rotating frame.

The general motion xxxP of a flexible body undergoing rotation with uni-
form angular velocity ωm about a rotation axis kkk will be decomposed
into 3 successive frame transformations: rotation motion RRR(ωmt) at
constant angular velocity, rigid motion (mxxxr,

mRRRr) of a body frame r
relative to the rotating frame, and elastic motion reeeP relative to the
body frame:

xxxP = RRRm(kkkωmt)(mxxxr +
m RRRr(

rXXXP +
r eeeP)) (4)

and the associated velocity field can be split in the form

Velocity Motion field derivative

Frame translation mVVV r
mẋxxr + ω̃ωωm

mxxxr

Frame rotation rΩ̃ΩΩr
mRRRr

T (mṘRRr +
rω̃ωωm

mRRRr)
Elastic motion rVVV P,e

rėeeP +(mRRRr
T (mṘRRr +

rω̃ωωm
mRRRr))

reeeP

It can be shown that the dual form of kinetic energy can be obtained in the fully uncoupled form [1]

K ⋆(mVVV r,
r
ΩΩΩr,

rVVV P,e) =
1
2

mB
mVVV r

T mVVV r +
1
2

r
ΩΩΩr

T JJJ r
ΩΩΩr +

1
2

∫
V

rVVV P,e
T rVVV P,e ρdV (5)

provided that the essential condition of orthogonality
∫

V
rVVV P,e

T UUUρdV = 000 between velocity and rigid body
motions fields is fulfilled, and with mB and JJJ being the mass and tensor of inertia of the body about its center
of mass.
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The two-field formulation results then from a Legendre transformation [2] by which the kinetic energy is ex-
pressed in the mixed form

K ⋆⋆(mxxxr,
mRRRr,

reeeP,
mVVV r,

r
ΩΩΩr,

rVVV P,e) =
1
2

mB
mVVV r

T (mẋxxr + ω̃ωωm
mxxxr)+

1
2

r
ΩΩΩr

T JJJ (r
ωωωm + rWWW r)

+
1
2

∫
V

rVVV P,e
T (rėeeP +(r

ω̃ωωm + rW̃WW r)
reeeP) ρdV −K ⋆(mVVV r,

r
ΩΩΩr,

rVVV P,e)
(6)

with, for sake of conciseness, the angular velocity notations rωωωm = mRRRr
T

ωωωm and rW̃WW r =
mRRRr

T mṘRRr.

3. Finite element discretization

Finite discretization is achieved using a 3× n set NNN = diag(NNN1,NNN2,NNN3) of shape functions to discretize the
elastic motion and velocity fields

reeeP = NNNqqq and rVVV P,e = NNNvvv (7)

The discretized equations of motion are then described in terms of the mass and stiffness matrices KKK and MMM and
the matrices of gyroscopic origin GGG(rωωωm + rWWW r), AAA(rωωωm + rWWW r), SSS(qqq) and SSS(vvv). We get the contributions

time compatibility equilibrium

CM translation mVVV r =
mẋxxr + ω̃ωωm

mxxxr −mB ( ˙mVVV r + ω̃ωωm
mVVV r) −mB ω̃ωωm

mVVV r

CM rotation rΩΩΩr =
rωωωm + rWWW r −JJJrΩ̇ΩΩr − (rW̃WW r +

rω̃ωωm)(JJJrΩΩΩr +SSS(qqq)vvv)−SSS(qqq)v̇vv+SSS(vvv)q̇qq
elastic kernel vvv = q̇qq+AAA(rωωωm + rWWW r)qqq −KKKqqq−MMMv̇vv−GGG(rωωωm + rWWW r)vvv = 000

The expression of the gyroscopic matrices GGG, AAA and SSS becomes quite simple in the case when the choice of
shape functions is isotropic: NNNi = NNN⋆, i = 1,2,3, as it is the case for 3-D solid modeling. They can then be
written in terms of the one-dimensional mass kernel

MMM⋆ =
∫

V
NNN⋆T NNN⋆

ρdV and the associated Si matrices SSSi = εi jkLLLT
j MMM⋆LLLk i = 1,2,3 (8)

where LLL j are Boolean matrices allowing component-wise splitting of qqq and vvv. We get then, with ααα = rωωωm+
rWWW r,

AAA(ααα) = diag(α̃αα), SSS(qqq)vvv =
[
qqqT SSSivvv

]
=−SSS(vvv)qqq , G(ααα) =−∑

i
αiSi (9)

4. Conclusion

Relaxing compatibility in time allows simplifying the floating frame of reference formulation of an elastic
body. It can be shown [1] that the resulting motion equations can easily be reduced to superelement form using
Herting’s modal synthesis method [3]. In the oral presentation, the example of a flexible system rotating at high
speed will be presented to demonstrate the efficiency of the proposed methodology.
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1. Introduction

Compatible discretizations, such as finite element exterior calculus, provide a discretization framework that
respect the cohomological structure of the de Rham complex, which can be used to systematically construct
stable mixed finite element methods. Multisymplectic variational integrators are a class of geometric numerical
integrators for Lagrangian and Hamiltonian field theories, and they yield methods that preserve the multisym-
plectic structure and momentum-conservation properties of the continuous system. We investigate the synthesis
of these two approaches, by constructing discretization of the variational principle for Lagrangian field theo-
ries utilizing structure-preserving finite element projections. In our investigation, compatible discretization by
cochain projections plays a pivotal role in the preservation of the variational structure at the discrete level, al-
lowing the discrete variational structure to essentially be the restriction of the continuum variational structure
to a finite-dimensional subspace. The preservation of the variational structure at the discrete level will allow us
to construct a discrete Cartan form, which encodes the variational structure of the discrete theory, and subse-
quently, we utilize the discrete Cartan form to naturally state discrete analogues of Noether’s theorem and multi-
symplecticity, which generalize those introduced in the discrete Lagrangian variational framework by Marsden
et al. [1]. We will study both covariant spacetime discretization and canonical spatial semi-discretization, and
subsequently relate the two in the case of spacetime tensor product finite element spaces.

2. Multisymplectic Formulation of Classical Field Theories

The variational principle for Lagrangian PDEs involve a multisymplectic formulation [1, 2]. The base space
X consists of independent variables, denoted by (x0, . . . ,xn) ≡ (t,x), where x0 ≡ t is time, and (x1, . . . ,xn) ≡ x
are space variables. The dependent field variables, (y1, . . . ,ym)≡ y, form a fiber over each spacetime basepoint.
The independent and field variables form the configuration bundle, π : Y → X . The configuration of the system
is specified by a section of Y over X , which is a continuous map φ : X → Y , such that π ◦φ = 1X . This means
that for every (t,x) ∈ X , φ((t,x)) is in the fiber π−1((t,x)) over (t,x).

For ODEs, the Lagrangian depends on position and its time derivative, which is an element of the tangent
bundle T Q, and the action is obtained by integrating the Lagrangian in time. In the multisymplectic case, the
Lagrangian density is dependent on the field variables and the partial derivatives of the field variables with
respect to the spacetime variables, and the action integral is obtained by integrating the Lagrangian density
over a region of spacetime. The multisymplectic analogue of the tangent bundle is the first jet bundle J1Y ,
consisting of the configuration bundle Y , and the first partial derivatives of the field variables with respect to the
independent variables. In coordinates, we have φ(x0, . . . ,xn) = (x0, . . .xn,y1, . . .ym), which allows us to denote
the partial derivatives by va

µ = ya
,µ = ∂ya/∂xµ . We can think of J1Y as a fiber bundle over X . Given a section

φ : X → Y , we obtain its first jet extension, j1φ : X → J1Y , that is given by

j1
φ(x0, . . . ,xn) =

(
x0, . . . ,xn,y1, . . . ,ym,y1

,0, . . . ,y
m
,n
)
,

which is a section of the fiber bundle J1Y over X . We refer to sections of J1Y of the form j1φ , where φ is a
section of Y , as holonomic. The configuration space is the space of sections of Y and the velocity phase space
is the space of holonomic sections of J1Y . The Lagrangian density is a bundle map L : J1Y → ∧n+1(T ∗X)
and hence, induces a map on the space of sections L : Γ(J1Y ) → Ωn+1(X). Thus, we can define the action
functional S : Γ(Y )→ R by S[φ ] =

∫
X L ( j1φ). Hamilton’s principle states that δS = 0, subject to compactly

supported variations. As we will see, this is the basis of Lagrangian multisymplectic variational integrators [1].
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The variational structure of a Lagrangian field theory is given by the Cartan form, which in coordinates has the
expression

ΘL =
∂L
∂va

µ

dya ∧dnxµ +

(
L− ∂L

∂va
µ

va
µ

)
dn+1x. (1)

This can be defined intrinsically as the pullback of the canonical (n+ 1)-form on the dual jet bundle by the
covariant Legendre transform FL : J1Y → J1Y ∗. Then, the action can be expressed as S[φ ] =

∫
X L ( j1φ) =∫

X( j1φ)∗ΘL . The variation of the action is then expressed as

dS[φ ] ·V =−
∫

X
( j1

φ)∗( j1V⌟ ΩL )+
∫

∂X
( j1

φ)∗( j1V⌟ ΘL ),

where ΩL =−dΘL defines the multisymplectic form and j1V denotes the jet prolongation of the vector field V
(for details, see [3]). Hence, the variation of the action is completely specified by the Cartan form; we will show
that a finite element discretization of the variational principle gives rise to a discrete form and subsequently we
will express variational properties of the discrete system in terms of the discrete Cartan form.

3. Finite Element Exterior Calculus

The notion of compatible discretization is a research area that has garnered significant interest and activity in
the finite element community, motivated by the seminal work of Arnold et al. [4] on finite element exterior
calculus that provides a broad generalization of Hiptmair’s work on mixed finite elements for electromagnetism
[5]. This arises from the fundamental role that the de Rham complex of exterior differential forms plays in
mixed formulations of elliptic partial differential equations, and the realization that many of the most successful
mixed finite element spaces, such as Raviart–Thomas and Nédélec elements, can be viewed as finite element
subspaces of the de Rham complex that satisfy a bounded cochain projection property, so that the set of mixed
finite elements form a subcomplex that provides stable approximations of the original problem.

4. Group-equivariant interpolation

The study of group-equivariant approximation spaces [6] for functions taking values on manifolds is moti-
vated by the applications to geometric structure-preserving discretization of Lagrangian and Hamiltonian PDEs
with symmetries. In particular, when the Lagrangian density for a Lagrangian PDE with symmetry is dis-
cretized using a Lagrangian multisymplectic variational integrator constructed from an approximation space
that is equivariant with respect to the symmetry group, the resulting numerical method automatically preserves
the momentum map associated with the symmetry of the PDE. In essence, such variational discretizations ex-
hibit a discrete analogue of Noether’s theorem, which connects symmetries of the Lagrangian with momentum
conservation laws.

Many intrinsic geometric flows such as the Ricci flow and the Einstein equations involves computing the evolu-
tion of a Riemannian or pseudo-Riemannian metric on spacetime. Additionally, these intrinsic geometric flows
can often be formulated variationally, so it is natural to consider group-equivariant approximation spaces taking
values on Riemannian or pseudo-Riemannian metrics with a view towards constructing variational discretiza-
tions that preserve the associated momentum maps.

A now standard approach to constructing an approximation space for functions taking values on a Riemannian
manifold that is equivariant with respect to Riemannian isometries is the method of geodesic finite elements
introduced independently by Sander [7] and Grohs [8]. Given a Riemannian manifold (M,g), the geodesic
finite element ϕ : ∆n → M associated with a set of linear space finite elements {vi : ∆n → R}n

i=0 is given by the
Fréchet (or Karcher) mean,

ϕ(x) = argmin
p∈M ∑

n
i=0 vi(x)(dist(p,mi))

2,

where the optimization problem involved can be solved using optimization algorithms developed for matrix
manifolds (see Absil et al. [9], and references therein). The spatial derivatives of the geodesic finite element
can be computed in terms of an associated optimization problem. The advantage of the geodesic finite element
approach is that it inherits the approximation properties of the underlying linear space finite element, but it can
be expensive to compute, since it entails solving an optimization problem on a manifold.
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An alternative approach to group-equivariant interpolation for functions taking values on symmetric spaces
was introduced in Gawlik and Leok [6], which, in particular, is applicable to the interpolation of Riemannian
and pseudo-Riemannian metrics. It uses the generalized polar decomposition [10] to construct a local diffeo-
morphism between a symmetric space and a Lie triple system, and thereby lift a scalar-valued interpolant to a
symmetric space-valued interpolant.

5. Lagrangian Variational Integrators

Variational integrators (see [11], and references therein) are a class of geometric structure-preserving numerical
integrators that are based on a discretization of Hamilton’s principle. They are particularly appropriate for the
simulation of Lagrangian and Hamiltonian ODEs and PDEs, as they automatically preserve many geometric
invariants, including the symplectic structure, momentum maps associated with symmetries of the system, and
exhibit bounded energy errors for exponentially long times.

In the case of Lagrangian ODEs, variational integrators are based on constructing computable approximations
Ld : Q×Q → R of the exact discrete Lagrangian,

LE
d (q0,q1,h) = ext q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

which can be viewed as Jacobi’s solution of the Hamilton–Jacobi equation. Given a discrete Lagrangian Ld ,
one introduces the discrete action sum Sd = ∑

n−1
k=0 Ld(qk,qk+1), and then the discrete Hamilton’s principle states

that δSd = 0, for fixed boundary conditions q0 and qn. This leads to the discrete Euler–Lagrange equations,

D2Ld(qk−1,qk)+D1Ld(qk,qk+1) = 0,

where Di denotes the partial derivative with respect to the i-th argument. This implicitly defines the discrete
Lagrangian map FLd : (qk−1,qk) 7→ (qk,qk+1) for initial conditions (qk−1,qk) that are sufficiently close to the
diagonal of Q×Q. It is also equivalent to the implicit discrete Euler–Lagrange equations,

pk =−D1Ld(qk,qk+1), pk+1 = D2Ld(qk,qk+1),

which implicitly defines the discrete Hamiltonian map F̃Ld : (qk, pk) 7→ (qk+1, pk+1), which is automatically
symplectic. This clearly follows from the fact that these equations are precisely the characterization of a sym-
plectic map in terms of a Type I generating function. The two equations in the implicit discrete Euler–Lagrange
equations can be used to define the discrete Legendre transforms, F±Ld : Q×Q → T ∗Q:

F+Ld : (q0,q1)→ (q1, p1) = (q1,D2Ld(q0,q1)),

F−Ld : (q0,q1)→ (q0, p0) = (q0,−D1Ld(q0,q1)).

The following commutative diagram illustrates the relationship between the discrete Hamiltonian flow map,
discrete Lagrangian flow map, and the discrete Legendre transforms,

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1,qk)

F+Ld

@@

FLd

// (qk,qk+1) FLd

//

F+Ld

>>

F−Ld

^^

(qk+1,qk+2)

F−Ld

aa

If the discrete Lagrangian is invariant under the diagonal action of a Lie group G, i.e., Ld(q0,q1) = Ld(gq0,gq1),
for all g ∈ G, then the discrete Noether’s theorem states that there is a discrete momentum map that is auto-
matically preserved by the variational integrator. The bounded energy error of variational integrators can be
understood by performing backward error analysis [12, 13], which then shows that the discrete flow map is
approximated with exponential accuracy by the exact flow map of the Hamiltonian vector field of a modified
Hamiltonian. Similarly, backward error analysis for Lagrangian variational integrators is considered in [14].
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6. Multisymplectic Hamiltonian Variational Integrators.

For Hamiltonian PDEs (see, for example, Marsden and Shkoller [15]) the action is a functional on the field and
multimomenta values (more precisely, sections of the restricted dual jet bundle),

S[φ , p] =
∫
[pµ

∂µφ −H(φ , p)]dn+1x,

where the integration is over some (n+1)-dimensional region of spacetime. The variational principle gives the
De Donder–Weyl equations ∂µ pµ = −∂H/∂φ , ∂µφ = ∂H/∂ pµ . Defining z = (φ , p0, . . . , pn) and Kµ as the
(n+2)× (n+2) skew-symmetric matrix with value −1 in the (0,µ +1) entry, 1 in the (µ +1,0) entry, and 0
in every other entry (with indexing from 0 to n+1), the De Donder–Weyl equations can be written in the form

K0
∂0z+ · · ·+Kn

∂nz = ∇zH.

This formulation of Hamiltonian PDEs was studied in Bridges [16]; in particular, it was shown that such a
system admits a multisymplectic conservation law of the form ∂µωµ(V,W ) = 0, where the ωµ are two-forms
corresponding to Kµ and the conservation law holds when evaluated on first variations V,W . For discretizing
such equations, multisymplectic integrators have been developed which admit a discrete analogue of this multi-
symplectic conservation law (see, for example, Bridges and Reich [17]). Such multisymplectic integrators have
traditionally not been approached from a variational perspective.

However, in Tran and Leok [18], we developed a systematic method for constructing variational integrators
for multisymplectic Hamiltonian PDEs which automatically admit a discrete multisymplectic conservation law
and a discrete Noether’s theorem by virtue of the discrete variational principle. The construction is based on a
discrete approximation of the boundary Hamiltonian that was introduced in Vankerschaver et al. [19],

H∂U(ϕA,πB) = ext
[∫

B
pµ

φdnxµ −
∫

U
(pµ

∂µφ −H(φ , p))dn+1x
]
,

where ∂U = A⊔B, boundary conditions are placed on the field value φ on A and normal momenta value on B,
and one extremizes over the sections (φ , p) over U satisfying the specified boundary conditions. The boundary
Hamiltonian is a generating functional in the sense that the Type II variational principle generates the normal
momenta value along A and the field value along B,

δH∂U

δϕA
=−pn|A,

δH∂U

δπB
= φ |B.

A variational integrator is then constructed by first approximating the boundary Hamiltonian using a finite-
dimensional function space and quadrature, and subsequently enforcing the Type II variational principle. For
example, with particular choices of function spaces and quadrature, Tran and Leok [18] recover the class of
multisymplectic partitioned Runge–Kutta methods.

We take a different approach in several regards. First, we focus on Lagrangian field theories as opposed to
Hamiltonian field theories. For Hamiltonian field theories, the momenta are related to the field and its deriva-
tive by the Legendre transform; this falls out from the variational principle so one does not need to enforce it
beforehand. Thus, in this sense, the momenta and field values can be considered as independent before enforc-
ing the variational principle. On the other hand, for Lagrangian field theories, the Lagrangian depends on both
the field value and its first derivative, so one cannot naïvely treat the two as independent; that is, the Lagrangian
depends on holonomic sections of the jet bundle. As we will see, this will mean that we need to pay particular
attention to the holonomic condition when discretizing via a finite element projection. Furthermore, as opposed
to constructing variational integrators from a generating functional (the analogue in the Lagrangian framework
would be the boundary Lagrangian, see Vankerschaver et al. [19]), we instead investigate directly discretizing
the variational principle δS = 0 utilizing projections into finite-dimensional subspaces. Finally, for simplic-
ity, we do not utilize any quadrature approximations of the various integrals which we encounter; for strong
nonlinearities in the Lagrangian, one generally has to utilize quadrature to construct an efficient discretization.
We will assume exact integration in order to keep the exposition simple, but the theory that we outline is also
applicable to the case of quadrature approximation by first applying the quadrature approximation of the action
before enforcing the variational principle, so that the resulting discretization is still variational.
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7. Main Contributions

We study the variational finite element discretization of Lagrangian field theories from two perspectives; we be-
gin by investigating directly discretizing the full variational principle over the full spacetime domain, which we
refer to as the “covariant" approach, and subsequently study semi-discretization of the instantaneous variational
principle on a globally hyperbolic spacetime, which we refer to as the “canonical" approach. This can be con-
sidered a discrete analogue to the program initiated in Gotay et al. [3, 20], which lays the foundation for relating
the covariant and canonical formulations of Lagrangian field theories through their (multi)symplectic structures
and momentum maps. One of the goals of understanding the relation between these two different formulations
is to systematically relate the covariant gauge symmetries of a gauge field theory to its initial value constraints.
This is seen, for example, in general relativity, where the diffeomorphism gauge invariance gives rise to the
Einstein constraint equations over the initial data hypersurface (see, for example, Gourgoulhon [21]). When
one semi-discretizes such gauge field theories, the discrete initial data must satisfy an associated discrete con-
straint. We aim to make sense of the discrete geometric structures in the covariant and canonical discretization
approaches as a foundation for understanding the discretization of gauge field theories.
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The talk presents a universal framework to formulate generalized section-section interaction potentials (SSIP)
within the geometrically exact beam theory [1]. By exploiting the fundamental kinematic assumption of un-
deformable cross-sections, an objective (i.e., frame-invariant) description of SSIPs via a minimal set of six
(translational and rotational) relative coordinates, either in spatial or in material form, is proposed. Based on
work-pairing, work-conjugated section-section interaction forces and moments, either in spatial or in material
form, are identified that can be consistently derived from a variational principle. Interestingly, it is shown
that hyperelastic stored-energy functions relating the deformation measures and stress-resultants of the well-
known geometrically exact Simo-Reissner beam theory can also be identified as SSIPs when considering the
asymptotic limit of small relative distances and rotations between the interacting cross-sections. Moreover,
the proposed variational problem formulation is demonstrated to be of a very general nature, thus allowing for
the formulation of translational and rotational constraints between arbitrarily oriented cross-sections based on
either a penalty or a Lagrange multiplier potential. Applications include fiber-based structures and materials
in technical and biological systems, where the proposed approach allows to model short- or long-ranged inter-
molecular (e.g., electrostatic, van der Waals or repulsive steric) interactions between fibers in geometrically
complex arrangements (see Figure 1(b)) and to formulate translational and rotational coupling constraints be-
tween different fibers (e.g., cross-linked polymer chains) or between fibers and a matrix phase (see Figure 1(a)).

(a) Twisting of a fiber-reinforced structure [2] (b) Adhesive nanofiber-grafted surfaces [3]

Figure 1: Potential application scenarios for generalized section-section interaction potentials
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This presentation gives an overview and outlook on a comprehensive finite-element approach developed for the
efficient design and accurate analysis of flexible multibody systems of arbitrary topology, featuring kinematic
joints and highly flexible slender components ([1, 2, 3, 4] and references therein). The framework uses math-
ematical models and numerical solution methods constructed using tools from group theory and differential
geometry, particularly Lie groups.

One of the fundamental challenges in modeling articulated systems is the presence of large amplitude motions of
and within the system, leading to strong kinematic (geometric) non-linearity. A central concept to address this
challenge is that of frames and frame transformations, which belong to a specific Lie group namely the special
Euclidean group. This mathematical structure inherently couples rotation and translation and can be represented
through various means such as homogeneous transformation matrices and dual quaternions. Because it provides
a rigorous treatment of rigid-body transformations, the framework enables the consistent definition of frame-
invariant relative motions in kinematic joints and deformation measures in flexible components.

The framework adopts a local frame approach, employing the frames attached to material points on bodies
to resolve locally derivatives such as velocity and strain, as well as finite relative motions occurring within
joints. This approach naturally filters out geometric non-linearities and yields equilibrium equations referred
to as intrinsic due to their dependence solely on local quantities. These equations take the form of differential-
algebraic equations on a Lie group, whose powerful mathematical apparatus can be exploited to streamline the
development of efficient geometrically-consistent methods. For instance, it facilitates the implementation of
beam finite elements that circumvent shear locking issues and enables the derivation of time integration methods
that avoid global parameterization and, consequently, singularities. Additionally, the reduced non-linearities
afforded by the formalism bring significant computational advantages. Notably, the iteration matrix utilized in
implicit integration schemes is insensitive to overall large amplitude motions, instead influenced solely by local
relative transformations, such as deformations in flexible elements and relative motions in kinematic joints. The
efficient management of the computation and factorization of the iteration matrix significantly improves solver
efficiency.

The presentation will be structured as follows. The fundamental mechanical concepts that drive the reliance of
the formalism on frames and frame transformations will be recapitulated and emphasis will be placed on their
manipulation as elements of the special Euclidean group, discussing coupled rotation-translation and practical
aspects of representation and parameterization. The presentation will then explore some of the mathematical
complexities inherent in this framework and aim at demonstrating the practical benefits through illustrative
examples. Additionally, a small python package that illustrates the computer implementation of the framework
will be made available.
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1. Introduction

The shift towards more sustainable energy sources allows for lattice structures to play a role in the design of
future generations of Li-ion batteries. In particular, three-dimensional electrode architectures have the potential
to provide shorter ion-diffusion paths due to greater surface-to-volume ratios of the active electrode material
[1]. Thus, the power density of batteries can be improved, which leads to shorter charging times [1]. However,
the modeling and simulation of lattice structures (let alone their optimization) with commonly used methods,
such as full continuum finite elements, is computationally expensive. A way to mitigate this adversity is the
use of beam theories for the modeling of slender microstructures. However, an efficient numerical scheme for
the solution of 3D beams that allows for large volumetric strain, induced primarily by Li-ion diffusion, has not
been found in the literature. This contribution aims to provide essential steps in this direction.

For the Cosserat rod model, a mixed isogeometric collocation method that alleviates shear locking phenomena
has already been developed and validated for a linear elastic material model with small elastic strains [2]. This
method has been recently extended as to capture inelastic material behaviours, i.e., to include elasto-visco-
plastic material behavior with softening effects [3]. In this contribution, the model is further enhanced by
the mechanical effects of volumetric strains resulting from a temperature or a concentration field, i.e., one-
dimensional diffusion processes are incorporated. Consequently, the presented model represents the starting
point for the coupling between thermodynamics, chemo-mechanics, beam theory, and isogeometric analysis.

2. Thermo- or chemoelastic Cosserat rod formulation

The steady state balance of linear and angular momenta, together with the sourceless, steady state diffusion
equation for the one-dimensional temperature or chemical concentration field are described as follows:

fn(s) = n′(s) = 0 with n(s) = RCε and ε(s) = R⊤r′− e3 −α (c0 − c)e3, (1)

fm(s) = m′(s)+ r′(s)×n(s) = 0 with m(s) = RDκ and κ(s) = axl
(

R′⊤R
)
, (2)

fc(s) = q′(s) = 0 with q(s) =−λ Ac′. (3)

Here, the unknown, primary variables of the beam of length L are the current position of the centerline r(s) :
[0,L]→ R3, the orientation of the cross-section R(s) : [0,L]→ SO(3), as well as the axial concentration field
c(s) : [0,L]→ R. From these, the translational strains ε(s) ∈R3 and rotational strains κ(s) ∈R3 are computed,
with (•)′ denoting the derivative w.r.t. the arc-length parameter s of the initial configuration. The terms n(s) ∈
R3 and m(s) ∈ R3 represent the internal forces and moments in the current configuration, and q(s) ∈ R the
thermal or chemical flux. The coupling of mechanical and diffusion effects is achieved through the term α(c0−
c(s))e3 in Eq. (1), where α(s) is a (potentially concentration dependent) expansion coefficient, c0 ∈R the initial
concentration, and e3 ∈ R3 is a unit vector that allocates the thermal/chemical strain to the axial component
within the translational strain vector. The matrices C(s) ∈R3×3 in Eq. (1) and D(s) ∈R3×3 in Eq. (2) represent
the (potentially concentration dependent) constitutive matrices of the model. Furthermore, the area of the cross-
section is represented by A(s) and the thermal/chemical conductivity of the material by λ (s).

3. Isogeometric collocation method

The nonlinear, coupled problem expressed by Eqs. (1) to (3) is numerically solved with isogeometric analysis.
In order to do so, the centerline curve r(s), a quaternion field q(s) used for the parameterization of R(s), and the
concentrations c(s) are discretized as B-spline curves r(s)≈ rh(s) = ∑

n
l=1 Ni(s)ri, q(s)≈ qh(s) = ∑

n
i=1 Ni(s)qi,
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Figure 1: Elastic (a) and thermo/chemoelastic (b) response of cantilever beams subject to the same bending
moment.

and c(s) ≈ ch(s) = ∑
n
i=1 Ni(s)ci. Here, ri,qi and ci are the control points and Ni(s) : [0,L]→ R the n B-spline

basis functions. To determine the unknown control points, the approximate solutions rh,qh and ch are then
introduced into the strong form of Eqs. (1) to (3) and into suitable boundary conditions [2]. Subsequently, the
equations are collocated at a set of n points τi ∈ [0,L]. The resulting system of nonlinear coupled equations
of size 8n× 8n, is solved with Newton’s method. Therefore, the linearization of Eqs. (1) to (3) is required.
Consequently, the tangent stiffness matrix K(ri,qi,ci) ∈ R8n×8n is computed by calculating the derivatives of
fn, fm, fq and fc w.r.t. the control points ri,qi and ci.

4. Results

The coupling of the volumetric thermal/chemical strain with the mechanical part of the formulation is demon-
strated in Fig. 1, where the swelling of the cross-section visibly increases the bending stiffness of the struc-
ture. Figure 1 (a) shows the pure bending response of an originally straight cantilever beam and see (b) the
thermo/chemo-mechanical response of the same beam when it is additionally subject to a volumetric thermal/
chemical strain of 5%.

5. Conclusions and outlook

The presented formulation presents a direct extension to the already validated method presented by Weeger et al.
[2] and provides an additional steps towards conformal merging of CAD systems with beam theories capable of
reproducing multiphysical, inelastic behaviour. The formulation presented in this contribution reaches its limits
when simulating beams with large volumetric strains. However, this problem will be treated in subsequent
work, together with the inclusion of radial diffusion phenomena.
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1. Introduction

This contribution considers physical validation of simulation software with commercial or research background.
Romero et. al [1] proposed a framework within computer graphics consisting of four benchmark tests for phys-
ical validation of simulation tools for flexible slender structures as examined by the THREAD project.

We apply the rod and shell models implemented in the commercial software Industrial Paths Solutions [2, 3],
and the research code ODIN [4] to three benchmark tests illustrated by equilibrium states in Fig. 1. The models
are tailored to efficient simulation and thus share the motivational aspects prevailing in computer graphics. In
the process of simulation, we not only study the models behind the software employed, but also the numerical
behavior of the benchmark tests. We observe that the simulation results match the master curves from [1] for
parameter ranges relevant to the application field even for comparably coarse meshes.

2. Cantilever Bending

The first benchmark may deploy a shell or a rod, this means structures that are thin in one or two directions,
respectively. We clamp the specimen of interest at one end (for the shell such that the direction of gravity
stands normal on the center surface) and free the other end. Under the influence of gravity, the object bends
downwards as displayed for the rod in Fig. 1a. In this course, the coordinate ratios ∆y

∆x measured between the
end points depends on the dimensionless gravito-bending parameter

Γrod =
ρA◦gL3

EI
Γshell =

ρA□gL3

Dw
with geometrical parameters length L, shell width w, cross-section areas A, and second moment of area I, and
mechanical parameters density ρ , Young’s modulus E, flexural rigidity D, and gravity g.

Figure 2 displays the semi-analytic master curve and the simulation results for the IPS beam and shell on a
logarithmic scale. For rather coarse discretizations (e.g. 15 elements in the length dimension for the shell) and
high values Γ > 5e3 the simulations deviate from the master curve, but compute the physically correct solutions
for lower values or finer discretizations. Notably, the range of meaningful magnitudes of Γ for simulation of
circular and flat cables is [100,102] and [100,103], respectively.

(a) Cantilever bending (rod) (b) Bend-twist bifurcation (c) Lateral buckling

Figure 1: Exemplary equilibrium states for the three benchmark examples inspected in this contribution.
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Figure 2: Cantilever bench-
mark computed for the IPS
cable segment (rod, blue)
and the IPS flat cable (shell,
green). The markers match
the orange master curve.

Figure 3: Integrated Frenet
torsion of the equilibria in
the Bend-Twist benchmark in
IPS. Ground truth determined
by the master curve displayed
as red wall.

Figure 4: Overview of Lateral
Buckling benchmark in IPS.
Three-dimensional configura-
tions in green and stable two-
dimensional states in orange.

3. Bend-Twist Bifurcation

The coupling of bending and twist induces phenomena which are demanding to capture by rod or beam simu-
lation. We fixate a naturally circular rod vertically at one end such that the initial tangent and the direction of
gravity coincide. The fraction L

R of length L and natural bending radius R, and the gravito-bending parameter Γ

as dimensionless parameters decide whether the planar equilibrium state is stable or slight perturbations lead to
buckling to a three-dimensional state such as in Fig. 1b.

We observe a numerically very challenging behavior of the Bend-Twist benchmark manifesting in choice of
perturbation and subsequent decision for plane or spatial state. In particular, we need to approximate the Frenet
torsion from discrete points and then integrate its absolute value numerically, as globally vanishing Frenet
torsion characterizes plane states. Figure 3 displays the integrated absolute torsion in a height map for different
test samples varying in bending radius and gravity which quantitatively well fits together with the master curve.

4. Lateral Buckling

When clamping a ribbon such that its width dimension equals the direction of gravity, the gravito-bending
parameter Γ and the aspect ration of width to length w

L decide whether the planar state is a stable equilibrium or
a lateral buckling occurs at the slightest perturbation as depicted in Fig. 1c.

Figure 4 shows that the shell model can compute the bifurcation point quantitatively well even for rather coarse
discretizations as long as w < L. Naturally, distinct choices of geometry and material parameters lead to differ-
ent conditioning in the numerics and thus to significant variations of the shell behavior.
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1. Introduction

Although nanotechnological progress has been very rapid in recent decades, the mechanical description of the
realistic behavior of nanostructures is still in its infancy. The usual approach is to apply macroscopic methods
directly. This can lead to some success, but the main problem is that some effects occur at the nanoscale that are
not present at the macroscale. This gives rise to the so-called size or nonlocal effects. In the context of rods and
beams, this subject has been studied extensively, and a variety of solutions exist. These include finite elements
suitable for such tasks. Unfortunately, all of these solutions rely on a material parameter known as the nonlocal
parameter. The exact values of this parameter for different materials are still unknown, although some attempts
to determine it can be found in the literature.

For this purpose, we use another possibility in the present study. The focus is on single-walled carbon nan-
otubes (SWCNTs). SWCNTs with a larger length-to-diameter ratio are slender and flexible structures, and in
the present case we focus on the axial behavior of L/D=5 SWCNTs that are not so slender. First, a compre-
hensive set of molecular dynamics simulations of uniaxial tension and compression tests are performed. These
constitute a dataset that is used for machine learning. The trained neural network is then coupled to FEM to
provide the stress-strain behavior and tangent operators, enabling mechanical analyzes of nanotruss structures.

2. Molecular dynamics

It is well known that the stress-strain response of a carbon nanotube depends on the chirality parameters n and
m. Since the SWCNT diameter is a function of chirality, this also means that the stress-strain curve is size
dependent, i.e., it is affected by the diameter. This topic has been extensively studied in the literature, see a
recent contribution in [1]. Since the goal of the present study is to create a model that is as general as possible,
a wide range of single-walled carbon nanotubes has been studied, including all possible configurations up to a
diameter of 4 nm.

Although finite element models exist that are based primarily on the harmonic potential, these models are diffi-
cult to reconcile with molecular dynamics simulations. Molecular dynamics simulations are usually considered
as an option that is closest to reality. This is a starting point for this research. The widely used LAMMPS code
was chosen as the simulation tool. 818 different SWCNT configurations were prepared and tested in tension
and compression at room temperature until failure. To alleviate issues due to stochastic vibrations of SWCNT
induced by temperature, all simulations were performed three times. Three tensile and three compressive sets
were averaged and used as the dataset for the machine learning algorithm. The potential used was AIREBO,
modified to better account for behavior close to the fracture. The remaining modeling details are omitted and
can be found in [1, 2].

The obtained results clearly show differences in the extreme values of stress and strain. In the compression
test, all SWCNTs fail by shell-like buckling, Fig. 1. In addition, the SWCNTs with the smallest diameter can
withstand much larger stresses in compression than those with the largest.
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Figure 1: Failure by buckling of (20,20) SWCNT during compression.

3. Machine learning and finite element framework

The dataset obtained through the MD simulations is then used to train the neural network in TensorFlow/Keras.
Particular attention is paid to enforcing convexity of the model so that it can be used in nonlinear FEM simula-
tions. The architecture is based on [3] and has been extended to include the ability to integrate and differentiate
the network. The trained neural network is then coupled to the Abaqus FE code via the UMAT subroutine.

4. Example

The proposed framework has been tested on a large number of examples, and only a brief insight is given here.
The uniaxial compression and tension of a (20,20) SWCNT is considered. The stress-strain curves obtained
from MD and ML based FEM are shown in Fig. 2. It is clear that both approaches give the same quality of
results, but the FEM approach has a much lower computational cost.

¸

Figure 2: True stress (GPa) - true strain (-) curves of (20,20) SWCNT as obtained by MD and ML based FEM.

5. Conclusions

The proposed framework is based on the development of a neural network to represent the uniaxial behavior
of SWCNTs derived from molecular dynamics simulations. The trained network is then coupled with a finite
element code and can be used to simulate large nanotrusses that cannot be analyzed within a realistic time frame
using classical molecular dynamics.
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1. Introduction 

We present a robust and efficient multi-patch formulation, based on the Isogeometric Collocation (IGA-C) 

method, for the solution of shear-deformable spatial beam structures with arbitrary initial curvature and 

complex topology. In this contribution we extend to the geometrically nonlinear (exact) regime the recent 

results obtained in [1].  

IGA-C methods have already been employed for the simulation of three-dimensional shear-deformable curved 

beams, for the geometrically linear [2],[3] and nonlinear [4] cases by adopting the classical Serret-Frenet (SF) 

local frame. However, this choice prevents the generalization of the formulation since the SF frame is not 

defined at points with vanishing curvature. To circumvent this limitation, the proposed approach is based on 

the combination of a rotation-minimizing frame (Bishop frame) with the exponential map for SO(3) (Rodrigues 

formula) to compute the beam curvature and its derivative. Figure 1 shows an example where the local Bishop 

frame (Figure 1c) is well defined compared to the SF case (Figure 1b) for a demanding spatial beam geometry, 

referred to as Spivak curve. 

  

 

  

(a) (b) (c) 

Figure 1. The Spivak curve (whose equation can be found, e.g., in [1]) defined on the interval 𝐼 =  [−2,3] (a), local 

Serret-Frenet frame (b) and the adopted rotation-minimizing frame (Bishop frame) (c). 

 

We will show how our formulation based on the Bishop frame not only permits bypassing the known issues 

related to the SF frame, but also does not require the Darboux vector and its derivative, which are both affected 

by the critical aspects of the SF frame. Moreover, the adopted Bishop frame does not suffer the instabilities 

related to possible ill-defined torsion (zero-curvature points), since it is set through an approximation 

technique. For further details, also regarding the computation of the rotation operator and the beam curvature, 

the reader may refer to [1]. 

 

2. Solution of the governing equations and numerical results 

The well-known equations governing the geometrically exact beam problems, once transformed in a 

displacement-based form by adopting a linear elastic material, are solved in the strong form. To do that, first 

an SO(3)-consistent linearization is performed, then the equations are discretized through B-spline basis 
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functions and finally collocated at the Greville points. Finite rotations are updated by using the (material) 

incremental rotation vector [5].  

The resulting computational strategy is high order accurate in space, thanks to the smoothness of the basis 

function, and extremely efficient due to: i) no elements integration; ii) minimal parameterization of finite 

rotations; iii) easy multi-patch coupling thanks to global reference frame. An example of the capabilities of the 

proposed formulation to simulate beam structures with highly complex shape and topology is shown in Figure 

2. 

 
 

 
 

(a) 
(b) 

Figure 2. Comparison between the deformed and undeformed configuration of a curved (Lissajous) beam (a) and a 

cardiovascular stent (b). Both structures are clamped at one end and pulled in the 𝑥3 direction. 

 

3. Conclusions  

The present contribution is focused on a geometrically exact beam formulation suitable for structures with 

complex shape and topology. The main novelty lies in the combination of an efficient SO(3)-consistent 

isogeometric collocation scheme for the solution of geometrically exact beams with a robust technique for the 

reconstruction of complex geometries. We believe that this work has the potential to impact all the engineering 

fields for which high efficiency is fundamental, e.g., the design of programmable and architectured materials.   
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1. Introduction

We model elastic deformations of long and flat structures, which we call ribbons. These ribbons may be
naturally flat or with intrinsic curvature. Modeling eventually leads to a set of ordinary differential equations
for the statics of the structure, which we solve with different numerical approaches. Depending on the aspect
ratio of the cross-section different models are used, from Kirchhoff to Sadowsky equations.

Figure 1: Clamped-clamped ribbon with imposed rotation.

2. Developable and extensible ribbons

Ribbons are flexible band-shaped structures and are widely present in our daily environment. Examples are
found in cable plies, fashion accessories, and hair ringlets. In industry, ribbons are present in graphene applica-
tions, the design of multi-stable tape springs for the aerospace industry, and flexible wheels for robots. There is
recently a renewed interest in understanding and modeling these structures, even if their mechanical study was
initiated back in the 1930s [2]. We limit ourselves to the case of a rectangular ribbon, composed of isotropic
and linearly elastic material. The thickness of the ribbon remains negligible in comparison to its width, the
latter being itself negligible in comparison to its length. We illustrate our methods with the computation of the
shape of the Möbius band [1], see Figure 2.
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Some models use an inextensibility hypothesis in which the ribbon possesses a developable surface. Developa-
bility implies that the surface cannot be stretched nor sheared, but deforms by pure bending. We introduce yet
another ribbon model in which extensibility is allowed, and we discuss how equilibrium solutions are modified
by the presence of extensibility [3].

Figure 2: Moebius configurations of a heavy ribbon resting on a support. The ribbon may either stand up (left)
or fall on its side (right).
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1. Adaptive structures and funicularity

Adaptive structures have active components varying geometric or mechanical properties. Adaptivity is common
for biological systems, such as plant shoots responding to light by modulation of intrinsic curvature. Engineered
adaptive structures include robotic arms, and adaptive metamaterials [1]. Adaptivity is less common in architec-
tural scale. Nevertheless, active supports and dampers are used to reduce vibration caused by dynamic effects
[2] or to optimize a structure under varying quasi-static loads. Natural ways of adaptation for slender structures
include modulation of lengths, and support conditions. Modulation of intrinsic curvature is less common, due
to difficulty of implementation.

We believe that adaptivity offers high benefits in the case of funicular structures such as arches and cables.
Funicular geometry ensures that the external loads generate axial internal forces, yielding exceptional material-
efficiency [3]. Funicular design is however limited by time-dependent loads, calling for adaptation of structural
shape to variations of funicular geometry. Our recent paper investigated adaptive funicularity via direct modu-
lation of intrinsic curvature of cantilevers [4]. However the curved shape of a structure can also be modulated
indirectly by varying boundary conditions.

2. Shape adaptation by active supports

We aim to explore quasi-static shape adaptation by active supports. We investigate an incompressible, unshear-
able, 2D, prismatic elastica rod of length L, and bending stiffness k, parametrized by arclength 0 ≤ s ≤ L,
using a geometrically exact rod theory. The intrinsic curvature is 0, however curved shapes are enforced by
non-conform, statically indeterminate boundary conditions: the two endpoints are fixed at points A, and B at
distance L−∆L from each other (Fig. 1, left). The tangent angles α and β at the two endpoints are fixed by
actuators. The external load is a quasi-static vertical, distributed force qQ(s) where q is an intensity parameter,
and Q(s) is normalized load distribution function with L−1 ∫ L

0 Q(s)2ds = 1.

Our ultimate goal is to maximize the critical load intensity qcrit associated with the failure of the structure if
q is increased while Q(s) is fixed. This is achieved by adaptation of α and β to Q(s). Failure criteria may

Figure 1: Left: sketch (top) and free body diagram (bottom) of elastica arch with active supports. Center:
bifurcation diagrams for Q(s) = 1, L = 2, k = 1 and α = β = 0 Right: bifurcation diagram for modified
terminal angles α = 0.4,β = 0.2.

39 



include (1) sudden dynamic motion due to loss of instability (like snap-through of flat arches); or some function
of equilibrium shape, for example the curvature of the bar reaching a critical value, corresponding to structural
damage. The known advantageous properties of funicular design, suggest that optimal shapes are similar to
funicular shapes corresponding to Q(s). Perfect match is however unlikely as the system is underactuated, i.e.
only a limited set of shapes can be enforced by the two control parameters α and β .

3. Bifurcation diagrams of deformed shapes

Bifurcations of a related model without a transverse load (q = 0) have been studied by [5]. We extend that in-
vestigation to non-zero external load intensity q. A numerical solver has been implemented using the nonlinear
BVP solver of the Chebfun Toolbox in Matlab [6] to traverse the equilibrium paths as the horizontal reaction
force λ is varied.

Figure 1 shows bifurcation diagrams for two different combinations of the angles α , β if the load distribution is
constant. Instead of using q as bifurcation parameter, we project solutions to a plane spanned by a dimensionless
parameter ∆L/L depending on the distance between the two supports, and λ . These diagrams show similarity to
bifurcation diagrams of classical Euler buckling. For α = β = 0, and q = 0, we recover the classical pitchfork
bifurcation diagram of a buckling column with fixed endpoints. The first bifurcation occurs at λcrit = 4L−2π2

and further bifurcations at 4n2L−2π2 for all integers n > 1. The equilibrium paths for q > 0 can be viewed as
perturbed versions of this equilibrium path (Fig.1, center). A symmetric rotation of the supports α = β = 0.4
creates a highly similar bifurcation diagram with largely unchanged critical values of λ albeit the pitchfork
bifurcation occurs at a non-zero value of the vertical load 2.5 < qcritical < 5 (not shown in the figure). An
asymmetric rotation of the supports α = 0.4,β = 0.2 again leaves λcritical of the first bifurcation point largely
unchanged with a non-zero critical value 2.5 < qcritical < 5 of the vertical load. At the same time, the second
and third critical points of λ are shifted considerably (Fig.1, right). These observations help to understand
qualitative features of deformed shapes despite non-integrability of the elastica equations.

4. Towards autonomous shape adaptation

The numerical solution method outlined above can be used to find equilibrium paths for any load distribution,
which allows the identification of optimal shapes corresponding to a given load distribution and a failure crite-
rion. Further efforts are needed to design an appropriate control policy in order to synthesize an autonomous,
adaptive system. The main challenge to be solved is the difficulty of sensing the actual distribution Q(s) di-
rectly. Our ongoing work aims to identify simple, easy-to-measure parameters of the curved shape, which allow
for the efficient estimation of Q(s). This problem has been solved successfully in the case of direct curvature
adaptation of a discrete model of a cantilever [4], and it is subject to ongoing work for the problem outlined
here.
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1. Introduction

With the Versatile Aeromechanic Simulation Tool (VAST), the German Aerospace Center is developing a soft-
ware framework for the simulation of rotary wing aircraft. One challenge consists of simulating the dynamic
behaviour of rotor blades. For this purpose we are investigating the Geometrically Exact Intrinsic Beam Model
[1] and its discretization. In [2] we derive an energy stable discretization for the governing equations of the
model using Discontinuous Galerkin techniques.

2. The underlying Model

As a theoretical basis for our approach we use the Geometrically Exact Intrinsic Theory for Dynamics of
Curved and Twisted Anisotropic Beams (Intrinsic Beam Model), which was developed by Hodges in 2003 [1].
It allows for the modelling of anisotropic and initially curved beams, making it well suited for rotor blades.
Furthermore, in contrast to other well-known beam models like Euler-Bernoulli or Timoschenko, the intrinsic
beam model contains non-linearities and is geometrically exact. Considered beams are idealized by a one
dimensional reference line so that the governing equations of the model can be formulated as system of partial
differential equations (PDE) in one space dimension and a time dimension. The solution of the PDE consists of
internal forces and moments as well as linear and angular velocities each in three dimensions so that there are
12 unknowns in total. If they are known, these intrinsic variables can be integrated to obtain displacements and
rotations of the modelled beam. We use a practical representation of the PDE as a system of linear hyperbolic
balance laws to derive boundary conditions that describe the mechanical setup of a clamped-free beam. From
these boundary conditions, we also show that they are sensible from a mathematical point of view. Further, we
use the energy method to show that the model is energy conserving in general and energy stable when applying
the boundary conditions and potential external forces and moments along the modelled beam. In particular, we
derive an estimation for the solution’s energy which shows that for bounded external forces and moments and
zero boundary data, the energy can not grow faster than quadratically in time.

3. Spatial Discretization

As the underlying PDE can be understood as a linear hyperbolic system of balance laws, an appropriate choice
for the spatial discretization of the underlying problem is a Discontinuous Galerkin (DG) Approach. The DG
approach not only has the advantage that it is very efficient and helps minimizing the degrees of freedom in
the computationally intensive process of simulating helicopters. It is also able to depict discontinuities, which
may enable us to take jumps in material parameters into account which are not unusual within helicopter rotor
blades. As numerical flux we use a slightly modified version of the well-known Lax-Friedrichs flux which
contains a so called upwind parameter. With the help of this DG discretization, we derive a semi-discrete
formulation of the problem that still continuously depends on the time variable. We further analyse the energy
of this semi-discrete problem and derive an estimation for it, that mimics the estimation for the energy of the
original problem’s solution. That is, also the semi-discrete energy can not increase faster than quadratically in
time and the DG discretization is in fact energy stable. The energy of the numerical solution emerging from the
semi-discrete problem has, however, additional numerical dissipation whose amount can be controlled by the
upwind parameter of the numerical flux.
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4. Numerical Experiments

To implement our theoretical considerations, we use the simulation framework Trixi [3]. To obtain a fully
discrete problem, we use an explicit fourth order Runge-Kutta scheme for the discretization of the semi-discrete
formulation which is represented by an ordinary differential equation in time. In our numerical experiments,
we investigate an exemplary case of the intrinsic beam model and use the techniques of manufactured solutions
to verify the convergence of the numerical solution resulting from our discretization scheme. The results show
an optimal convergence rate, i.e. the empirical order of convergence reaches the degree of the polynomials that
are used in the DG approach for the spatial discretization. Moreover, we experimentally verify our predictions
concerning the energy of the semi discrete solution. That is, for example that a simulated beam that is not
exposed to any external influences like external boundary data or external forces and moments along the beam
has a non-increasing energy. Additionally, we verify that the amount of numerical dissipation, i.e. the amount
by which the discrete energy decreases in that case is determined by the upwind parameter of the numerical
flux. Another point that is investigated in our numerical experiments is the post processing that is needed in
order to obtain the displacements and rotations of the one dimensional reference line representing the beam.

5. Conclusion and Outlook

Our results confirm that the DG approach suits the problem of the intrinsic beam model well. Our theoretical
investigations as well as our numerical experiments show that the discretization scheme is numerically stable.
Moreover, we could verify the convergence of the resulting numerical solution to the exact solution at an optimal
convergence rate. What remains to be investigated is the correctness of our simulation results by comparing
them to experimental data and other existing results. Often the available data consists of steady state cases,
which leads to another question that will be investigated in the future: Can the Intrinsic Beam Model together
with the DG discretization be united with a damping model? That will not only be interesting for the comparison
of simulation data with experimental data and exact steady state solutions but also for the actual application on
helicopter rotor blades. An example of how damping models can be integrated into the intrinsic beam model
is to find in [4], where Artola, Wynn and Palacios derive a damped version of the intrinsic beam model using
Generalised Kelvin-Voigt damping. Currently, we are investigating the compatibility of the damped model with
our considerations on the DG discretization so far.
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1. Introduction

Cables in modern cars act like the nervous system by linking electronic components and sensors to electronic
control units. Depending on the specific application, the cable structure, such as the parameters of the con-
ductor, insulation material and its thickness, is adapted. This work focuses on unshielded twisted pairs (UTP),
which are designed to transmit higher frequency signals with minimal interference. UTP are constructed by
intertwining two conductors with a specified pitch length, i.e. the distance in which one of the cables com-
pletes one revolution, see Figure 1. This pitch length is maintained by the regularity of the twists along the
cable and can be disrupted if the cable is subjected to mechanical deformation, such as torsion or locally small
bending radii. This can cause the cable’s electrical performance to deteriorate, such as an increase in cross
talk or impedance [1, 2]. Thus, it is important to investigate the behavior of UTPs under mechanical load in
simulations.

Figure 1: Example of a twisted pair. Top: FE mesh using two helices discretized with beam elements to
implement the double wire strand. Bottom: Photograph.

2. Finite Element Models for UTP

This work focuses on utilizing a numerical model to simulate the mechanical behavior of UTP under combined
bending and torsion loads, using finite beam elements that take into account the impact of friction on the defor-
mation behavior. The multi-wire FE model presented in [3], specifically the double wire strand model, is used
to simulate twisted pairs. In order to capture the nonlinear phenomena in the simulation, we model the two
conductors using finite beam elements with quadratic shape functions. Contact between cables is taken into
account using a Coulomb friction model with pure penalty formulation. We avoid superposition of geometrical
and material nonlinearities by restricting the material model to linear elasticity. The correct parameter identifi-
cation, i.e. determination of the effective Young’s modulus of the two conductors, from experiments is crucial,
but not straightforward in this case and will be discussed in the contribution.

We simulate a geometrically nonlinear bending load case (Figure 2), as described in [4] for bending a strand of
three parallel elastic wires, to investigate UTPs and validate our numerical model by comparing the predictions
to experimental data. This allows for the investigation of the effect of friction and geometry on the simulation
results.

The versatility of the presented approach allows for the investigation of various loading conditions including
multi-axial loads. Bending of UTP under pre-twisting is for example a test case, where coupling between
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Figure 2: Boundary condition for geometrically nonlinear bending of a twisted pair: The specimen is clamped
on both ends with a roller support on one end and a pinned support on the other. A cyclic loading is conducted by
applying a displacement wz on one end and the reaction force Fz is measured (left). Comparison of experimental
and simulation results (right).

bending and torsion can be examined. Thus, we apply the FE modeling approach to simulate such deformations
and investigate the influence of pre-twisting on the bending behavior of the UTP.

2.1. Results

A first comparison of experimental and simulation results for bending of UTP (Figure 2 (right)) shows that
the virtual and physical experiments agree acceptably well. The similar size of the areas under the respective
hysteresis indicates that the simulation captures the influence of frictional contact well. Based on the fact that
the hysteresis in the FE simulation only stems from friction between the cables and inelastic material effects are
not taken into account, it can be concluded that geometry and friction are the main contributions to the inelastic
behavior of UTP under bending. Despite the large spatial displacements of the UTP specimen, the local material
deformations of the two conductors are comparatively small due to their helix shape. Thus, material inelastic
effects such as plasticity do not contribute to the inelastic response of the UTP.

3. Conclusions

In this work, we use a commercial FEM tool to simulate UTP cables and compare simulation results to those
from corresponding experiments. Thus, the effect of frictional contact on the deformation behavior taking into
account different geometrical models, is investigated. The versatility of the approach allows for the investigation
of more advanced load cases, such as bending under pre-twisting which enables the investigation of coupling
effects between bending and torsion.
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1. Introduction

With the increasing electrification of almost every aspect of our modern civilisation the use of cables has in-
creased considerably. One example is the transition from combustion driven to electric cars. But also in other
industrial realms e.g. robots are used to replace or assist workers during manufacturing. Here cables are used
for both, signal transmission and provision of electric energy, being exposed to regularly changing mechani-
cal loads. Another aspect is the increasing electrification of the North and Baltic sea by placing offshore wind
turbines or other power generating/storing facilities into the sea, connected through undersea cables to the main-
land. Thus, apart from the electric properties, their mechanical characterisation is of increasing importance. The
aim of our work is to advance the possibilities in simulating cables and other slender structures efficiently.

2. Theory and modelling

In order to model the cables efficiently and accurately at the same time, the finite element method is used with
hexahedral elements based on high-order hierarchic shape functions combined with quasi-regional mapping.
For the hierarchic ansatz space an anisotropic choice is used, that has different ansatz orders in different direc-
tions depending on the structure and load case [1]. To improve the accuracy for local phenomena like plastic
fronts or contact regions of the cable the adaptive hp-refinement [2] is utilised.

Cables are usually a composition of many layers of different materials. A coaxial cable, for example, is com-
posed of an inner core of copper conductors, an insulation layer, a second layer of copper conductors, and a
final protective jacket on the outside. The different materials, the many single parts and their interaction be-
tween each other creates a complex overall behaviour [3]. To reduce the complexity of the computation, the
interactions and different materials are substituted by an effective material that is able to represent the resulting
macroscopic behaviour. Due to the displacement based hexahedral element formulation a large variety of strain
energy density function based material models are available. To this end an orthotropic elastoplastic material
model [5] was chosen. While the anisotropy enables a different behaviour for the different fibre directions, the
elastoplastic behaviour represents lasting changes of the inner structure like reordering of the parts.

The material model is characterised by the three fibre directions ivvv, for i = 1,2,3 in the reference configuration.
They construct a set of structural tensors iMMM = ivvv⊗ ivvv, which define six strain invariants Ji = tr[iMMMCCCe] and
Ji+3 = tr[iMMMCCC2

e ], with the elastic right Cauchy–Green tensor CCCe = FFFT
e FFFe. Here the deformation gradient is split

multiplicatively FFF = FFFeFFFp into elastic and plastic parts. The invariants combined with material parameters α j,
j = 1, ...,12 define the elastic strain energy density function

Ψe =
3

∑
i=1

[
αiJi +

1
2

αi+3J2
i +αi+9Ji+3

]
+α7J1J2 +α8J1J3 +α9J2J3. (1)

Since the inelastic behaviour is also anisotropic, the yielding exhibits a similar anisotropy. The structural tensors
are used to create six invariants from an Eshelby like stress tensor ΞΞΞ = 2ρ0CCCFFF−1

p
∂Ψe
∂CCCe

FFF -T
p , where CCC is the right

Cauchy–Green tensor. The stress invariants are then Ii = tr[MMMidevΞΞΞ] and Ii+3 = tr[MMMi(devΞΞΞ)2] for i = 1,2,3.
Combined with the material parameters β j for j = 1, ...,9, which represent the yield stresses an equivalent stress

χ =
3

∑
i=1

[
βiI2

i +βi+6Ii+3 +
1
2

3

∑
j=1

βi+ j+1IiI j

]
, (2)
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Figure 1: The left and middle picture show the identification simulations and corresponding experimental curves used
for the identification. On the right the validation experiment and simulation for free bending is shown [4].

is computed, that defines the yielding in Φ =
√

2
3

(
σ0

11
√

χ − (σ0
11 −Y )

)
, with the nonlinear isotropic hardening

Y and yield stress σ0
11. A detailed explanation of the constitutive and kinematic equations used can be found in

[4, 5].

Since the model is based on the macroscopic behaviour of the cable, the material parameters have to be identified
by experimental tests. To this end the particle swarm optimisation algorithm is used to identify the set of
effective material parameters. As an input the experimental results of a tension and a torsion test are used.

3. Numeric simulations and results

The described procedure of the previous section is applied on a coaxial cable of 90.5 mm length and 8.4 mm
diameter. In Fig. 1a and 1b the simulations using the identified material parameters show a good agreement with
the experimental results. A similar observation can be made for the free bending results (Fig. 1c) of the validation
experiment and simulation with the limitation to the loading cycle and the elastic part of the unloading. The
inelastic behaviour in the unloading is currently not captured by the model. A possible improvement could be
the usage of kinematic hardening instead of isotropic hardening, which has some similarities with the observed
behaviour.

In addition, local contact of the cable with hp-refinement is investigated to offer high accuracy for large local
strains. In a next step the extension towards twisted cable structures through helix like oriented fibre directions
is investigated.
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1. Introduction

Modeling the mechanical response of flexible slender structures undergoing complex deformations in post-
critical regime pose serious challenges in the adopted numerical methods especially while describing demand-
ing phenomenon such as material softening. The focus of the present work is on the phenomenon of strain lo-
calization in beam like structural elements which occurs when a material and stress dependent critical condition
is reached at some material point of the solid body. The onset of the critical condition results in concentration
of strains in the localized region that accelerates damage within a thin narrow band. In the present work a fully
consistent geometric and material nonlinearities are considered for both quasi-static and dynamic response of
the structure undergoing localized plastic deformation due to material softening using novel energy preserving
velocity based formulation by Zupan and Zupan [1]. The typical problems associated with rotational degrees
of freedom is completely avoided here with a convenient representation of tangent space using velocities and
angular velocities expressed in suitable reference frames. The model is extended with efficient and robust eval-
uation of stress resultants and cross-sectional tangent modulus [2] to take material nonlinearity into account.
The onset of the critical condition resulting in localization of strains is obtained with short low-order elements
where the peak like response of the strains are constant over the short segment.

2. Methodology

The system of governing equations for the Cosserat beam is a set of nonlinear partial differential equations
which are as follows[1]:

nnn′+ ñnn = ρAv̇vv, (1)

MMM′+KKK ×MMM+(ΓΓΓ−ΓΓΓ0)×NNN + q̂qq∗ ◦ m̃mm◦ q̂qq = ΩΩΩ× JJJρΩΩΩ+ JJJρΩ̇ΩΩ, (2)

where prime(′) denotes the derivative with respect to x and dot (·) denotes the derivative with respect to time,
ñnn and m̃mm are the external distributed force and moment vectors per unit length, ρ is the mass density and JJJρ

is the mass moment of inertia of the cross section, vvv and ΩΩΩ are the velocities and angular velocities, q̂qq is the
rotational quaternion, ΓΓΓ and KKK are the vectors of translational and rotational strains, respectively. Assuming that
the cross-sections suffers only from rigid rotations while undergoing deformation and the longitudinal strains
are linearly distributed over the cross-section, we assume that the longitudinal stress (σ ) in the material fibre
(y,z) is given by a rate independent nonlinear function of the longitudinal strain (ε):

σ (y,z) = F (ε (y,z)) . (3)

The assumption that the localization of deformation is primarily driven by the longitudinal stress is still valid
for several type of materials like reinforced concrete. The longitudinal components of the stress resultants NNN
and MMM are then obtained by the integration of the stress field over the cross-section, while the components of
shear resultants are assumed to be linearly dependent on the corresponding strains:[

NC
1 MC

2 MC
3

]T
=
[∫∫

σ(ε) dy dz −
∫∫

zσ(ε) dy dz
∫∫

yσ(ε) dy dz
]T

, (4)[
NC

2 NC
3 MC

1

]T
=
[
GA2Γ2 GA3Γ3 GJtK1

]T
, (5)

where G is the shear modulus, A2 and A3 are effective shear areas and Jt is the torsional moment of inertia.
The set of governing equations (1)-(2) are nonlinear partial differential equations that needs to be discretized in
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space and time. The discretization in time is based on midpoint rule and the resulting discrete equations are:

nnn′[n+1/2]+ ñnn[n+1/2]− ρA
h

(
vvv[n+1]− vvv[n]

)
= 000, (6)

MMM′[n+1/2]+KKK[n+1/2]×MMM[n+1/2]+
(

ΓΓΓ
[n+1/2]−ΓΓΓ0

)
×NNN[n+1/2]

+ q̂qq∗[n+1/2] ◦ m̃mm[n+1/2] ◦ q̂qq[n+1/2]−ΩΩΩ
[n+1/2]× JJJρΩΩΩ

[n+1/2]−
JJJρ

h

(
ΩΩΩ

[n+1]−ΩΩΩ
[n]
)
= 000,

(7)

where h = tn+1 − tn is the step size, the upper index [n+1/2] denotes the quantities at the midtime tn+1/2 =
tn +h/2. The spatial discretization is based on Galerkin finite element method where the velocities and angular
velocities at midtime are the interpolated variables. Using the method of weighted residuals and the midpoint
discretization in time, we get the final discretized equations:∫ L

0

[
ρA
h

(
vvv[n+1]− vvv[n]

)
Pi +nnn[n+1/2]P′

i − ñnn[n+1/2]Pi

]
dx−δp fff [n+1/2]

e = 000, (8)∫ L

0

[
JJJρ

h

(
ΩΩΩ

[n+1]−ΩΩΩ
[n]
)

Pi +ΩΩΩ
[n+1/2]× JJJρΩΩΩ

[n+1/2]Pi −KKK[n+1/2]×MMM[n+1/2]Pi +MMM[n+1/2]P′
i

−
(

ΓΓΓ
[n+1/2]−ΓΓΓ0

)
×NNN[n+1/2]Pi −

(
q̂qq∗[n+1/2] ◦ m̃mm[n+1/2] ◦ q̂qq[n+1/2]

)
Pi

]
dx−δpMMM[n+1/2]

e = 000,
(9)

where δp fff e and δpMMMe are the external point forces and moments. In the above equations, the quantities in the
fixed basis are denoted in lower case notations and vice versa. The choice of velocities and angular velocities as
primary unknowns provides a convenient representation of tangent space with numerical advantages of additive
type update procedure and consistency of standard Lagrange type interpolation functions to be used when
expressed in suitable reference frame.

In the quasi-static analysis, the stress resultants are reduced in the post-critical regime where the material
exhibits softening response and thus requires a robust and efficient path following scheme which is adopted
here. The modified path-following constraint in the perspective of velocity based formulation is read as:

ξ

(
WWW [n+1/2],λ [n+1]

)
= h2WWW [n+1/2]TDWWW [n+1/2]+

(
λ
[n+1]−λ

[n]
)2

PPPT
e H PPPe −h2 = 0, (10)

where WWW [n+1/2] = [vvv[n+1/2],ΩΩΩ[n+1/2]]T, λ [n+1] is the load parameter, D and H are arbitrary symmetric scaling
matrices. The proposed path-following constraint fits naturally into the original formulation and additionally
considers rotational parameters without the need for any additional special treatment. However, for the dynamic
analysis with non-monotonic loading, a standard practice in plasticity is followed where the irreversible nature
of the plastic strains are captured by means of loading / unloading conditions derived from the Kuhn-Tucker
relations [3]. The proposed methodology is fully consistent, computationally efficient, robust and exhibits
no loss of convergence while preserving the advantages of the original formulation. The effectiveness of the
proposed methodology will be demonstrated using several numerical examples.
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1. Introduction

Due to their complex structure and different materials used, electric cables behave inelastically and open hys-
teresis loops arise, with noticeable difference between the first load cycle and the following ones. In this regard,
the mathematical theory of hysteresis represents a good choice to model and describe such complex behaviour.
In this contribution, we present a procedure to include an inelastic constitutive law formulated in terms of a
suitable hysteresis operator in a 2D Cosserat rod model to perform quasi-static simulations.

2. Continuous and discrete 2D Cosserat rod model

A 2D Cosserat rod of length L is described by its centreline [x(s),y(s)]T and its rotation angle α(s), with
s ∈ [0,L]. In the continuous case, the bending curvature K(s) and the shear-extensional strain ΓΓΓ(s) are given by

ΓΓΓ(s) = RT(s) ·
[

x′(s)
y′(s)

]
−
[

1
0

]
, K(s) = α

′(s), with R(s) =
[

cos(α(s)) −sin(α(s))
sin(α(s)) cos(α(s))

]
.

If we assume a linear elastic constitutive behaviour for both forces and moment, we can express them respec-
tively as F(s) = CΓΓΓ ·ΓΓΓ(s) with CΓΓΓ = diag([EA], [GA]) and M(s) = [EI] ·K(s). The parameters [EA], [GA], [EI]
are respectively the effective tension, shear and bending stiffness. As shown in [1], the static equilibrium can
be obtained by minimising the elastic potential energy

W =
1
2

∫ L

0
ΓΓΓ

T(s) ·CΓΓΓ ·ΓΓΓ(s)d(s)+
1
2

∫ L

0
[EI] ·K2(s)ds.

A discrete 2D Cosserat rod model can be derived from the continuous one by considering a staggered grid made
of vertices [xi,yi]

T for i = 0, . . . ,N and edge-centred rotation matrices R(αi+1/2) for i = 0, . . . ,N−1. For further
details, see [2].

3. The Prandtl-Ishlinskii (P-I) operator

As shown in [3], hysteresis operators are a well-studied topic with a variety of applications and the P-I operator
P plays a relevant role in modelling the input-output relation in phenomena showing hysteretic behaviour and
can be expressed as a superposition of elementary stop operators Sr multiplied by a suitable weight function
ω(r), which is assumed to vanish for large values of r. We aim at expressing the bending moment vs. bending
curvature in terms of P-I operator as a discretised version of

M(t) = P[K](t) =
∫ +∞

0
ω(r)Sr[K](t)dr.

The stop operator Sr can be defined recursively. For a comprehensive analysis, we refer to [3]. By superim-
posing different elementary stop operators, one is able to model more complex hysteretic effects taking into
account the history of the process.
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4. Pure bending simulation of a Cosserat rod with inelastic constitutive law

The procedure foresees, firstly, to identify a suitable hysteresis operator able to capture the inelastic relation be-
tween bending moment and bending curvature. In our case, we assume the M vs. K constitutive relationship to
be described via a P-I operator with weight function given by ω(r) = 0.005e−0.2r and 15 equidistant thresholds
in the interval [0,20].
Secondly, we define a series of boundary conditions or constraints for each discrete time node t = 0, . . . ,T , gen-
erally expressed in terms of positions and angles at both ends of the rod, while allowing for a translation of one
end in x-direction. Starting from an initial approximation of the bending stiffness [EI](t=0)

i , at each simulation
step we update the bending stiffness value by means of the hysteresis operator M(t)

i,Hyst = Pr[K
(t)
i ]

[EI](t)i =
M(t)

i,Hyst−M(t−1)
i,Hyst

K(t)
i −K(t−1)

i

for t = 1, . . . ,T.

The value of the simulated bending moment is then updated as M(t)
i = M(t−1)

i +[EI](t)i · (K
(t)
i −K(t−1)

i ).
As depicted in Fig. 1, starting from a straight configuration, the cable is bent by imposing different angles at
both ends of the rod. On one hand, the curvature remains constant along the specimen, as demonstrated by the
colours in Fig. 1 right, as well as the bending moments. On the other hand, the M vs. K diagram shows a very
good agreement with the assumed inelastic behaviour described by a hysteresis operator of P-I type.

Figure 1: Pure bending simulation results. Left: Rod configuration for different boundary conditions. White: straight
initial configuration, K = 0 m−1 . Red: K = 15.71 m−1. Blue: K = −12.57 mm−1 Right: Bending moment vs. bending
curvature diagram relative to the fifth node. The scattered plot corresponds to the simulated moments while the solid line
depicts the P-I operator. Different colours in the simulated results represent different curvature values.

In conclusion, the Cosserat rod theory seems a good framework for the inclusion of a hysteretic constitutive law.
Future plans foresee the identification of such an inelastic law by means of specifically designed pure bending
experiments and the implementation of more complex boundary conditions and the validation with real plane
bending experiments, such as the MeSOMICS test rig [2].
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1. Introduction 

Predicting the failure of structures and describing where and when cracks will occur has immediate relevance 

in engineering applications, be it for dimensioning, life-time assessment, or cost optimization. The complexity 

of the elasticity equations makes the sole resolution of a problem complex, even for simple geometry. Ever 

since the seminal paper of Griffith [5] anchoring the problem in an energy minimization framework, a 

considerable amount of work has been devoted to expanding the theory [8]. It is only very recently that the 

equilibrium of a body allowed to crack has been formulated in the modern variational setup [1,2]. The rigorous 

deduction of the single-dimensional equations for a slender body from the equations of elasticity in the three-

dimensional setting proves still challenging and is still currently researched [3,6]. In particular, the active 

interplay between the varying geometry of the cracking body and the stress resultants is yet to be revealed, 

despite recent attempts to give a rigorous description of these fields when the slender body possesses a 

developed crack [4]. 

2. Problem formulation 

In this study we will focus on the effect of bending for an initially straight beam of rectangular cross-section 

[−
ℎ

2
,

ℎ

2
] × [−

𝑏

2
,

𝑏

2
] whose length is 𝐿 and where the current position on the beam is 𝑧. The variable geometry 

of the beam is modeled by assigning to each cross-section two geometric fields 𝑑+(𝑧), 𝑑−(𝑧) modeling the 

depth of penetration of the cracks on each side of the beam. We postulate the bending moment in a section to 

be the product of the variation of the intrinsic curvature of the beam with the section bending stiffness: 𝑀 =

𝐸𝐼(𝑑+, 𝑑−)𝑤𝑧𝑧. The moment of inertia of any section 𝐼(𝑑+, 𝑑−) is adequately computed considering both the 

surface reduction and the change in the section centroid position. A dissipation term depending on the material 

fracture toughness 𝐺 is included, accounting for the energy cost of creating new cracks surfaces. Higher 

gradients addition ensures the problem is regularized [2]. A characteristic length ℓ is introduced that controls 

the speed of variation of the geometric fields. For a beam subject to a distributed load 𝑝𝑡(𝑧), the energy to be 

minimized 𝐹 with respect to the transversal displacement field 𝑤 and the geometric fields 𝑑+, 𝑑− reads: 

𝐹 = ∫
𝐸𝐼(𝑑+,𝑑−)

2

𝐿

0
𝑤𝑧𝑧

2 − 𝑝𝑡(𝑧)𝑤 𝑑𝑧 +  ∫ {
𝐺𝑏

4ℓ
((

𝑑+

ℎ
)

2

+ (
𝑑−

ℎ
)

2
) + 𝐺𝑏ℓ ((

𝑑𝑧
+

ℎ
)

2

+ (
𝑑𝑧

−

ℎ
)

2
)} 𝑑𝑧

𝐿

0
.            (1) 

In addition, the unknown fields satisfy the boundary conditions adapted to the problem at-hand. 

3. Resolution 

The computation of the fields follows the operator splitting procedure of [7]. The load 𝑝𝑡(𝑧) is incremented 

and the geometric and displacement fields are computed in a staggered scheme. At fixed damage fields, the 

displacement field is uniquely defined, and its computation is straightforward from the functional’s stationarity 

equations and prescribed boundary conditions. At fixed displacement field, the damage fields have to minimize 

the energy functional. The stationarity equations yield a system of nonlinear differential equation in 𝑑+, 𝑑− 

and have to be solved under additional constraints. On one hand, the cracks penetration depths have to be 

compatible with the original height ℎ of the beam cross-section: 
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                                          0 ≤
𝑑+

ℎ
≤ 1,        0 ≤

𝑑−

ℎ
≤ 1,         0 ≤

𝑑++𝑑−

ℎ
≤ 1.                                                (2) 

On the other hand, the damage fields cannot decrease thus the fields 𝑑+, 𝑑− have to satisfy the Unilateral 

Stationarity constraint [2]. Additional constraints ensure crack development on the beam tensiled side. 

4. Results 

We compare the results of our model with that of the widely accepted variational brittle fracture for a clamped-

clamped beam (Fig 1.) and a simple cantilever with a double point load. The results are found to be in good 

agreement with the variational damage fields models, despite a very strong smearing of the cracks zones. The 

cracking zones are clearly defined and there is no need for additional treatment to decide what is a crack 

interface. Crack initiation occurs at position of the computed maximum of the bending moment, and 

simultaneous cracking is observed if the moment diagram possesses many extrema of same amplitude. 

 

Figure 1. Computed damage field for a clamped-clamped beam under a vertical point load in the middle of the beam. 

On the left the solution from the variational damage field model figuring in red the most damaged zones. On the right 

the solution geometric fields 𝑑+, 𝑑− are in red and the undamaged beam surface is figured in black. 
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1. Introduction

Experiments of torsion and bending have shown the effects unexplained within classical theories, e.g., size-
effect. There, the rigidity depends on the object dimensions, and smaller samples respond stiffer than larger
ones from the same material. One can attribute the difference to the microstructure influence. Including the
microstructure is possible within the extended continuum theories, such as the micropolar or Cosserat elasticity
theory [1]. The difference between the classical and micropolar media is the presence of the particle orientation
in the latter. In classical theory, the point has only a position.

The inclusion of the micropolar theory can be beneficial in many aspects: description of the stresses’ singulari-
ties in contact areas, strain localization computations, micro-scaled structures, presentation of multilayer struc-
tures, etc [2]. Therefore, the combination of micropolar theory and the most common engineering approach –
finite element analysis – was expected. However, the implementation concerned only 3D solid elements, and
it cannot be considered an efficient formulation for many structures, such as beams. The authors present the
possible combination of the continuum beam formulation and the micropolar media to fulfill this gap.

2. Micropolar beam element kinematic

The kinematic description for the micropolar beam element based on the absolute nodal coordinate formulation,
and all details one can find detain in [2]. The difference from the standard formulation is the inclusion of degrees
of freedom components for approximating the microrotational field θθθ . In this work, we use a three-nodded
element, where the i-th node has the following set degrees of freedoms:

qi =
[
riT riT

,y riT
,z ,r

iT
,yy riT

,yz, riT
,zz,θθθ

iT
θθθ

iT
,y θθθ

iT
,z θθθ

iT
,yy θθθ

iT
,yz θθθ

iT
,zz

]T
, ri

,α =
∂ ri

∂α
, α = {y,z}. (1)

Then, assuming Nm is the shape matrix, the approximation of position and microrotational fields are :

{r,θθθ}= Nm (ξ ,η ,ζ )q(t), (2)

3. Micropolar media description

The balance of equations for micropolar media gives the following set of equations:

∇X · t+ f = 0,
∇X ·m+ εεε : m+ c = 0.

(3)

where ∇X is the covariant differentiation operator in the reference coordinate system. t and m are stress and
couple stress tensors, respectively. They can be obtained as follows.

t = λ tr(H)I+(µ + k)H+µHT ,

m = αtr(ΓΓΓ)I+βΓΓΓ+ γΓΓΓ
T .

(4)

λ ,µ,κ,α,β ,γ are elastic constants, H and ΓΓΓ are material strain and microcurvature tensors, respectively. As-
suming that ΩΩΩ is the skew-symmetric of θθθ , and θ is the magnitude of θθθ , then:

ΓΓΓ =−1
2 εεε : (RT

∇XR),

H = U− I, U = FT R,

R = exp(ΩΩΩ) =
(
I+ sinθ

θ
ΩΩΩ+ 1−cosθ

θ 2 ΩΩΩΩΩΩ
)
,

(5)

where F is the deformation gradient, εεε is the third-order Levi-Civita tensor.
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4. Numerical results

Let us consider the bending cantilever beam, where the dimension sizes are regulated by the size-effect coeffi-
cient k, which will proportionally change the load and beam’s dimensions. The initial geometrical dimensions
are L = 0.03 m, H = 0.01 m, W = 0.002 m, the applied force is F = 500 N, and material parameters are from
[2]. We provide solutions obtained with solid element from [3] for comparison. We also consider elements
within the classical theory to present the difference between them.

Figure 1: Task set up with the size-coefficient k.
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Figure 2: The presentation of the size-dependency for different theories in linear and non-linear regimes, from
[2].

5. Conclusion

This work presents the beam element suitable for dealing with the micropolar continuum and using it even in
the non-linear regime. Thus, it fully accounts for the differences between the two media descriptions and is a
more efficient formulation for beam-like structures.
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1. Introduction

Cables are widely used in engineering applications. Depending on various system parameters they show com-
plex vibratory behavior. An exact analytical description can improve the understanding of these phenomena
and be used as benchmark solutions for numerical simulations. The lumped mass alters the dynamics of an
inclined cable drastically.

2. Equations of motion

The differential equations governing the in-plane dynamic behavior of an inclined cable with a lumped mass
attached to the cable between two immovably fixed supports are given by

∂

∂ s

[
(T + τ)

(
dξ

ds
+

∂ µ

∂ s

)]
+ρ(s)gsinϑ −ρ(s)

∂ 2µ

∂ t2 = 0 (1)

∂

∂ s

[
(T + τ)

(
dη

ds
+

∂ν

∂ s

)]
+ρ(s)gcosϑ −ρ(s)

∂ 2ν

∂ t2 = 0 (2)

Here T is the static cable tension, ϑ the angle of inclination and g the gravitational acceleration. ξ ,η describe
the static parametric solution, µ ,ν are the displacements from equilibrium (µ longitudinal and ν normal di-
rection), τ is the additional cable tension, and ρ(s) is the cable density per unit length. The variable s is the
Lagrangian coordinate that measures the distance along a static inextensible cable starting from the left support.
The cable density ρ including the lumped mass m at position sm reads as

ρ(s) = ρ0 +mδ (s− sm) (3)

where ρ0 is the uniform cable density per unit length and δ the Dirac delta distribution. The lumped mass splits
the system into two domains with separate equations and boundary conditions.

s

ξ(s)

η(s)

p

P (p)

M(p)

ν µ

P (p, t)
M(p, t)

ϑ

A(0, 0)

B(l, h)

Figure 1: Definition diagram for cable vibrations.

3. Analytical solution of the eigenvalue problem

The equations (1) and (2) are simplified by neglecting terms of second order or higher and removing the static
equilibrium terms. After a Fourier-transform, an eigenvalue problem results. Since the longitudinal vibrations
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µ will always be smaller than the transverse vibrations ν , equation (1) can be discarded and instead we use
the linearized cable equation

χ

EA

(
ds
dξ

)3

=
dµ

dξ
+

dη

dξ

dν

dξ
(4)

as an expression for µ . Here E is Young’s modulus, A is the cross-section of the cable and χ is the change in
cable tension in the ξ -direction (χ = τ

dξ

ds ). It provides the compatibility between the changes in cable tension
and cable geometry when the cable is displaced from equilibrium.
The linearized version of equation (2) reads

X(ξ )
d2ν

dξ 2 −ρ0gsinϑ
dν

dξ
+ρ0ω

2
ν =−χ

d2η

dξ 2 (5)

where X is the chordwise component of the static cable tension (different in the two domains and no longer
constant due to the inclination of the cable). The solution of this equation is a linear combination of Bessel
functions that can be approximated by trigonometric functions with good accuracy. In the solution one assumes
that χ is piecewise constant in the two domains to the left and right of the point load. Combining the cable
equations for both domains, as well as using the equation of motion describing the movement of the point
load in µ-direction, one obtains a system of two equations for the two unknown changes in tension χl and χr.
The nontrivial solutions require the determinant of the 2× 2-matrix to vanish, which can be used to find the
eigenfrequencies of the system. The resulting equation is complex and long, and thus not reproduced here. The
modeshapes can then be obtained from the solution of equation (5) . The approximate solution for µ can be
found by integrating equation (4) .

4. Validation of the Analytical Expressions

The results presented here were validated by comparing them to numerical simulations of the linearized equa-
tions (1) and (2) . The accordance between the analytical and numerical results was very good. The theory
also reproduces the results found in the paper of Chu [2] that investigated the vibrations of an inclined cable
without a lumped mass load ( for m = 0 in ρ(s)).

5. Conclusion

The presented analytical method finds the frequencies and mode shapes for an inclined cable with a point load
to good accuracy. The theory is a natural progression of the results presented by Irvine [1] almost 50 years ago
and their succesor by Chu [2] for an inclined cable. It reproduces these known results and extends the results
of the paper by Wenin [3] for a horizontal cable. The extension of this theory to any number of point loads is
straightforward.
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1. Introduction
Frictional interactions between steel wires within spiral strands used as mooring lines for offshore platforms
induce a complex mechanical response of these strands when subjected to a bending load under tension. Due
to these internal frictional interactions, the mechanical behavior of the strand at the macroscopic scale is dis-
sipative, and the bending stiffness, which is governed by interwire slippage, evolves nonlinearly with respect
to curvature and tension. It is possible to simulate the effects of interwire friction using finite element simula-
tion by considering all the individual wires that make up the rope. However, this approach cannot be applied
to spiral strands used as mooring lines for offshore platforms due to their size, both in terms of the number
of wires and the length considered. This study aims to develop an alternative approach, using computational
homogenization, to efficiently calculate not only the macroscopic, but also the microscopic response of spiral
strands.

2. Direct numerical simulation (DNS) [1]
In DNS, all wires and frictional contact interactions are modeled using finite element simulation. As can be
seen in Figure 1, the obtained axial-bending response of the four-layer spiral strand is in good agreement with
the experimental results.

3. Mixed stress-strain driven computational homogenization [2]
To reduce the computational cost of modeling of spiral strands, a mixed stress-strain driven computational
homogenization is developed. In this approach, the moment-curvature response of a spiral strand is extracted
from a short sample of the strand, called representative volume element (RVE). Using the RVE responses, the
axial-bending response of the strands is calculated, and as can be seen in Figure 2, the response obtained from
the homogenization is in good agreement with the DNS.

Figure 1: A comparison of the axial-bending re-
sponse of the four-layer spiral strand obtained
from DNS with experimental data.

Figure 2: The force-deflection response of a
strand under bending with constant axial force ob-
tained through the DNS, homogenization, and the-
oretical stiffnesses, for the two-layer RVE.

4. Rheological models
In order to reduce the computational cost of homogenization, rheological models are proposed to replace the
solution of the RVE boundary value problem to perform offline homogenization. As can be seen in Figure
3, these models, consisting of springs and sliders, predict the biaxial bending response of spiral strands under
variable axial force with good accuracy.
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(a) (b)

Figure 3: A comparison of the biaxial bending response of spiral strands obtained from homogenization and
the rheological models. a, the two-layer strand; b, the loading history.

5. The axial force of individual wires
The axial force in individual wires is required to perform fatigue life estimation for spiral strands. For this
purpose, since the bending induced axial force is due to interlayer friction, the friction increment is obtained
from the homogenized monotonic axial bending response of the strands as a function of the bending curvature
increment. These frictional forces are then integrated to obtain the axial force of the wires. A comparison of
the axial force of wires of a two-layer spiral strand obtained from homogenization and the proposed approach
is shown in Figure 4.

(a) (b)

Figure 4: A comparison of the unbalanced axial force caused by bending of spiral strands obtained from ho-
mogenization and the proposed model. a, a wire of the first layer; b, a wire of the second layer.

6. Conclusions
As it can be observed, using the proposed framework for modeling spiral strands, the macroscopic and micro-
scopic responses are captured while reducing the computational cost by several orders of magnitude.
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1. Introduction

Structural failure of masonry arches is not with a dominantly material origin: occurring hinges transform the
structure into a mechanism and lead to collapse. Nonetheless, the hinges form because of the limited tensile
capacity of the voussoir interfaces, called joints. The classical approach introduced by J. Heyman [1] adopts a
simple, nonlinear constitutive law for the joints. The Heymanian framework carries out the structural analysis
of an arch in a geometric manner: the thrust line, connecting the intersection points between the voussoir in-
terfaces and the internal reaction force should be contained inside the boundaries of the structure to guarantee
equilibrium. The distribution of the external loads, the shape of the arch, and the support conditions mutually
determine the structure’s safety. Assuming vanishing movements at the supports, the admissible global geom-
etry [2, 3] and the role of the cutting pattern of the building elements, called stereotomy [4] are extensively
studied.

This talk aims to study the maximal number of congruent hinges that can form in the arch. First, the classical
governing equations of a geometrically exact rod [5], are readily applied to describe the equilibrium of the arch.
While a rod is a model of a flexible, one-dimensional continuum, the arches investigated here are structures
built of rigid blocks connected with joints characterized by limited tensile capacity. In the case of the rod, the
equilibrium of the internal and external loads is attained on the deformed shape. In the case of the arch, the rigid
voussoirs, the motionless supports, and the Heymanian assumptions result in vanishing deformations. Hence,
the geometry is known a-priori, but the internal tractions are prone to unilateral constraints, as the position of
the thrust line, should be contained inside the body of the structure.

2. The model in a nutshell

The number of hinges forming in masonry arches with zero tensile strength along the joints is investigated with
the help of the equilibrium equations of a geometrically exact rod. Let s denote the arc length of the reference
line, and fix the domain as s ∈Ω := [s1,s2]. Let r : Ω→ R3 denote the reference line of the arch. In general the
thrust line, denoted to f, is also a spatial curve and it is also parametrized with respect to s (see Fig. 1). In the
model stereotomy is a bijective map between r and f, in specific it is characterized by the vector field j, where

j(s) := f(s)− r(s), s ∈Ω. (1)

The first derivative of any function f (x) with respect to the argument x is denoted as f,x. The governing
equations of the new model are based on the geometrically exact rod equations [5]:

p,s +q = 0, (2)

m,s + r,s×p+g = 0, (3)

where q(s) and g(s) are the distributed external load and moments, respectively. p(s) and m(s) are the vector
fields of the internal forces and moments and× denotes the cross product in 3-space. In rod theoretic problems,
both the deformed shape r and the internal actions p and m are unknowns. Constitutive relations and boundary
conditions are needed to make the problem well-posed [6].

In the case of the arch, the p(s) vector field of the internal loads is associated with the moment free thrust line
f, and the external distributive moments vanish. Concentrated loads or moments are not allowed. In this case,
exploiting m = j×p and g≡ 0 the equilibrium equations (2) and (3) above read

p,s +q = 0, (4)

(r,s + j,s)×p+ j×p,s = 0. (5)
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Figure 1: At point P of the arch defined by the reference line r the stereotomy is given by j. The curve f is the thrust line
that corresponds to the distributed load q.

3. Results

After exact definition of the be and bi boundaries of the arch, exploiting the governing equations in (4) and (5),
the following theorems are proved, affirming the numerical results of the literature [7]:

Theorem 1. Among planar arches loaded by self-weight, for any prescribed stereotomy function ĵ ∈C1(Ω→ R)
there exists a r reference line such that r+ ĵ is the thrust line of the structure.

Theorem 2. In a pointed, planar arch, obtained by reflecting a circular segment to a vertical axis crossing the
segments higher end, the maximum number of hinges is C = 7 under self-weight if the stereotomy of the arch

1. is vertical and the arch is with constant thickness in stereotomy direction;

2. is vertical and the arch has a constant thickness in normal direction;

3. is radial and the arch has a constant thickness in normal direction.

4. Conclusions

The new model, applied to planar problems in this talk, can readily be utilized for the in-depth study of spatially
curved masonry arches. Although such structures are less common in traditional construction, a theory of spatial
curves made of rigid blocks and tension-less joints might lead to the erection of optimized masonry structures.
Building spatial arches is within reach nowadays as automated, robotic construction spreads quickly.
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1. Introduction

In order to characterise the mechanical behaviour of slender structures we need to determine their stiffness pa-
rameters. These allow us to translate the behaviour of the real-world object to a mathematical model. However,
when these structures are made out of composite materials, obtaining analytic expressions for the effective or
homogenised stiffness parameters from those of single materials is very difficult due to the numerous uncer-
tainties and interactions involved. In this work, we aim to identify a homogenisation procedure for the stiffness
coefficients of circular multi-layered beam cross-sections. Our aim is to streamline the material characterisa-
tion of flexible unloaded endoscope shafts when modelled as beams. An experimental campaign was carried
out at Fraunhofer ITWM in order to evaluate the torsional and bending stiffness coefficients of such devices.
Experimental results will be shown and used to build a proper cross-section model.

2. Description of the endoscope samples and the cross-section model

The mechanical behaviour of flexible endoscopes is governed by the external structure, denominated unloaded
shaft. Thus, the internal cavity, where the instruments are housed, is not taken into account in this study. The
unloaded shafts have a complex structure characterised by a hollow slender cylindrical geometry, shown in
Figure 1, and made out of composite materials, i.e. starting from the outer side, two layers of plastic, one layer
of stainless steel mesh, and one inner layer of stainless steel coil.

Figure 1: Longitudinal (left) and transversal (right) sections of an unloaded shaft

Since the coil is only attached to the overall structure at the ends of the shaft and can move relative to the other
layers, its contribution to the mechanical properties of the cross-section can be considered as additive on top
of the rest. We will disregard its effect in this work. Thus, one can model the shaft as a fused three-layered
cross-section, see Figure 2. One can distinguish the hollow interior (considered as layer 1) and a steel mesh
as layer 2. Due to difficulties in properly characterising and differentiating the two outermost layers of plastic,
they are considered as a single one (layer 3).

3. Homogenisation of the cross-section stiffnesses parameters

Assuming linear material behaviour, the stiffness coefficients to be determined are the axial, shear, bending
and torsional stiffnesses. In the case of a single isotropic material, these parameters are EA, κGA, EI and GJ
respectively, where A is the cross-sectional area, I is the second moment of area, J = 2I is the polar moment
of inertia, E is Young’s modulus, G = E/[2(1+ ν)] is the shear modulus, ν is Poisson’s ratio, and κ is a
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shear correction factor [1]. In the case of cylindrical beams made out of composite materials welded together
with different Poisson’s ratios, the homogenisation procedure to obtain the stiffness coefficients is complex
due to coupling effects at the interface level between the layers [2, 3]. In this work, we also obtain analytical
homogenised stiffness coefficients for axisymmetric bars of piecewise-isotropic materials.

Figure 2: Three-layers piecewise homogeneous cross-section model

4. Data-fitting problem

Bending and torsional experiments were performed at Fraunhofer ITWM where MeSOMICS was developed
for the characterisation of mechanical properties of such materials. In this fitting problem, we take into account
three different shaft models provided by Karl Storz Video Endoscopy Estonia (KSEE). The bending EI j

exp and
torsional GJ j

exp average values evaluated on several experiments, are used to identify optimised variables E3, ν3,
γ and δ in a data-fitting problem in Eq. 1. Here, E3 and ν3 are material properties of the outer layer composed
by a mixture of treated plastics (layer 3), and γ and δ are correction factors introduced to better represent the
contribution of the mesh (layer 2).

min
[E3,ν3,γ,δ ]

f (E3,ν3,γ,δ ) = min
[E3,ν3,γ,δ ]

[
∑

j

(
EI j

exp −C j
1 (E3,γ)

)2
+∑

j

(
GJ j

exp −C j
3 (E3,ν3,δ )

)2
]

(1)

Here, C1 and C3 denote the bending and torsional effective stiffnesses for the j-th endoscope model

C1 = E1I1 + γ
R2 −R1

R3
E2I2 +E3I3

C3 = G1 (E1,ν1)J1 +δG2 (E2,ν2)J2 +G3 (E3,ν3)J3

(2)

5. Conclusion and discussion

Performing experiments on composite materials is fundamental to better understand their mechanical behaviour.
Thus, we experimentally characterise the mechanical properties of unload endoscope shafts in order to investi-
gate the complexity of their behaviour due to their structure and the many influencing factors, such as production
process. Moreover, in this work, we aim to obtain an analytical model to predict effective stiffness coefficients
of similar endoscope models.
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(a) (b) (c)

(d)

Figure 1: (a) Experimental frequency response of the first mode of a cantilever beam, obtained by phase lock
loop. (b,c) Theory vs. experiments for the backbone curve & nonlinear mode shapes. (d) Estimation of the
damping evolution as a function of the amplitude along the backbone curve.

1. Introduction

We consider in this article the vibrations of a highly flexible slender structure around one of its resonances. In
this case, one can obtain very high displacements in the transverse (low rigidity) direction for moderate external
force. A canonical example, considered in the present paper, is a cantilever beam subjected to a prescribed
transverse base displacement, for which, as shown in Fig. 1, deformations with rotations of the tip cross-section
of more that π/2 are easily reached.

This paper addresses the measurement of the frequency response of such a structure and especially its nonlinear
modes, the so-called backbone curves, that shows the evolution of the free oscillation frequency of a given
vibration mode as a function of the amplitude of the motion. We consider here the nonlinear modes of the
equivalent conservative system, also known as the Lyapunov invariant manifolds of the phase space [1]. These
backbone curves are of primary interest since they are independent of the damping in the system and are
thus an efficient mean to validate a model. We address this point by comparing our experimental results to
those of a geometrically exact beam model numerically solved in the frequency domain with the Harmonic
Balance Method and an Asymptotic Numerical Method for continuation of periodic solutions, as explained
in [2]. Additionally, since our experiments are performed in open air as well as because of the geometrical
nonlinearities, complex and nonlinear damping phenomena are at play (internal damping in the beam as well
as interaction with the surrounding air [3]). We show first that using a phase resonance experiment (as in [4])
enables exact measurement of the conservative backbone curve and, at the same time, it enables to estimate the
evolution of damping as a function of the amplitude of the motion of the nonlinear mode.

Comparisons between theoretical results and experiments are scarce in the case of highly flexible structures in
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the frequency domain, apart from [5], in which the measurements are performed in a vacuum to avoid the air
damping, but without specific considerations of the nonlinear modes.

2. Theory & results

We consider the following discrete model for the structure:

Mẍ + Dẋ + Kx + fd(x, ẋ) + fc(x) = fe, (1)

where x(t) gathers the unknown degrees of freedom, M , D, K are inertia, damping and stiffness matrices,
fd and fc are the internal dissipative and conservative parts of the nonlinear internal force vector and fe is an
external forcing vector.

It is possible to prove that a dissipative force of the form fd(x, ẋ) is necessarily an odd function of ẋ and
that in this case, a forcing vector fe which is periodic with each of its harmonics in phase quadrature with the
corresponding harmonic of x(t) (a phase resonance) perfectly cancels the damping part of the equations, mean-
ing that the structure is vibrating as if it were in free conservative vibrations, thus vibrating on a conservative
nonlinear mode [6, 7].

Figure 1 gathers some of the results. In experiments, using a control loop to prescribe the phase between
fe = f0 cos Ωt and x allows for measurement of both frequency responses (with a phase sweep at constant
forcing amplitude f0) and the backbone curve (with a forcing amplitude sweep at constant phase), (Fig. 1(a)).
Then, using a camera with stroboscopy, the nonlinear deformed shape can be measured and compared to the
ones obtained numerically, with a perfect match (Fig. 1(b)). The experimental backbone curve also perfectly
match its theoretical counterpart, in which the effect of gravity is evident, as explained in [8] (Fig. 1(c)). Finally,
by plotting the amplitude of the forcing (the acceleration of the shaking table) as a function of the amplitude on
the backbone curve, the effect of the damping can be estimated (Fig. 1(d)). In particular, a linear response would
be characteridtic of a linear damping; here, on the contrary, both quadratic and cubic damping dependencies are
observed, probably due to the fluid structure interaction as well as geometrically nonlinear internal damping.
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1. Introduction

Cable bundles and harnesses are used for better cable management in vehicles. Each cable bundle is made up 

of several cables which in turn are formed by different layers. Analysing in detail the behaviour of a single 

cable when subjected to loading is a necessary process to understanding the behaviour of a cable bundle. 

Dörlich et al. [1] as well as Hildebrandt et al. [2] have studied the behaviour of a cable experimentally.  

Based on the results, they suggested a Cosserat rod and an elasto-plastic continuum models respectively. 

Burger et al. [3] presented an estimation tool for linear elastic model parameters for cable bundles based on 

bundle parameters using Gaussian Process regression. However, the effect of internal structure on mechanical 

properties has not been investigated. In this work, we aim at the prediction of nonlinear behaviour of cables 

and lay the foundation by investigating the behaviour of cables under torsion. Experiments based on pure 

torsion are carried out and the influence of the direction of rotation on the stiffness of the cable is investigated. 

2. Experimental method and results

Cable specimens clamped at both ends using collet chuck are subjected to an angular deformation. During the 

rotation, forces normal to the cross section of the sample are compensated allowing a pure torsion. Subjected 

to a torsion up to a twist of 15 rad/m, the cables experience four successive cycles of loading and unloading. 

As shown in Figure 1a, the first cycle is the pre-loading that the cable requires in order to reach a stable state. 

The stiffness is then determined on the following cycles (Figure 1b). A linear fit up to a twist of 1.5 rad/m is 

used to determine the stiffness for small deformations.  

2.1.  Determining a representative length 

The manufacturing process and the different ways of transporting the cable bundle influence the internal 

structure and shape of the cables [4]. Different lengths of the same cable may have different mechanical 

properties because of their internal structure and boundary effects of the clamping. In order to determine a 

representative specimen length, three lengths, namely 70 mm, 100 mm and 140 mm, were subjected to a torsion 

angle of 60°, 85.7° and 120° respectively so as to obtain the same twist of 15 rad/m for all cable lengths.  

Figure 1. Result of 4-cycle torsion test (a), stiffness determination using a linear fit (b) and mean value of the stiffness 

for a deformation up to a twist of 1,53 rad/m of 5 samples per length twisted in the winding direction of the wires (c). 
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The results (Figure 1c) show that for the three lengths, the stiffness does not change. Therefore, 70 mm can be 

considered to be a representative length and used for further investigations. 

 

2.2. Effect of direction 

 

To analyse the effect of the direction five samples are twisted in clockwise direction and 5 samples in counter-

clockwise direction. The clockwise direction corresponds to the wrapping direction of the wires, see figure 3c. 

The moment versus twist and the average stiffness of the 5 samples according to the direction of the applied 

angle are shown in figure 2a-b. 

   

  

 

 

  

  

 

 

 

 

Figure 2. Result of the 4-cycle torsion test for l=70 mm in the wire winding direction (clockwise) and in the 

anti-winding direction (counter-clockwise) (left) and average stiffness value of 5 twisted samples (middle). 

 

The results show that the stiffness in the clockwise direction is ca. 10% less than the stiffness in counter 

clockwise direction. However, the scattering in the measurement for the counter-clockwise direction is 

approximately 7%. Therefore, a reproducible effect in the clockwise direction is observed, which is not the 

case in counter-clockwise direction. A stochastic effect is observed for the counter-clockwise direction and the 

scattering interval is much bigger than clockwise direction. 
 

3. Conclusions 

A study of the influence of the cable length and the direction of the applied loading on the cable was analysed. 

For this purpose, a pure torsion was performed and a representative length of 70 mm was determined.  In a 

second step the effect of direction on stiffness for a length of 70 mm of cable was presented. The difference in 

stiffness between the two directions is less than 10%.  However, the samples twisted in the clockwise direction 

show a more reproducible effect during loading and unloading and the scattering interval is small in 

comparison to counter-clockwise direction. The authors will present similar investigations for the influence of 

the direction of torsion on the stiffness at higher twist and consider the observed effects in a modelling 

approach.  
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1. Introduction

In recent years, there has been an increasing demand for fast and realistic simulations of flexible slender struc-
tures such as cables and hoses in the automotive industry. For some complex slender flexible structures, a non-
linear constitutive bending behavior can be clearly observed during cyclic pure bending [2] and MeSOMICS
bending experiments [3]. In this work, we present an iterative method for the simulation of such nonlinear
elastic behavior, where in each iteration step, only a linear elastic constitutive behavior is used. Furthermore,
we formulate an inverse problem to determine the nonlinear elastic behavior from given measured data. We
also investigate an alternative method to determine the bending stiffness characteristic based on the balance
equations for rods.
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Figure 1: Left: Top-view of MeSOMICS [3] bending experiment. Right: Schematic representation of experi-
mental procedure for MeSOMICS bending measurements. At the left clamping point, horizontal displacements
are stepwise applied, resulting in different bending configurations. At the right clamping point, the resulting
horizontal reaction force is measured.

2. Iterative method to simulate nonlinear elastic bending behavior

Fig. 1 shows bending experiments performed on a cable using the MeSOMICS measurement machine. To
simulate this experiment, a Cosserat rod in two-dimensional space is utilized, where the static equilibrium
state of the cable is obtained by minimizing the potential energy (consisting of potential bending energy, po-
tential shear- and tension energy) [1]. While this model is geometrically exact, it only considers linear con-
stitutive behavior, namely a constant bending stiffness [EI]. The potential bending energy is formulated as
WB = 1

2
∫ L

0 [EI] · (K(s)−K0)
2ds, where L is the length of cable, K(s) is the curvature at arc length s and K0 is a

constant pre-curvature specifying the force- and moment-free reference configuration.

For nonlinear elasticity, which is represented by a state-dependent bending stiffness fEI(κ), the correspond-
ing potential bending energy is formulated as W̃B =

∫ L
0
∫ K(s)

K0

∫ ξ

K0
fEI(κ)dκdξ ds . However, directly using this

formulation in the energy minimization is computationally expensive. To simulate nonlinear elastic behavior
while maintaining the efficiency of the method in [1], we propose an iterative method. In each iteration, only
constant stiffness parameters are used and set according to the current cable state and a given bending stiffness
characteristic. The new equilibrium is computed by minimizing the potential energy, and we proceed iteratively
until the cable state converges.

To validate the proposed iterative method, we use a fictive state-dependent bending stiffness characteristic
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fEI(κ), simulate the above presented bending test and compare the results with a reference solution. The latter
is generated by directly solving the energy minimization problem with W̃B. Fig. 2 shows very good agreement
of the horizontal reaction force from the iterative method and the reference solution.
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Figure 2: Horizontal reaction force obtained at the
fixed end point, resulting from varying displacements.

0 5 10 15
5 [m!1]

-0.01

0

0.01

0.02

B
en

d
in

g
st

i,
n
es

s
[N

m
2
]

Solution of inverse problem with K0 = 0
Solution of inverse problem with K0

as optimization variable

Figure 3: Identified bending stiffness characteristic us-
ing experimentally measured data.

3. Identification of state-dependent bending stiffness characteristic

Besides enabling the simulation with nonlinear elastic bending behavior, we also investigate how to determine
characteristic from given measurement results. To this end, we formulate an inverse problem to find a state-
dependent bending stiffness characteristic fEI(κ), such that the difference between the simulated force and the
measured force is minimized. Using measured reaction forces from real cable experiments and assuming van-
ishing pre-curvature K0, we first identified a characteristic with negative stiffness for low curvatures (cf. black
dashed line in Fig. 3). Considering pre-curvature K0 as additional optimization variable provides a more realistic
characteristic (red curve in Fig. 3), and identified pre-curvature K0 ≈ 3m−1.

To assess the resulting characteristic, besides the data-driven inverse problem, we investigate an alternative
model-based approach, which utilizes the balance equations for rods: ∂sf = 0 and ∂sm+∂sr× f = 0. Together
with measured data, this allows to derive a (κ, fEI(κ))-graph. Our current research is focused on comparisons
of both approaches.

4. Conclusions

In summary, the proposed iterative method efficiently simulates the nonlinear elastic behavior. By solving the
corresponding inverse problem with including pre-curvature as an optimization variable, we can identify a plau-
sible bending stiffness characteristic from experimentally measured data. However, for a better understanding,
we aim to complement the inverse problem with a model-based approach, based on the balance equations.
Current research focuses on how to properly treat pre-curvature in the model-based approach.

References

[1] J. Linn, T. Hermansson, F. Andersson, and F. Schneider. Kinetic aspects of discrete Cosserat rods based
on the difference geometry of framed curves. In: M. Valasek, et al. (eds) Proceedings of the ECCOMAS
Thematic Conference on Multibody Dynamics, 163-176. Prague, Czech Republic, 2017.

[2] V. Dörlich, J. Linn, S. Diebels. Flexible beam-like structures - experimental investigation and modeling of
cables. In: Altenbach, et al. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced
Structured Materials, Springer, Cham, 80:27-46, 2018.

[3] MeSOMICS: Measurement System for the Optically Monitored Identification of Cable Stiffnesses. Home-
page: www.mesomics.eu

70



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MS-2: Contact and friction in mechanics of flexible slender structures 

 

 

 

 

 

 
 

 

 



 

 

 

 



ECCOMAS Thematic Conference and IACM Special Interest Conference
Highly Flexible Slender Structures (HFSS 2023)

25–29 September 2023, Rijeka, Croatia

Geometrically exact beam-to-beam contact interactions embedded in a finite
volume-based discretisation framework

Seevani Bali 1,a, Željko Tuković 2, Philip Cardiff 1,c, Alojz Ivanković 1,d , Vikram Pakrashi 1,e

1 School of Mechanical and Materials Engineering, University College Dublin, Ireland
2 Faculty of Mechanical Engineering and Naval Architechture, University of Zagreb, Croatia

aseevani.bali@ucdconnect.ie, bzeljko.tukovic@fsb.hr, cphilip.cardiff@ucd.ie , dalojz.ivankovic@ucd.ie,
evikram.pakrashi@ucd.ie

Keywords: beam-to-beam contact, friction, penalty method, finite volume method, geometrically-exact beam

1. Introduction

This research extends the work by Bali et al. [1] to include contact interactions between geometrically exact
Simo-Reissner (SR) type beams in a finite volume (FV) discretisation framework. The possibilities of point-
to-point and line-to-line frictionless contact [2] scenarios between slender beams and a frictional point contact
interaction are investigated in this work. For frictionless contact, penalty and augmented Lagrangian constraint
methods are implemented for beams with multiple-point contact possibilities. A Coulomb-based friction law
and the analogy of rigid plasticity are adopted to model the stick and slip regions of friction between beams.
The primary motivation to use FV methods instead of conventional finite element techniques is to allow fluid-
structure interactions in a single FV framework and to expand the domain of numerical problems solved using
the FV approach.

2. Mathematical model

Conventional beam kinematic relations (deformed mean centroid rrr and rotation matrix ΛΛΛ attached to beam
cross-section) are used here. Volume integral equations are used as balance laws instead of constructing the
variational form of governing force and moment equations. The primary displacement (www) and rotation vectors
(ψψψ) are solved for all the (volume) cell centres of the beam that typically lie on the deformed centroid line.
Generally, for computing arc-length derivatives, a central finite-difference method is used; however, for the
contact formulation, Hermite spline polynomials are used to ensure C1-continuity of derivatives and smoother
contact point detections. After appropriate linearisation (see Eq. 1), the contact force is added to the system
as a Neumann boundary condition via the penalty/augmented Lagrangian method. In Eq. 1, L[(nnnc)] is the
linearised contact force (magnitude nc) about its previous converged configuration nnni

c, gn is the normal gap, d̂dd is
a unit normal vector in the direction of force and, ∆gn, ∆d̂dd are variations of normal gap and unit normal vector
respectively. For frictional contributions, the tangential gap function as per Litewka et al. [3] is defined, and
frictional contact moments due to the transfer of surface friction forces to the beam-centreline are ignored.

L[nnnc] = nnni
c +

∂nc

∂gn
∆gn d̂dd + nc(gn) ∆d̂dd (1)

3. Numerical results and conclusions

Two numerical test cases are presented here. Figure 1a presents the contact force between two beams when they
are twisted about each other by an angle of 2π radians. Figure 1b provides a comparison of contact forces for the
discretisation of 25 beam control volumes (CVs) and penalty stiffness pn = 1000 N/m2 developed using the FV
method and the reference FE values adapted from Meier et al. [2]. Figure 2a shows the deformed configuration
of two orthogonal steel beams sliding over each other by values, wx = −wz = 0.05 m, superimposed with a
normal displacement of wy = −0.12 m by the upper beam on the beam aligned with x−axis. Slip-gap values
for the same test case for different friction coefficients are presented in Figure. 2b that clearly shows a full stick
condition for the coefficient of friction, µ = 1 and tangent penalty stiffness, pt = 1×106 N/m.
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(a) (b)

Figure 1: Twisting of two beams (length, L = 1 m, equal radius R = 0.01 m) - (a) Deformed beam configuration
for twisting of two beams, (b) Variation of contact force over the beam length.

(a)

Normalised displacement
0 1

(b)

Figure 2: Sliding of two perpendicular beams - (a) Beam deformed configuration for frictionless contact (blue)
and with friction (green, µ = 1), (b) slip gap values for the beam aligned with x-axis for different µ values.
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1. Introduction

Frictional contact models between beams are relevant for the numerical simulation of beam assemblies in
various applications such as wiring harnesses, cable bundles or textile manufacturing processes. An essential
ingredient of the contact model is the kinematic description of the relative motions of the material particles in the
contact zone. In particular, frictional contact models require a quantification of the relative slip motion between
the two bodies. This work addresses the definition of the tangential slip increment between geometrically exact
beams using the special Euclidean group formalism. This geometric setting guarantees the frame invariance of
the results and enables an accurate treatment of complex contact behaviours, such as rolling without slipping
interactions.

2. Contact model

In contact mechanics, the normal and tangential contact forces λN and λλλ T can be expressed as inclusions

λN ∈ ∂ψR+(gN), λλλ T ∈ ∂ψ
∗
C (λN)

(uT ) (1)

where gN is the normal gap, uT is the tangential slip velocity, ψR+ is the indicator function of the set of positive
real numbers and C (λN) is the Coulomb disk defined as

C (λN) = {λλλ T ∈ R2 : ∥λλλ T∥ ≤ µ λN} (2)

In a quasi-static analysis, this contact model can still be considered provided that the slip velocity uT is substi-
tuted by a tangential slip increment ∆gT (t −∆t, t) over the pseudo-time interval ∆t evaluated as

∆gT (t −∆t, t) =
∫ t

t−∆t
uT (τ)dτ (3)

s1

s2

n

t1

t2

R2

R1

{C}

{F}{O}

xC

xF

{L}

Figure 1: Kinematics of the beam-to-beam contact

3. Contact kinematics

Let us consider two beams with circular cross-sections of radii R1 and R2 (see Fig. 1). At each point of the
centerline, the position and orientation of the cross-section shall be treated as an element of the special Eu-
clidean group SE(3) [1]. Furthermore, we assume that the deformation of the cross-section as well as the shear
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deformation can be neglected in the contact kinematics. One of the beam is qualified as the slave and the other
one as the master. For the slave beam, the centerline is parameterized using the material coordinate s1, the
section-attached frame at point s1 is denoted as {C} (with origin C), and the first axis eC1 is pointing in the
tangential direction to the slave centerline. For a given point s1 on the slave beam, an orthogonal projection is
applied to define the potential contact section on the master beam, which is represented by the frame {F} with
origin F at the material coordinate s2. By construction, this frame {F} is such that the vector joining C and F
is orthogonal to eC1 and the first axis eF1 is pointing in the tangent direction to the master centerline.

On each beam, one additional frame is defined at the potential contact point on the external contour of the
cross-section. On the slave beam, the frame {L} at the potential contact point is defined such that (i) the normal
vector n = eL1 is along the directed line joining C to F , (ii) the tangent vector t1 = eL2 is equal to eC1 and the
tangent vector t2 = eL3 completes the orthonormal basis, (iii) the origin L is localized on the external contour of
the slave cross-section (i.e., at a distance R1 of C) and on the directed line joining C to F . On the master beam,
the frame {K} at the potential contact point is defined such that its three axes coincide with n, t1 and t2 and its
origin K is localized on the external contour of the master cross-section (i.e., at a distance R2 of F) and on the
directed line joining F to C.

The relative configuration is then obtained as a 4×4 matrix HLK ∈ SE(3) and the normal gap is simply

gN = [HLK ]11 (4)

From now, the frames {L} and {K} are considered as material frames attached to the material points on the
contour of the cross-sections. The relative velocity is represented by a 6×1 twist vector vK

LK with components
in the frame {K}. The tangential slip velocity is then obtained as a two dimensional vector

uT =

[
[vK

LK ]2
[vK

LK ]3

]
(5)

4. Tangential slip increment

For quasi-static problems, we propose to define the tangential slip increment by assuming a constant relative
velocity over the pseudo-time interval ∆t. The 6×1 relative motion increment is then introduced as

∆yK
LK(t −∆t, t) =

∫ t

t−∆t
vK

LK(τ)dτ = vK
LK(t)∆t (6)

This motion increment is related to the change of HLK by the finite difference formula

∆yK
LK(t −∆t, t)≃ log(H−1

LK(t −∆t)HLK(t)) (7)

where log is the logarithm map on SE(3). Then, the tangential slip increment is obtained from the components

∆gT =

[
[∆yK

LK ]2
[∆yK

LK ]3

]
(8)

which can be interpreted as a geometrically consistent finite difference approximation of uT scaled by ∆t.

To the best of our knowledge, the definition of the finite slip increment ∆gT based on a finite difference on
SE(3) has not been presented in the literature. In the presentation, the formulation will be illustrated using
quasi-static simulations of beam-to-beam frictional contact problems.
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1. Introduction

Reeving systems generally consist of a cable and one or several pulleys and can be modeled as a multibody
system, i.e., as an assembly of rigid or flexible bodies linked by joints. In such applications, a special attention
should be paid to the cable model, which must account for two mains aspects: the cable deformation, and
frictional contact due to the interaction between the cable and the pulley.

2. Flexible cable model

A cable is a typical example of a highly flexible and slender structure where nonlinearities could arise. Cables
are often modeled as beams and most nonlinear finite element beams are formulated based on distinct trans-
lation and rotation coordinates. Another approach is to formulate the beam on the special Euclidian group
SE(3) where rotations and translations are inherently coupled. This formulation has already been used for
beam modeling [1] or more recently for nonsmooth beam-to-beam contact [2]. The advantages of using an
SE(3) formulation are diverse. No global set of coordinates is needed since the motion variables are inherent to
the mathematical objects used in the formulation. Moreover, with the wisely chosen representation of deriva-
tives, a frame-invariant formulation is obtained. A local parametrization of motion is then applied on motion
increments. The continuous equations to be solved in a quasi-static setting are obtained by the variation of the
internal potential energy as

δspatial(Wint) =
∫ L

0
δspatial(εεε)

T Kεεε ds (1)

where εεε is the 6×1 strain vector and K is the 6×6 sectional stiffness matrix.

3. Arbitrary Lagrangian-Eulerian formulation

Sometimes, the cable comes into contact with a structure, for instance when it travels around a pulley. In this
scenario, there is a need for a fine finite element discretization of this specific portion of the cable in order to
accurately represent the frictional contact conditions. Because the cable is moving around the pulley, small
elements must often be used along the whole cable length. One remedy to this problem is to use an arbi-
trary Lagrangian-Eulerian (ALE) formulation of the cable, which permits a dissociation between the mesh and
the material points of the cable. In [3], an ALE formulation based on a continuous variational framework is
proposed, where a remeshing of the discretized structure provides an optimal energy solution. In multibody
dynamics, an ALE formulation was applied in a fully discrete setting in [4], where a joint ALE-ANCF ap-
proach for a beam element is developed to model reeving systems. In multibody systems, ideal kinematic joints
between different bodies are modeled using bilateral constraints. In this work, the approach proposed by [3] is
applied to model cables as Timoshenko beam elements on SE(3) starting from a continuous form of the equa-
tions. In this ALE formulation, the connection between the cable and another body such as the pulley can be
modelled using bilateral constraints. An equation taking into account the flow of material along the centerline
is thus added to Eq. (1):

δmaterial(Wint) =
1
2

∫ L

0
δmaterial (F)

(
εεε

T Kεεε −2fT Kεεε
)

ds (2)

where F represents the flow of material coordinate and f is the deformation gradient.
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4. Test case

The example of a cable slipping around a fixed pulley illustrates the advantages of an SE(3) beam formulation
(with traction, bending, shearing and torsion energy) and a simpler bar formulation (with only traction energy).
Firstly, large traction cables might have a non-negligible bending stiffness which cannot be modeled in bar
elements. Secondly, the SE(3) formulation can exactly represent the curvature of the beam around the pulley.
In Fig. 1, preliminary results are proposed with a unidimensional bar formulation. A displacement of -40 [mm]
in x1 is imposed at the bottom end of the cable, while the other end has an imposed displacement of 20 [mm] in
x1, so that internal forces are developed. The nodes initially present on the pulley are constrained to their initial
positions. A flow of the material coordinate s is thus observed. The retrieval of the contact forces between the
cable and the pulley is done directly through the evaluation of the constraint reaction forces. Assuming a purely
slipping contact, a slipping friction force T = µN is then added to every node lying on the pulley, where µ is
the friction coefficient and N is the normal contact force.

(a) Initial configuration. (b) After motion.

Figure 1: ALE simulation of a cable around a pulley using bar elements.

5. Conclusions

In this work, a geometrically exact beam model formulated on SE(3) is developed in an ALE framework. It
couples the advantages of using an SE(3) beam, such as the avoidance of a global parametrization of rotations
and a local frame formulation, with the perks of the ALE formulation, permitting to model a closed and sliding
contact as a bilateral constraint and to directly recover the contact forces. In this scenario, a slipping friction
force can be considered in the simulation without further changes in the solver.
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1. Introduction 

The Arbitrary Lagrangian-Eulerian (ALE) discretization method can be efficiently applied to the numerical 

analysis of the dynamics of reeving systems [1-3]. In the work published so far in this topic, specific modeling 

assumptions, like the no-slip condition, have been taken to avoid the detailed modeling of the rope-sheave 

contact analysis. The reason is that contact conditions have little influence in the overall dynamics of the 

mechanisms. However, some important industrial applications, like elevator or crane safety analysis, require 

the detailed analysis of the rope-sheave interaction. This paper presents a model that can be used to this end. 

2. Free span elements and rope-contact elements 

The ALEM [2-3] method for the modeling of rope free spans in reeving systems combines three types of 

coordinates in the kinematic description of the ropes: (1) absolute position coordinates of the ends of the span, 

qa, (2) arc-length coordinates of the nodal points within the rope, qs, and (3) modal coordinates for the 

description of transverse and axial deformation of the ropes, qm. However, these elements are not appropriate 

to model the rope-sheave contact zone. In this research, new rope-contact elements have been specifically 

defined to model this zone. Figure 1 shows part of a reeving system and a detail of a rope winded in a sheave. 

In the detail, the free-span elements, a and b, and the rope-contact elements, c1 – c4, can be observed. 

 

Figure 1. Part of a reeving system. 

The rope-contact elements ci are equivalent to the cubic ALE-ANCF elements defined in [1]. They do not 

require modal coordinates. The nodal coordinates of this ALE element are: 
T

T T

a s
 =   

q q q with :  

1 1 2 2 , ,    1,2.T T T T i
a i i

s

   = = =    

r
q r r r r r           (1)  

However, the ALE rope-contact element does not include modal coordinates because they are considered 

needless. Therefore, the ALE rope-contact element includes 12 + 2 + 2 = 16 nodal coordinates. 

3. Contact simulation 

For the contact simulation, a bristle model is used. The bristles are assumed to be located at the ends of a set 

of equally spaced segments in the rope.  The rope-sheave contact simulation includes three phases: (1) Contact 

search, when the exact location of the contact forces is determined, (2) calculation of the normal contact forces, 

using a penetration-based model and, (3) calculation of the tangential contact forces, with prior calculation of 

the stick or slip contact condition. 
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Figure 2. Rope-sheave contact. Left: contact in V-shape groove. Right: geometry of the contact analysis 

In this research, the detailed 3D contact geometry of the sheave groove is considered, as can observed in Fig. 

2. That means that at each rope cross section more than one contact zone may appear, as shown in the figure. 

4. The double mesh 

In the ALE formulation the nodal points of the finite element mesh are not necessarily connected to material 

points. This is an important difficulty when modeling stick-slip tangential contact. The stick or slip conditions 

are related to the relative tangential velocity of the sheave and rope contact points. These are of course material 

points. It makes no sense to analyze stick-slip conditions working with non-material points. In other words, 

the bristles cannot be attached to the nodal points in the ALE formulation. This is the reason for using a double 

mesh for the contact analysis. Figure 3 shows the ALE nodal points using white circles and the Lagrangian 

knots, where the bristles are assumed to be attached, using blue circles. Nodes move along the rope, but knots 

do not. Contact forces are at the rope are applied at the bristle’s free ends. 

                  

Figure 3. Double mesh for rope discretization. Left: meshes in physical space. Right: meshes in reference space. 

5. Simulation results 

The simulation of a 1:1 suspension elevator is used to show the validity of the presented model. 
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1. Introduction

A chief difficulty in position/orientation-based rod finite element formulations is to formulate an objective in-
terpolation to approximate the rod’s centerline and cross-section orientations. The choice of the interpolation
leads directly to the approximation of the strains. Interpolations that cannot fulfill shear-rigidity and inextensi-
bility constraints exactly are prone to shear and membrane locking. Sonneville et al. [1] extended the idea of
interpolating the nodal orientations using relative rotation vectors [2] to the interpolation of nodal Euclidean
transformation matrices using relative twists. This is an objective interpolation strategy where positions and ori-
entations are intrinsically coupled resulting in an element-wise constant strain approximation. Consequently,
the formulation is intrinsically locking-free. Exclusively working on the Lie group SE(3), the authors [1] ap-
plied a Bubnov–Galerkin projection where the generalized virtual displacements are given by the variation of
the nodal values.

Figure 1: A single two-node SE(3)-element can exactly represent a quarter helix.

Applying a Petrov–Galerkin projection method, we present a total Lagrangian, objective and intrinsically
locking-free rod finite element formulation [3], where the virtual displacements and rotations as well as the
translational and angular velocities are interpolated instead of using the consistent variations and time-derivatives
of the introduced interpolation formula. Lie group solvers are avoided by opting for an arbitrary but explicit
orientation parameterization.

2. Continuous rod kinematics

Let ξ ∈ J = [0,1] ⊂ R denote the centerline parameter, the motion of the Cosserat rod is described by the
centerline point IrOP at (ξ , t) with respect to an inertial basis I. The respective cross-section orientation for
time t is captured by the transformation matrix AIK(ξ , t) ∈ SO(3). Using homogenous coordinates, the rod
kinematics can be rewritten in such a way that the entire motion of the rod is represented by the Euclidean
transformation matrix

HI K (ξ , t) =
(

AIK(ξ , t) IrOP(ξ , t)
0 1

)
∈ SE(3) (1)

which transforms the coordinates of a point in the K -frame to the coordinates in the I -frame, see [4].

3. Nodal kinematics

The rod is discretized by nel two-node finite elements. For a given node e, the nodal transformation matrix
AIKe = ExpSO(3)(ψψψe) is parameterized in terms of the nodal total rotation vector ψψψe(t) ∈ R3. Hence the nodal
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generalized coordinates are given by a minimal number of six position coordinates qe(t) = (IrOPe(t),ψψψe(t)) ∈
R6. The nodal generalized velocities ue(t) = (IvPe(t),Keωωω IKe(t)) ∈ R6 are given by the nodal translational
velocity IvPe and the angular velocity Keωωω IKe represented in the cross-section fixed coordinate system Ke. The
nodal kinematic differential equation

q̇e =

(
I ṙOPe

ψ̇ψψe

)
=

(
13×3 03×3

03×3 T−1
SO(3)(ψψψ

e
i )

)(
IvPe

Keωωω IKe

)
= Be(qe)ue (2)

couples the generalized nodal velocities with the time-derivative of the position coordinates. Possible sin-
gularities in dynamic simulations are circumvented by employing the concept of the complement rotation
vector. Similar to the nodal generalized velocities, we introduce the nodal generalized virtual displacements
δ se

i = (IrPe ,Keδφφφ IKe
)∈R6 representing the virtual displacement of the nodal centerline point IrPe and the virtual

rotation of the nodal cross-section orientation Keδφφφ IKe
.

4. Petrov–Galerkin projection

The nodal virtual displacements and rotations are interpolated by linear Lagrangian polynomials Ne
i in agree-

ment with

IδrP(ξ ,δ s) =
nel−1

∑
e=0

χJ e(ξ )
1

∑
i=0

Ne
i (ξ )IδrPe+i , Kδφφφ IK(ξ ,δ s) =

nel−1

∑
e=0

χJ e(ξ )
1

∑
i=0

Ne
i (ξ )Ke+iδφφφ IKe+i

, (3)

where we have used the characteristic function χJ e : J → {0,1}, which is one for ξ ∈ J e = [ξ e,ξ e+1)
and zero elsewhere. In order to obtain a constant and symmetric mass matrix, the velocities are considered as
independent fields and are interpolated also linearly.

5. SE(3)-interpolation

Using the SE(3)-structure of the rod, we apply the interpolation of [1], such that the Euclidean transformations
of the rod are approximated by

HI K (ξ ,q) =
nel−1

∑
e=0

χJ e(ξ )HI K e
0
(q)HK e

0 K (ξ ,q) , with HK e
0 K (ξ ,q) = ExpSE(3)

(
Ne

1(ξ )θθθ
e
01(q)

)
, (4)

where θθθ
e
01 = LogSE(3)

(
H−1

I K e
0

HI K e
1

)
denotes the relative twist between the two nodal Euclidean transforma-

tions.

6. Equations of motion

The equations of motion of the discretized rod directly follow from inserting all approximations into the prin-
ciple of virtual work of the continuous Cosserat rod and is given by a set of first order differential equations in
the form

q̇ = B(q)u , u̇ = M−1 (fgyr(u)+ fint(q)+ fext(q)
)
. (5)
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1. Introduction

Due to their ability to provide mass transportation and the small spatial requirement of stations, ropeway sys-
tems are suitable as a means of transportation in urban environments, running at low energy costs and emissions.
Proper and efficient design of these systems urges the need for a dynamic model for ropeway systems, which
is not available so far. While there already exist computational frameworks for the computation of the static
configuration, the dynamic problem of the rope with cabins in contact with sheaves and rollers is not straight-
forward. The multibody system model has the potential to investigate and predict its dynamic behavior in the
design phase, which allows ropeway manufacturers to increase comfort in urban applications. This work aims
to develop a planar dynamic model with physical parameters including contact between rope and sheaves and
cabins attached which can be simulated using an implicit time integrator.

Few studies exist on the full-scale modeling and simulation of ropeway systems, using a dynamic and fully
nonlinear model of the rope. Existing literature is focusing on the dynamic effects of cross-wind and other
influences, [1]. A few recent works are studying the dynamic response of roller batteries, [2]. However,
very limited research has been conducted on the detailed numerical modeling and efficient simulation of the
dynamics of the rope interacting with the dynamics of the cabins and in contact with sheaves and rollers.

2. Mechanical and Numerical Modeling

We are modeling the system using a special finite element for the rope and a multibody dynamics framework
which allows to directly embed the cabins and the roller batteries, see Figure 1. The numerical modeling of the
rope is based on the Absolute Nodal Coordinate Formulation (ANCF), [3]. An alternative approach would be
the ALE ANCF beam element proposed in [4], which can be used for ropeway systems with masses distributed
along the rope.

As a crucial part of the simulation model, an efficient contact detection and computation between sheaves or
rollers and the rope has to be performed. As a main part of the efficient contact implementation, we use boxed
search for more than 100 rollers and 1000s of beam elements to model the rope. Contact between the rollers in
roller batteries and the rope is modeled through a normal contact model based on the penalty formulation and a
regularized Coulomb friction model. The special geometry of the system which consists of cubic polynomials
that interpolate the nodes of the rope and circular objects allows us to compute the contact points of the two
bodies as the numerical solution of the exact geometrical problem. For the contact of the rope with the sheaves,
the modeling of the friction is crucial for the transmission of the motion from the driving sheave to the system.
A so-called bristle model, has been previously used for reeving systems [5].

3. Ropeway System Simulation

The ropeway system of Figure 1 is simulated in the multibody dynamics code EXUDYN [6]. Because the major
part of the relevant system components moves in a plane, we reduce the system to a planar model. Sheaves A
and B are used to model the upper and lower station, however, the axis of sheaves A and B are rotated by 90◦

around X, as in reality the sheaves’ axes would coincide with coordinate Y, see Figure 1(a). Cabins are modeled
as rigid bodies connected to the rope through revolute joints. For the dynamic simulation, an according initial
(static) configuration is needed, considering the rope and cabins under gravity as well as the contact with rollers
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Figure 1: (a) Simulated ropeway system. (b) Detailed figure of roller battery (without a tower drawn) used
during simulation. (c) Reeving system consisted of sheaves at the location of the towers (in dark grey) and
virtual sheaves (in light grey).

and sheaves within a nonlinear static problem. For this static problem, an initial static guess is needed, as well.
As a simplified but robust initialization, we use the geometry of a simplified reeving system without gravity and
one circle for contact at each tower instead of the detailed roller batteries. In order to speed up the computation,
the contact computation as well as the computation of rigid bodies and ANCF beams is performed in parallel,
using multithreaded parallelization.

In the presentation we will show parameter variations of rope velocity and cabin masses, being important design
parameters in the system. The full scale simulation and parameter variation allow determining critical operation
modes during the design phase.
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1. Introduction

A new invariant Finite Element (FE) formulation for the geometrically non linear static analysis of the slender

beams is presented. The proposed FE formulation is based on the Kirchhoff-Love (KL) beam model as in [1]

in which an ad-hoc rotation decomposition (i.e. the Smallest Rotation (SR) map, see [6]) is introduced in order

to account the cross section orthogonality constraint. On this way the configuration space for the proposed KL

beam model splits in the cartesian product R3
× S2

× S1 characterized by the two kinematic descriptors: the

centroid curve p and an angle φ in order to correct the orientation of the cross section around the centroid curve.

2. Numerical formulation

The weak formulation for the KL beam model present a variational index equal to 2, then G1-conforming FE’s

are need. Following [2, 3] the G1-conforming FE formulation can be designed introducing the rotation at the

ends of the FE with the aim to map the second and the second last control points. Furthermore, an Hellinger-

Reissner type mixed formulation is adopted in order to avoid the several locking pathologies and improve the

computational strategy. In order to achieve the objectivity of the strain interpolations, with respect to the G1-

conforming formulation proposed in [2, 3] in this contribute a new hierarchic interpolation for the kinematic

descriptor φ is proposed. The same Bézier interpolations for both the two kinematic descriptors of the model

are considered. The proposed invariant FE formulation is very simple with regard to the others present in the

literature, see for instance [4, 5].

3. Numerical investigations

3.1. Objectivity test

Following [5], on the end A of a quarter circular cantilever pre-twisted beam is applied a rotation ωy = 20π

about the y-direction. In figure 1(a) the initial (orange) and several deformed configurations (gray) are depicted

for the angle ωy =
2π
5
,

4π
5
,

6π
5

and 8π
5

respectively. In figure 1(b) the logarithm of the computed strain energy

versus the imposed rotation ωy for the polynomial degrees p = 3,4 and 5 is shown.
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Figure 1: Objectivity test: (a) geometry and deformed configurations, (b) log10(Eh) versus the angle ωy.
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3.2. Shallow arch

Following [7] a plane shallow slender arch is considered, due to the symmetry only an half of the structure

is modeled. Two geometries are examined, for both the two cases the span of the half-arc is L = 5m while

the heights are f = 0.5m and f = 0.75m while the two loads are 500kN and 2000kN respectively. The cross

section is 0.2×0.2m2 the Young modulus E = 3×104 MPa. In figure 2(a) the problem set up is shown, while

in figure 2(b) and 2(c) the fundamental equilibrium paths are depicted for the two geometries considered. A

mesh of only 3 FE’s with p = 5 is adopted. The Crisfield’s path following algorithm is adapted to the proposed

invariant G1-conforming formulation.
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Figure 2: Shallow arc: (a) geometry and equilibrium paths for the case (b) f = 0.5m with F = 500kN and (c)

f = 0.75m with F = 2000kN respectively.

4. Conclusions

A new invariant Bézier G1-conforming FE formulation based on the Kirchhoff-Love beam model is presented.

HR-like mixed formulation is adopted in order to reduce the computational effort of the numerical resolution

strategy. The proposed formulation can be extended to the IGA.
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1. Introduction

The development of rod finite elements poses two significant challenges: the first being the need for a singularity-
free description of the cross-sectional orientation, and the second involving the objective interpolation of the
kinematic descriptors. This talk provides an in-depth discussion of both challenges and presents a Petrov–
Galerkin discretization approach. Specifically, this approach involves the interpolation of virtual displacements
differently from the kinematic descriptors, resulting in a finite element formulation that is independent of the
chosen parametrization or interpolation strategy. As a result, a family of Cosserat rod finite element formula-
tions [1] is obtained.

Figure 1: Kinematics of the Cosserat rod (left). Application of rod finite elements (right).

2. Kinematics

Let ξ ∈ J = [0,1] ⊂ R denote the centerline parameter, the kinematics of the Cosserat rod is described by
the centerline point IrOP at (ξ , t) with respect to an inertial basis I. The respective cross-section orientation is
captured by the transformation matrix AIK ∈ SO(3).

3. Rotation parametrization

For a given node i of finite-element e, the corresponding transformation matrix AIKe
i

has to be parametrized. A
first possibility is given by the Rodrigues’ formula

AIKe
i
= ExpSO(3)(ψψψ

e
i ) = 13×3 +

sin(∥ψψψe
i ∥)

∥ψψψe
i ∥

ψ̃ψψ
e
i +

1− cos(∥ψψψe
i ∥)

∥ψψψe
i ∥2 (ψ̃ψψ

e
i )

2 ∈ SO(3) (1)

in terms of the nodal total rotation vectors ψψψe
i (t) ∈ R3. Alternatively, the nodal unit quaternions Pe

i (t) =
(p0,p)⊂ R4 can be used to parametrize the orientation in accordance with

AIKe
i
= 1+2(p0p̃+ p̃2) . (2)

4. Interpolation strategies

R12-interpolation: Following [2, 3], both the centerline and the cross-section orientations are approximated
by the piecewise interpolation with p-th order Lagrangian polynomials N p,e

i , which can be written as

IrOP(ξ ,q) =
nel−1

∑
e=0

χJ e(ξ )
p

∑
i=0

N p,e
i (ξ )IrOPe

i
, AIK(ξ ,q) =

nel−1

∑
e=0

χJ e(ξ )
p

∑
i=0

N p,e
i (ξ )AIKe

i
(q) , (3)
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(a) R12, p = 1 (b) R12, p = 2 (c) R3 ×SO(3) (d) SE(3)

Figure 2: Different interpolation strategies applied to a quarter circle deformation.

where we have used the characteristic function χJ e : J →{0,1}, being one for ξ ∈J e = [ξ e,ξ e+1) and zero
elsewhere.

R3 × SO(3)-interpolation: Originally proposed by Crisfield and Jelenić [4], the centerline is discretized by
the piecewise interpolation (3) and the orientation is interpolated by the ansatz

AIK(ξ ,q) =
nel−1

∑
e=0

χJ e(ξ )AIKe
0
(q)AKe

0K(ξ ,q) , AKe
0K(ξ ,q) = ExpSO(3)

( p

∑
i=1

N p,e
i (ξ )ψψψ

e
0i

)
, (4)

with the relative rotation vector ψψψe
0i = LogSO(3)

(
AT

IKe
0
AIKe

i

)
. For simplicity, we restricted ourselves on the

reference orientation AIKe
0
.

SE(3)-interpolation: In [5, 6], the idea from the R3 ×SO(3)-interpolation is extended to the interpolation of
nodal Euclidean transformation matrices

HI K e
i
=

(
AIKe

i IrOPe
0

0 1

)
(5)

with the aid of relative twists θθθ
e
0i = LogSE(3)

(
H−1

I K e
0

HI K e
i

)
. This leads to a highly nonlinear interpolation

strategy that couples the interpolations of centerline points and cross-section orientations. Again, we have
chosen the reference Euclidean transformation matrix HI K e

0
, although the sophisticated choice of [4] can

be applied. Only the two-node formulation (p = 1) leads to constant strain measures, hence, without further
adaptions, higher order schemes will suffer from membrane and shear locking.
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1. Introduction

Simulating dry interacting fibres is relevant to a diverse set of applications, ranging from the fundamental un-
derstanding of fibre entanglement [1] to the realistic animation of hair in special effects [4, 6] and the virtual
prototyping and design of a wide set of new rod-based materials in the fields of engineering [5]. Since the
2000’s, a number of numerical models for fibres subject to frictional contact has therefore been developed both
in Computer Graphics and Mechanical Engineering, with variability across the validity range, computational
performance, and predictability. While the former community has focused on the simulation of extremely
complex scenes (thousands to millions long interacting fibres under large displacements), often at the expense
of little quantitative validation, the latter has generally favoured much simpler scenarios (small deflection of
beams, low number of fibres and contact points, regularised friction laws) albeit with extensive care for pre-
dictability.
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Figure 1: (Left) Comparison of the normalised force F̄ as a function of the normalised displacement δ̄ in
the frictionless three-point-bending test using a 2D implementation of the Super-Helix model to simulate the
rod. Two detections schemes are compared, segments discretisation and exact distance computation, to the
analytic solution. (Right) Application of our full pipeline to the challenging simulation of a comb passing into
a wisp of hair: 2025 tightly contacting super-helices are simulated with dry friction, resulting in 33100 contacts
on average, which are accurately detected using our new curve-curve detection algorithm [3] and resolved
precisely with our non-smooth Coulomb friction contact solver so-bogus [4].

The goal of this work is to explore novel algorithms to enhance the predictability of fibre assembly simulators,
without sacrificing the complexity of the target scenarios. Our present study is precisely aimed at evaluating and
improving the accuracy of the forces computed among fibre assemblies. Computing frictional contact forces
emerging from fibre systems in an accurate manner is indeed fundamental to the proper understanding of micro-
mechanisms at the origin of macro-behaviours such as adhesion or crackling in fibre assemblies, which still
remain poorly understood nowadays [1, 8]. On an applicative point of view, predicting forces correctly would
further allow to enhance considerably the predictability of material design, especially for systems requiring
high-fidelity restitution of some target properties like the strength, feasibility and sustainability of the design [7],
but also the user sensorial experience related to touch or audio sense of reality [10].
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2. Contribution

Our work relies on the super-helix [2] curvature-based discrete model for Kirchhoff elastic rods, coupled with
contact and friction through the non-smooth so-bogus solver [4]. This coupled simulator has been carefully
validated geometrically in 2D and 3D configuration, against the dimensionless cantilever and pinning tests [9].

When analysing the contact forces yielded by this numerical model on the classical three-point-bending test,
for which an analytical law can be derived, we note the occurrence of spurious jumps which, to the best of
our knowledge, were never reported before. We demonstrate that these artifacts are actually directly linked to
the low-order contact detection being used between the fibre and the obstacles. Low-order detection, based
on segment proxys, is classically used due to its simplicity of treatment, even for fibre models possessing a
higher-order geometry like super-helices. We show that spurious artifacts occur whatever the fibre model and
contact response solver used, as soon as a segment-segment detection scheme is employed.

To remove such numerical artifacts in the force profile, which can accumulate to yield large force errors, we
introduce an efficient high-order detection algorithm [3]. Our method aims at finding the closest point between
a pair of curves, with respective centreline parametric equations a(s) and b(s), by looking for the two curvilinear
abscissa s1 and s2 that minimise the distance fonction D(s1,s2)≡ 1

2 ||a(s1)−b(s2)||2.

In the 2D case, we show that there exists an analytic solution to our problem. In the general 3D case, the
problem becomes non-convex and challenging to solve: we devise a branch-and-bound approach to find pairs
of closest points in an accurate and efficient way. Our algorithm proves to be particularly well-suited to super-
helices, but can be adapted to other family of curves, provided there is a bound on their second derivative. We
combine that narrow phase detection to a broad phase that prunes obvious cases and add a final pass that merges
close contact at the junction between discretised elements.

We demonstrate the validity of our detection algorithm on the 2D three-point bending test (see Figure 1, left),
and the scalability and robustness of our method on a challenging 3D scenario involving tens thousands of
frictional contacts (Figure 1, right).
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1. Introduction

Nowadays, flexible beam-like structures have found extensive use in the automobile and the aerospace domain.
With the implementation of fly-by-wire systems in the the aerospace industry and drive-by-wire in modern
electric vehicles, these flexible slender structures of wire bundles, cables or hoses play a vital role in the func-
tioning of these systems. IPS Cable Simulation is a commercial simulation tool developed at Fraunhofer ITWM
which is capable of real-time simulations of flexible cables deformations. It is based on a geometrically ex-
act rod model where the constitutive model is formulated based on the sectional quantities of the rod. Thus,
the internal mechanical response of the individual wires in the cable and their interactions are not explicitly
incorporated. This project aims at a deeper understanding of such finer scales.

Mechanical experiments for flexible slender structures can be performed in order to understand the constitutive
model of the cable bundle [3]. However, only the global quantities such as the displacement at the boundary and
the sectional forces can be measured through the experiments. The contact forces between the individual wires
and the exact knowledge of the geometric rearrangements are not measured. Therefore, some results from
the experiments cannot be interpreted with certainty such as the hysteresis in the load displacement curves.
Although some commercial simulation software can simulate such cable bundles [2], the results are highly sen-
sitive to numerical parameters of the contact model, whose tuning is particularly cumbersome. The alternative
to using commercial software is to use a research simulation code, such as Odin [4].

The contact mechanics between highly flexible slender structures is still an active field of research. Our current
hypothesis to explain the hysteresis effect is that it originates in the frictional interactions between the individ-
ual fibres. This motivates the development of a research simulation framework with advanced beam models,
constitutive laws and custom solvers for the simulation of multibody systems with contact conditions. Odin
includes many recently developed functionalities and relevant test cases are needed to ascertain the results. The
investigation of the mechanical phenomena and the numerical behaviour of line-to-line contact formulations
implemented in Odin motivates the present study of the bending response of sandwiched beams.

2. Sandwiched Beams Bending Test

In this simulation, geometrically exact beams based on the special Euclidean group SE(3) theory represent
the two beams. The beams have a radius r = 0.001 m with length l = 0.3 m and the material properties are
referenced from [7] (E = 200 GPa, ν = 0.2). The beams are discretized into 10 elements. The master beam is
superposed over the slave beam and a mortar line-to-line contact discussed in [6] is defined between the two
beams. A quasi-static uniformly distributed load P = 1 N/m is applied on the upper surface of the master beam.
Both beams are clamped on the left end and are free on the right end. The total time of simulation is 5 s, with
a time-step size of h = 0.01 s. Figure 1a shows the boundary conditions and the uniformly distributed load
applied over the upper beam.
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(a) Boundary conditions and externally applied load
(b) Deformed configuration of the centerlines of the sand-
wiched beam

Figure 1: Load case and final deformed configuration of the sandwiched beam

The final deformation configuration of the sandwiched beams is shown in Figure 1b. This figure shows the
deflection of the lower beam under the contact pressure due to the contact force. A minimal sliding between the
beams is observed as the nodes are getting misaligned during the bending process. In the talk, the distribution
of the normal and tangential contact forces and the sliding of the nodes during the bending will be analysed in
detail.
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(a) Experimental set-up. (b) Simulations
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Figure 1: (a) Experimental set-up with 30 open rings. (b) Simulation of 30 rings with different opening angles.
(c) Stress-strain curve for one compression cycle, illustrating the shell-shell snap-fit events leading to force
drops.

Mechanical metamaterials remarkably exploit large-displacement phenomena, such as the buckling instabilities
of slender structures or the coupling between elasticity and friction, as mechanical energy transducers able
to achieve designed functionalities [2, 3]. While such systems have recently met large interest owing to the
progress in fabrication technology and computational modelling, they often rely on the careful manufacturing
of controlled structures, and the effect of randomness or defects in the components are seldom quantified nor
accounted for.

This work investigates the mechanical response of a random stack of bidimensional flexible open rings 1a
subject to compression cycles, by the means of experiments and simulations [1]. We leverage the curvature-
based super-helix [4] numerical model to simulate the open rings as two-dimensional Kirchhoff rods, and
fully account for frictional interaction between the rings with a geometrically-exact contact detection algorithm
coupled to frictional contact constraints [5]. This fully high-order framework allows for robust and scalable
simulations, notably removing the spurious discretisation-based artefacts in the force response that occur with
low-order models.

Our numerical model is carefully validated against theoretical predictions for the snap-fit of a single ring onto
a cylinder [6], demonstrating the particularly accurate account of Coulomb friction with our non-smooth ap-
proach 2. The excellent agreement obtained between our simulations and experiments for the 30 rings assembly
compression cycles, in particular regarding the snap-fit force drops and cycle hysteresis, allows to rely on the
numerical model to further investigate the impact of the friction coefficient and the opening angle of the rings 1b
on the mechanical behaviour of the system. In particular, we find that such a system, which acts as a disordered
mechanical metamaterial, can absorb and store mechanical energy upon compression in a controlled way by
exploiting large displacement and relocation of rings, snap-fits, and friction 3.
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(a) Type I snap-fit. (b) Type II snap-fit.
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Figure 2: (a,b) Simulations of sliding (type I) or sticking (type II) snap-fit of a 2D cylindrical shell onto a rigid
cylinder. The snap-fit regime depends on the opening angle of the ring Φ and the friction coefficient µ between
the ring and the cylinder. (c) Simulated and theoretical phase diagram for type I or II snap-fitting in (Φ,µ)
space.
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1. Introduction

The dynamics of complex industrial machines can be modeled using recently-developed sophisticated software.
These software can well model common mechanical parts such as elastic bodies or rigid bodies. However, for
slender structures such as wire ropes, a tailored method is often required to model their large motions as well as
their small deformations. The Arbitrary Lagrangian-Eulerian Modal (ALEM) approach [1] has recently been
developed as an efficient method for wire ropes with a minimal number of finite elements. To be able to apply
this formulation in the corresponding industrial applications, this study models an industrial mobile harbor
crane by a co-simulation approach. Moreover, real-time simulation as one of the challenges in the wire-rope
modeling is achieved in this study for a 3D wire-rope system under 1D hoisting motion.

2. Problem definition

The system under consideration is an industrial mobile harbor crane, as illustrated in Figure 1. The dimensions
and mechanical characteristics of the system are based on those of a real mobile harbor crane that is used for
simulators. The system is kinetically actuated by a motor installed on the reel to raise or lower the payload.
The payload system is modeled as Subsystem 1, while the wire-rope system is modeled as Subsystem 2. The
corresponding inputs and outputs of Subsystem 1 are defined as:

us1 =
[

FWR1 FWR6
]T , ys1 =

[
(qs1)T (q̇s1)T

]T (1)

where the vector FWRi (i = 1,6) is the wire-rope force exerted on the payload that can be computed by extracting
the first three elements of the wire-rope elastic force, gravity force, and quadratic-velocity inertia force [1]. On
the other hand, qs1 and q̇s1 are the generalized coordinates and velocities of the Subsystem 1, which are the
rigid-body coordinates and velocities. Regarding Subsystem 2, the corresponding inputs and outputs can be
defined as:

us2 =
[
(qs1)T (q̇s1)T

]T , ys2 =
[

FWR1 FWR6
]T (2)

The resulting equations of motion of Subsystem 1 are the Ordinary Differential Equations (ODE) that have
been solved using the Runge-Kutta method. However, the equations of motion of Subsystem 2 are Differential
Algebraic Equations (DAE) that has been solved using the Generalized Alpha method. Both subsystems are
modeled in a MATLAB environment.

3. Results and discussion

The wire-rope system is modeled based on an explicit co-simulation method based on the Gauss-Seidel scheme.
To evaluate the effects of the extrapolation method on the accuracy of the results, Figure 2 depicts the co-
simulation results obtained based on the Zero-Order Hold (ZOH), First-Order Hold (FOH), and Second-Order
Hold (SOH) extrapolation methods with the same micro time steps as the macro time step as ∆T = 25 ms. The
co-simulated results are compared with a reference monolithic approach with the time step equal to ∆t = 50
ms. According to Figure 2, it can be observed that the implementation of a higher-order extrapolation can
significantly increase the accuracy of the results; however, the difference between FOH and SOH extrapolation
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Figure 1: The configuration of mobile harbor crane

methods is not significant. The resulting simulation time for the wire-rope subsystem using the current macro
time step is approximately 8.8 (s) for a 9 (s) ride. These results can demonstrate the accuracy and efficiency of
the given formulation for real-time applications which was a question in recent studies.

Figure 2: Comparison of the vibration of the rigid body with respect to the extrapolation method
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1. Introduction

Body locomotion of slender organisms has been studied experimentally [4] and computationally [1]. However,
due to the lack of information on the muscle activity and the frictional parameters, which may vary in time and
space, it is not yet possible to reproduce the observed motion. Some recent works outline the necessity of no
reciprocal trajectories in the parameter space for swimming organisms [1] and the need of non-isotropic friction
for locomotion on substrates [3].

We here aim at replicating their locomotion by computing the optimal contractility profile for different body
geometries and strategies: (i) an inchworm with different top and bottom contractility, (ii) a maggot with a
constricting wave, and (iii) a C. elegans type with different left-right contractions. The first two types have
different forward-backward friction, while the latter exploits the different friction in normal and tangential
directions. Figure 1 shows the three types of bodies and illustrates their deformations during their propulsion.

t=0s t=2s t=3s t=4s

Inchworm

Maggot

C. elegans

1

Figure 1: Three body types analysed and four snapshots of their locomotion strategy.

2. Methods

2.1. Mechanical Model

The organisms are modelled as non-linear elastic bodies occupying a domain Ω ⊂ R3. They have the ability
to constrict in different subdomains at different times. More specifically, the deformation gradient F = ∂xxx

∂XXX of
each body is decomposed into an elastic and contractile part, i.e. F = FeFc, with Fc = u(t)I a time dependent
imposed uniform isotropic deformation. After neglecting inertial forces, the following equilibrium equations
are then solved

∇ ·σσσ = 000,∀xxx ∈ int(Ω)

σσσnnn = 000,∀xxx ∈ Γ0

σσσnnn = ηηη ẋxx,∀xxx ∈ Γs

with σσσ = J−1
e FeSeFT

e the Cauchy stress-tensor, and Se =
∂W
∂Ee

the second Piola stress tensor, Ee = (FT
e Fe − I)/2

the Green-Lagrange strain tensor, and W the elasticity function, which is here assumed as Neo-Hookean. The
boundary Γs is the bottom surface, where a velocity dependent frictional condition is imposed, and Γ0 = ∂Ω\Γs.

97



The finite element discretisation of the equilibrium equations yields the following set of non-linear equations,

ẋxx = ggg(xxx(t),uuu(t)). (1)

Vector uuu contains all the elemental values of the contractility in the relevant subdomains for the type of body
being modelled. In order to deduce the form in (1), a small amount of friction is imposed in all the nodal values.

2.2. Optimal Control

We aim at computing the optimal contractility uuu(t) that minimises a measure of the translation of the centre of
mass of body Ω, xcm =

∫
Ω

xxxdΩ/
∫

Ω
dΩ, subjected to the discretised equilibrium equations in (1). We thus aim

to solve the following minimisation problem (time t is omitted for clarity),

min
∫ T

0
j(xxx,uuu)dt (2)

s.t.ẋxx = ggg(xxx,uuu),xxx(0) = xxx0

with ||xxxcm−xxxd ||2+α||uuu||2 the cost function, and xxxd a given target position. Parameter α weights the cost of the
active deformation given by uuu. After defining the Hamiltonian function H(xxx,uuu) = j(xxx,uuu)+λ T g(xxx,uuu), with λ (t)
a set of adjoint variables, the optimality conditions of problem in (2) may be written as the following two-point
boundary value problem [2],

ẋxx = ∇λ H , λ̇λλ =−∇xH , 000 = ∇uH (3)

Figure 2(left) shows the evolution of xxxcm when solving system (1) for a given sinusoidal u(t), and using the
undolatory gait with different ratios of normal vs. tangential friction, while 2(right) shows this evolution for the
optimal locomotion.
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Figure 2: Evolution of the displacement of centre of mass xcm.
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1. Abstract

For the numerical modeling of slender structures that are characterized by an axial motion and transient os-
cillations, i.e. belt drives, conveyor belts and ropeway systems, mixed Lagrange Eulerian descriptions have
been developed, see i.e. [1, 2, 3]. An approach based on the Arbitrary Lagrange Eulerian (ALE) formulation
where the beam finite element discretization is based on the Absolute Nodal Coordinate Formulation (ANCF)
has been introduced in Ref. [4]. In the latter approach, the ANCF beam element was extended by an additional
independent coordinate, sE , which models the overall motion of mass in the axial direction of the beam. How-
ever, in the numerical investigations performed in Ref. [4] some of the sE-dependent terms were neglected.
These terms appear in the virtual work of elastic forces:

δWe =
∫ L

0
(EA(ε (qi,sE)− ε0) δε (qi,sE)+EI (K (qi,sE)−K0) δK (qi,sE)) dx̄ , (1)

and the virtual work of viscous damping forces:

δWve =
∫ L

0
dε ε̇ (qi,sE) δε (qi,sE)+dKK̇ (qi,sE) δK (qi,sE) dx̄ . (2)

In Eqs. (1) and (2), L is the element’s length, EA and EI are the axial and flexural rigidity respectively, ε is
the axial strain, ε0 is the (pre-)stretch of the beam, K is the curvature, K0 denotes the curvature of the beam
in the reference configuration, ε̇ and K̇ are the total time derivatives of ε and K and dε , dK are damping
parameters. Note that the axial strain, ε , depends both on the nodal coordinates, qi, and the Eulerian coordinate,
sE . Therefore, in Eq. (1) the variations δε and δK include the terms ∂ε

∂ sE
δ sE and ∂K

∂ sE
δ sE respectively, which

were neglected in Ref. [4]. Likewise, in Eq. (2) the time derivatives ε̇ , K̇ include an Eulerian part which arises
from the total time derivative of the position vector v = dr

dt = vE
∂r
∂ x̄ +

∂r
∂ t , with r being the position vector and

vE the Eulerian velocity, ṡE . This Eulerian part was also neglected in the numerical investigations performed in
Ref. [4].

In this work, we investigate the influence of the above-described additional terms in Eqs. (1) and (2) through
numerical examples which have also been reproduced using the ANCF beam element for comparison. The
obtained results showed good agreement as well as convergence to an available analytical solution.

2. Numerical example

We model a rope of length L being wound around a pulley of radius R as shown in Figure 1. The right tip of
the belt is fixed on the pulley, while we apply a force, F , on the left tip. The pulley was modeled as a rigid
body while for the contact between the belt and the pulley we use the contact modeling described in [5]. When
modeling the belt using the ALE element described above we fix the rotation of the pulley and we model the
axial motion of the belt through the Eulerian coordinate, sE , using a constant velocity vE = sE

t , which is chosen
adequately small for avoiding dynamic effects. When modeling the system with the ANCF beam element
the pulley rotates with a prescribed angular velocity, ω = vE

R . We measure the torque applied to the pulley.
We compare the results obtained by the extended ALE element with those obtained using the ANCF element.
Furthermore, we deactivate the newly added terms in the implementation in order to examine their influence.
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vE =const.
F

L , EA, EI

R

Figure 1: A belt is wound around a pulley. The right tip of the belt is fixed on the pulley while a force,
F =−10N, is applied to the left tip.

Finally, we examine the convergence to the analytical solution for the torque required for bending a belt into a
circular curve, τ = EI

2R , see Table 1.

Table 1: Force responsible for bending the belt.

Method Result (N)
Analytical solution −10.533 (F + τ/R)

ANCF beam [5] −10.543 (32 elements)
ALE beam [4] −10.002 (32 elements)

ALE beam extended
8 elements 16 elements 32 elements
−10.386 −10.431 −10.533

The present numerical example shows that the extended ALE beam element complies with the analytical so-
lution and the results obtained by the ANCF beam modeling which shows us that the inclusion of the above-
described terms allows us to model systems which involve change in the curvature of the belt. Other numerical
examples for investigating the influence of sE-dependent terms in ε̇ and K̇ in Eq. (2) will be included in the
presentation.
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1. The Kirchhoff–Love model

Imagine a piece of springy wire, form a knot out of it and clamp its endpoints. Which shape will it take?
Besides general curiosity, the answer to this question is of some relevance to modeling long slender objects on
quite different length-scales—which match the concept of an unshearable impermeable ‘elastic’ rod.

Following [1, 2] we may characterize equilibria as critical points of a linear combination of bending and twisting
energy. In total, we consider the functional

E[u;b] =
cb

2

∫ L

0
κ

2 ds+
ct

2

∫ L

0
β

2 ds, (1)

where u : [0,L]→R3 is a curve with a normal field b : [0,L]→ S2 and κ , β denote the curvature and twist rate,
respectively. The bending and torsion rigidities cb > 0, ct ≥ 0 are determined by the Lamé coefficients of the
material and geometrical properties of the rod (u,b).

The shape of ‘stable’ equilibria, i.e., local minimizers, of E is determined by some trade-off between bend-
ing and twisting energy depending on cb,ct. Experiments indicate a complex energy landscape; see [3] and
references therein.

However, a gradient descent for (1) is likely to show physically meaningless self-penetrations of the curve. In
order to incorporate impermeability of matter and to produce more realistic simulations such as the one shown
in Figure 1 below we have to pass to a more refined model.

2. Modeling impermeability

The general idea of a repulsive functional is to define a “measure of embeddedness” which blows up if an
embedding degenerates. In the case of closed curves this occurs if a sequence of embedded curves converges to
a curve with a self-intersection. Thus a repulsive functional erects infinite barriers between different topology
types.

From the numerical point of view, the tangent-point potential TPq is a particularly convenient example of a
repulsive functional on a (closed) curve u : [0,L]→ R3. For any q > 2 it amounts to the Lq norm of the
reciprocal tangent-point radius at two given points x,y ∈ [0,L], namely the (unique) radius of a circle passing
through u(x) and u(y) while being tangential to u at u(x). For an arclength parametrized curve u it amounts to

TPq[u] =
∫ L

0

∫ L

0

|u′(x)∧ (u(x)−u(y))|q

|u(x)−u(y)|2q dx dy. (2)

Figure 1: Snapshots of the gradient descent of an ‘elastic’ rod: The initial configuration is a round circle
twisted by five full rotations. Relaxing its total energy leads to a significant reduction of the twisting energy at
the expense of ‘coiling’. This simulation is based on a gradient descent for (3) as described in [3].
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Figure 2: Gradients of a repulsive functional; cf. [5]. The gradient field defined by the L2 metric (on the left-
hand side) is pathologically concentrated on regions of near self-contact. Consequently, one has to pick tiny
step sizes to prevent self-collision. Passing to a Sobolev metric (middle) produces a gradient field which is more
uniformly distributed along the curve. However, this can still be improved considerably by adding a lower order
term to the inner product that discourages movement in regions of near self-contact (right-hand side).

Regularizing the functional E from (1) by the tangent-point potential yields the new total energy

Eϑ [u;b] =
cb

2

∫ L

0
κ

2 ds+
ct

2

∫ L

0
β

2 ds+ϑ TP[u], (3)

where the regularization parameter ϑ > 0 may be interpreted as the ‘thickness’ of the rod. Choosing ct = 0 we
recover the case of so-called ‘elastic knots’; see [3, 4].

3. Finding the shortest path between two rods

Based on a repulsive energy we can define a metric on the manifold of embedded curves and rods. Here the
choice of that metric really matters. As illustrated in Figure 2, a careful definition which exploits the structure
of the problem may prevent self-interpenetrations even when taking relatively large time steps; cf. [5].

This approach paves the way not only to a more efficient implementation of the gradient descent for (3). In fact,
we may now aim for studying geodesics and finding the shortest path between two rods belonging to the same
topology class by extending an approach for embedded curves [6].
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1. Introduction

Thanks to the simplicity in their form, knots are commonly used in day-to-day lives like in shoelaces as a most
basic example. Just by tying a rope in a certain configuration, we are able to firmly attach structures thanks to
some self-locking effect of the rope. Found in activities such as hiking, fishing or knitting, knot tight tying shows
utility in multiple scales and forms. However, despite their usefulness and apparent simplicity, knots have only
recently been deeply studied in the fields of physics and mechanics. Although there are multiple mathematical
models to describe the topology of different kinds of knots, a mechanical model capable of capturing some core
behaviors, like self-locking, is still absent.

A first model was developed by Audoly et al.[3], addressing the mechanics of knots in in loose configurations.
This approach is derived from an inextensible Kirchhoff rod model that is tied in a simple overhand configu-
ration at the limit of a vanishing thickness. Because it assumes the rod to be inextensible, the model diverges
in tight knots configurations. Since the core utility of knots are found in their tights forms, it is fundamentally
important to understand how each physical and geometrical parameter interact with one another. Baek et al.[2]
and Durville[4] have explored the tight knot configuration with volumetric effects, and in particular the defor-
mation of the cross-section of the rod. While these approaches allow, for the first time, to capture the geometry
and forces of tight knots, they are restricted to a particular choice of physical parameters, and none of them
studies the mechanism of self-locking.

Our work proposed here aims at expanding previous studies to multiple sets of parameters in order to charac-
terise some core behaviours still poorly understood, in particular the self-locking property in tight knots.

Figure 1: On the left, multiple snapshots of the rod centerline curvature are plotted to exhibit the self-locking
behavior. The knot is first tightened and then loosened; As the tightened state surpasses the critic locking value
of the end-to-end shortening ē, the centerline curvature remains constant, which indicates a locking effect.
On the right, snapshots of the knot are shown to illustrate the state of deformation of the knot alongside the
centerline curvature. We note that given the locking of the knot, the structure buckles itself with the imposed
displacements on both ends of the rod.
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2. Contribution

We analyse the self-locking mechanism in tight knots using an open-source, full 3D FEM simulator [5]. Our
protocol is based on two steps: first, a thin rod is tied in an overhand knot form and tightened by imposing the
displacement on both ends; then, by imposing a displacements towards the center of the knot to loosen it, the
tensile force is relaxed.

Given a set of physical and geometrical features, namely the Young Modulus (E), Poisson’s ratio (ν), friction
coefficient (µ), diameter of the rod (D), length of the straight rod without the knot (L0), and end-to-end short-
ening ē = (L−L0)/D, we find a critical dimensionless locking parameter beyond which self-locking indeed
occurs, as illustrated in Figure 1. In contrast, below this threshold, no locking appear and the knot gets untied
(see Figure 2).

Figure 2: Since the knot is not tight enough, it gets untied and recovers its initial form.

By combining simulations and experiments, we are able to validate our numerical approach and further leverage
it to explore systematically the respective impacts of geometrical and mechanical parameters involved in the
self-locking phenomena.
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1. Introduction

Beam-to-beam contacts are complicated phenomena due to the beam’s simplified mathematical model with a
rigid cross-section. This requires careful treatment of the subject by developing appropriate formulation for a
specific use. The most general and also computationally the most costly are the mortar methods [1, 2]. In this
work, we explore a new parametrization that eliminates the need for distinguishing or favouring one side of
the contact when selecting the master and slave sides of the beam. This formulation is then solved using the
Lagrange multipliers and the penalty method and compared with the mortar method and its penalty variant.

2. Contact between beams

A beam is characterised by the position of its centreline xxx to which an oriented rigid cross-section is attached.
For the presented contact formulations, only the position of the centreline is required.

A line-to-line contact describes a configuration where the contact force is distributed along the length of the
contact zone. Using g as a measure of the gap between beams and the Lagrange-multiplier field λ to represent
the negative distributed contact force results in the following additional constraints to the system:

g≥ 0 (1)

−λ ≥ 0 (2)

gλ = 0. (3)

These constraints are pointwise, while the mortar method distributes them along the contact using a weak
relationship.

Denoting beams in contact as 1 and 2, the contact virtual work is

δΠN =
∫

Γc

δλg+(δxxx1−δxxx2)
T nnnλ +(xxx′1δ s1−δxxx′2δ s2)

T nnnλds, (4)

where nnn = (xxx1− xxx2)/||xxx1− xxx2|| is the contact normal. At this point, the relationship between xxx1 and xxx2 is still
undetermined. The additional projection constraint comes from the specific formulation.

3. Mortar and unbiased method

The mortar method discretises the contact along one of the beams by using its finite element discretisation. The
unbiased formulation combines each pair of beam finite elements using a specially developed parametrisation.
Both formulations are developed side by side for comparison. See also Figure 1

Mortar Unbiased
Projection nnnT xxx′2 = 0 nnnT (xxx′1 + xxx′2) = 0
Parametrisation s = s1 s = (s1 + s2)/2
Integration boundaries [0,L1]

[
max

i
(s|si=−1),min

i
(s|si=1)

]
4. Lagrange multipliers and penalty method

The Lagrange multipliers field can be discretised using the standard shape function

λ = ΦΦΦ
T

ΛΛΛ. (5)
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xxx1

xxx2

(a) Mortar method: Bottom beam is selected as slave side.
Green shadow indicates the integration zone, which is con-
ducted using Gauss quadrature in black dots. Perpendicu-
lar projection is computed to master side (globally) which
requires integration across discontinuities. Some points
might not have a valid projection and their contribution
is neglected.

xxx1

xxx2

(b) Unbiased method: Each pair of beam elements pro-
duces a contact element as indicated with green shadow.
The integral is evaluated using Gauss quadrature in black
dots. There, an unbiased projection is computed to both
beams. Contact domain is discontinuous but converges
towards continuity when the contact forces straighten the
beams.

Figure 1: Discretisation and integration of contact

While the mortar methods allows continuous multipliers across elements and thus a connected mesh, the unbi-
ased method requires element-wise discretisation. Optimally, the field is approximated using constant interpo-
lation as a higher order interpolation leads to over-constraint and consequentially to instabilities.

The penalty method can be implemented through

λ = εg, ε =

{
ε0 if g < 0
0 otherwise,

(6)

where ε0 is the penalty parameter.

5. Conclusions

The unbiased formulation achieves objectivity by employing suitable projection functions and parametrisation
techniques. However, higher interpolation orders result in over-constraint, requiring to combine this method
with either constant interpolation or the penalty approach. The unbiased method explores the potential of
utilising various projection functions and parametrisations within the mortar method, known for its stability and
robustness. Further investigations are needed to improve the method’s performance concerning over-constraint
and parametrisation.
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1. Introduction

The body of literature devoted to flexible structures, which move axially across a given control domain is
steadily growing, see the recent review paper [1]. Also problems featuring thin elastic rods, partially sliding
within a rigid or flexible channel (sleeve) are receiving more and more attention in the recent years, see [2, 3, 4].
From a practical point of view, such mechanical systems may represent deployable space structures, concentric
tube robots used in modern surgery as well as a broad range of other mechanisms – or the vibrating tail end of the
spaghetti when being sucked into one’s mouth too fast. Besides practical importance and sometimes counter-
intuitive behavior (as for the dancing rod problem considered in [4, 5]), the class of problems at hand is barely
accessible for mathematical modelling with traditional methods of structural mechanics, featuring conventional
material (Lagrangian) kinematic description because the material particles move between qualitatively different
domains on the constant basis. The resulting solution-dependent discontinuities of the curvature of the axis of
the rod are difficult to resolve using standard approximation techniques, which promotes the use of various
kinds of the Arbitrary Lagrangian-Eulerian formulations with a finite element discretization of a non-material
parameter domain, see e.g. [6, 7]. In particular, the transformation of the principle of virtual work for a part of
a rod in a control domain to a non-material variational equation is presented in [8]. The subsequently derived
Lagrange equations of motion for large vibrations of an axially transported rod feature nodal unknowns of the
approximation of the deformed state in terms of a Eulerian coordinate.

The specific feature of the sliding rod problems is that the relative motion between the rods is not prescribed in
advance, but rather belongs to the set of unknowns. The respective work conjugate generalized force is related
to the energy release rate and shall be classified as Eshelby-like or configurational force [2, 3, 4]. The distinctive
feature of the benchmark problem, considered in the present contribution is that it allows for a static analysis,
which allows obtaining the solution both using the finite element approach and semi-analytically by integrating
the boundary value problem. Furthermore, it helps elaborating on the nature of the configurational force acting
between two flexible rods by comparing the solution of the geometrically nonlinear problem to the analytic
expression of the energy release rate in a simple geometrically linear setting.

2. Problem formulation

Consider two beams in the field of gravity, simply supported at the outer ends and sliding one inside another
without friction in the middle part of the flexible mechanism as shown in Fig. 1. Which of the beams plays
the role of a sleeve and which one is inside is irrelevant as we consider both beams having the same bending
stiffness a and mass density per unit length ρ . The beams are inextensible, and each of them has the same length
ℓ, while the distance between the supports H < 2ℓ to enable contact in the overlapping region. Because of the
weight load, the beams bend and partially slide out of each other, the overlapping region is getting shorter.

η , a, ρ

ℓ−η , 2a, 2ρ

η , a, ρ

s

g

y

x

Figure 1: Compound beam, simply supported at both ends with sliding in the overlapping domain

The symmetric setting comprises three segments. The first and the third one are the outer segments, both of the
length η . The single beam here has the bending stiffness a and the mass per unit length ρ . The second region,
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where both beams overlap, has the length ℓ−η . Here the compound beam has the bending stiffness 2a and
the mass per unit length 2ρ . It is important that the length of each non-overlapping region η belongs to the
unknowns of the problem and needs to be determined both in the static as well as in the dynamic analysis.

3. Analysis methods

The numerical approach to finding static equilibrium features the finite element discretization of the deformed
configuration of the compound rod x(s), y(s) by re-parametrizing the material coordinate s in all three segments
via a non-material one, which varies in a fixed range independent from η . Particular attention needs to be paid
to the continuity of the approximation at the transition points s = η and s = ℓ. Minimizing the total potential
energy (the strain energy of bending plus the potential in the field of gravity) with respect to the finite element
degrees of freedom and η we obtain equilibrium configurations, which depend on the gravity load factor g.
Interestingly, the equilibria exist only until η is sufficiently large: for the considered parameter set with ℓ= 1,
H = 1.4, a = 2666.67, ρ = 3.12 the limiting value of the load is approximately g = 6.433, which corresponds
to η = 0.517. At larger g the frictionless connection between the rods cannot withstand the loading.

A semi-analytical solution for the considered benchmark problem justifies the numerical results. For each fixed
value of η the boundary value problem

Q′
x = 0, Q′

y −ρeff(s)g = 0, M′+Qy cosθ −Qx sinθ = 0, aeff(s)θ ′ = M, x′ = cosθ , y′ = sinθ ,

s = 0 : M = 0, x = 0, y = 0; s = (ℓ+η)/2 : Qy = 0, θ = 0, x = H/2
(1)

with symmetry boundary conditions in the middle produces the static deformed shape as if sliding was re-
stricted. The effective bending stiffness aeff and effective mass density ρeff change from a, ρ to 2a, 2ρ at s = η ;
Qx,y, M are components of the force and the bending moment in a cross-section; θ is the rotation angle. The ac-
tual value of η , which minimizes the total potential energy obtained by integrating the boundary value problem
Eq. (1), stands in perfect correspondence with the finite element solution.

4. Configurational force

Both the FE and the semi-analytical solutions show that the longitudinal component of the tension force
Qt = Qx cosθ +Qy sinθ at the transition points is related to the local complementary strain energy: Qt |s=η =
3M2/(4a2)|s=η . A simple consideration of the energy release rate in a geometrically linear setting confirms this
observation and allows to identify this force as work conjugate to η , revealing its configurational nature.
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1. Introduction

Nonlinear configuration spaces with Lie group structure have become a quasi-standard for modelling highly
flexible slender structures with large rotations [1]. Lie group time integration methods [2, 3] have been studied
in great detail with respect to (local) error [2, 4] and zero-stability [4] but there is not much known about their
numerical stability for larger time step sizes. Simple but non-trivial test equations can be a first step towards a
better understanding of the stability on coarse time grids.

We start with a test problem from rigid body dynamics: a (damped) torsional spring being attached to a homo-
geneous rigid ball that rotates around a fixed axis in R3. On SO(3), the local parametrization based approach
of Munthe-Kaas [2] is shown to result in Runge-Kutta Lie group integrators that share for this test problem the
stability properties of their classical counterparts being applied to a (damped) oscillator in a linear space.

The test problem from mechanics motivates the definition of a test equation for Lie group time integration
methods in the general Lie group setting. The practical relevance of this approach will be discussed in view of
the non-commutativity of rotations in 3D.

2. Linear time-invariant second order systems

Linear time-invariant second order systems

Mẍ+Kx = r(t) (1)

with symmetric positive definite mass matrix M ∈ Rn×n and symmetric, positive semi-definite stiffness ma-
trix K ∈ Rn×n may be decoupled into n scalar equations using an orthogonal transformation M = UM ΛΛΛM U>M
with diagonal matrix ΛΛΛM = diagi mi followed by a second orthogonal transformation ΛΛΛ

−1/2
M U>M KUM ΛΛΛ

−1/2
M =

UΩΩΩ

(
ΛΛΛ
−1/2
M ΛΛΛK ΛΛΛ

−1/2
M

)
U>

ΩΩΩ
with ΛΛΛK = diagi ki :

miξ̈i + kiξi = ρi(t) , ( i = 1, . . . ,n) , (2)

with (ξ1, . . . ,ξn)
> = ΛΛΛ

−1/2
M U>

ΩΩΩ
ΛΛΛ

1/2
M U>M x and (ρ1, . . . ,ρn)

> = ΛΛΛ
1/2
M U>

ΩΩΩ
ΛΛΛ
−1/2
M U>M r . Damped systems with

Rayleigh damping, i.e., Mẍ+Dẋ+Kx = r(t) with damping matrix D = cMM+ cKK and constants cM,cK ≥ 0,
may be diagonalized in the same way resulting in scalar equations miξ̈i +diξ̇i + kiξi = ρi(t) with non-negative
damping parameters di, ( i = 1, . . . ,n ).

3. Test problem: Rotating ball with (damped) torsional spring

In a Lie group setting, the natural counterpart to the scalar system mξ̈ +dξ̇ + kξ = 0 is a (damped) torsional
spring being attached to a rigid ball with homogeneous mass distribution that has its centre in the origin and ro-
tates around a fixed axis n ∈ R3, ‖n‖2 = 1. In SO(3), the orientation of the body is given by R = expSO(3)(α ñ)
with α ∈ R denoting the angle of rotation and the skew symmetric matrix ñ ∈ R3×3 that represents the vector
product in the sense of ñw = n×w , (w ∈ R3 ). The exponential map is invertible in a neighbourhood of the
origin and defines an inverse map l̃ogSO(3) : SO(3)→ R3 with l̃ogSO(3)

(
expSO(3)(θ̃θθ)

)
= θθθ .

The ball’s inertia tensor J = mI3 results in gyroscopic terms that vanish identically: ωωω×Jωωω = mωωω×ωωω = 0 .
Here, ωωω ∈ R3 denotes the angular velocity that is parallel to the axis of rotation: ωωω = vn with v ∈ R . With these
notations, the torsional spring is characterized by a torque vector −

(
d ωωω + k l̃ogSO(3)(R)

)
=−(dv+ kα)n with

damping and stiffness parameters d, k and yields equations of motion [1, Section 2.1]

Ṙ = R ω̃ωω , Jω̇ωω +d ωωω + k l̃ogSO(3)(R) = 0 (3)

111



in the tangent bundle T SO(3) . For the local parametrization based approach of Munthe-Kaas [2, Section 3],
we consider incremental rotation vectors θθθ r(t) ∈ R3 that parametrize R(t) = expSO(3)

(
θ̃θθ r(t)

)
R(tr) and solve a

locally defined initial value problem

θ̇θθ r(t) =
(
TSO(3)(θθθ r(t))

)−1
ωωω(t) , θθθ r(tr) = 0 (4)

with the tangent operator TSO(3) of expSO(3), see [3]. This operator represents the dexp
θ̃θθ r

operator [2] in matrix
form. Taking into account that TSO(3)

(
s(t)n

)(
ṡ(t)n

)
= ṡ(t)n for any scalar function s(t) , the solution of (4)

with ωωω(t) = v(t)n is given by θθθ r(t) = sr(t)n with ṡr(t) = v(t) and sr(tr) = 0, i.e., R(t) = expSO(3)
(
α(t) ñ

)
with α̇(t) = ṡr(t) = v(t) , α̇(t)n = ωωω(t) , α̈(t)n = ω̇ωω(t) and 0 = mα̈ +dv+ kα = mα̈ +dα̇ + kα , see (3).

Time step tr→ tr+1 = tr +h of a Runge-Kutta Munthe-Kaas method [2] defines ωωωr+1 = ωωω+
r = ωωωr +h ∑ j b jω̇ωωr j

and Rr+1 = expSO(3)(θ̃θθ
+
r )Rr with θθθ

+
r = h ∑ j b jθ̇θθ r j . The stages are ωωωri = ωωωr +h ∑ j ai jω̇ωωr j , θθθ ri = h ∑ j ai jθ̇θθ r j ,

ω̇ωωri =−J−1(d ωωωri+k l̃ogSO(3)(Rri)
)
, Rri = expSO(3)(θ̃θθ ri)Rr , θ̇θθ ri =

(
TSO(3)(θθθ ri)

)−1
ωωωri , ( i = 1, . . . ,s) . (5)

As for the analytical solution
(
θθθ r(t),ωωω(t)

)
and its time derivative, we see that all stage vectors θθθ ri, θ̇θθ ri,ωωωri, ω̇ωωri ,

( i = 1, . . . ,s ), are parallel to n resulting in numerical solutions Rr+1 = expSO(3)
(
αr+1 ñ

)
, ωωωr+1 = vr+1 n with

(αr+1,vr+1) being the result of a classical Runge-Kutta step for the first order system α̇ = v , mv̇ =−dv− kα

starting from (αr,vr) . For this test problem, the Runge-Kutta Lie group integrator shares one-by-one the well
known stability properties of its classical counterpart applied to the second order problem in linear spaces.

4. Test equation for Lie group time integration

In linear spaces, the analysis of the scalar test problem (2) characterizes the stability of time integration methods
for the linear time-invariant system (1) as well since the vector valued problem is just a super-position of n
decoupled scalar problems, see Section 2. In the Lie group setting of SO(3) , the results for low dimensional
test problems, see Section 3., are less universal than in linear spaces since rotations in 3D do not commute.

As a straightforward generalization of the SO(3) test problem of Section 3. to general Lie groups, we may
consider the test equation

q̇(t) = DLq(t)(e) · λ logq(t) (6)

with a real parameter λ < 0. Its solution is given by q(t) = exp
(
eλ (t−t0) logq(t0)

)
and tends to the neutral ele-

ment e ∈ G for t→ ∞ . In (6), we used the notations of [3] and the map log : G→ g , the inverse of the exponen-
tial exp : g→ G . It is well defined in a neighbourhood of the neutral element e and satisfies log

(
exp(ṽ)

)
= ṽ ,

(v ∈ Rn ). Again, the local parametrization based approach of Munthe-Kaas is seen to result in Runge-Kutta Lie
group methods that share one-by-one the stability properties of their classical counterparts from linear spaces.
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1. Introduction

Classically, numerical integration of ordinary differential equations (ODEs) [1] is associated with solving initial
value problems evolving on RN ,

ẏyy = F(t,yyy), t ⩾ 0, yyy(0) = yyy0, yyy(t) ∈ RN , (1)

where F is a vector field on R+×RN . Well-known numerical integrators, such as Runge-Kutta and multistep
methods, exist, which are formulated using a set of ’basic motions’ given by translations on RN .

In many physical problems, the configuration space is not linear but consists of a collection of rotations and
translations. A simple well known example is that of the free rigid body whose configuration space consists
of rotations in 3D. Mathematically, the structure of such problems is more accurately described as a manifold.
Choosing manifolds as configuration spaces makes it possible to express important geometric attributes of the
underlying differential system, such as conservation laws, symmetries, or symplectic structure. Such a choice
leads to interesting numerical advantages, in particular, to slower error accumulation. A popular family of
integrators used to simulate the dynamics of systems evolving on manifolds are Lie group integrators, see [2]
and references therein. In this approach, the model and the numerical integrator are expressed entirely in terms
of a Lie group and its action on the phase space. In [3], we discuss different ways of applying Lie group
integrators to simulate the dynamics of mechanical multibody systems. Our work is motivated by applications
in the modeling and simulation of slender structures like rods and beams.

2. Lie group integrators

Solving differential equations whose solutions evolve on a manifold M means that we seek a curve yyy(t) ∈ M
whose tangent at any point coincides with a vector field F ∈ X(M), where X(M) denotes the set of smooth
vector fields defined on M, and passes through a given initial value yyy0 at t = t0,

ẏyy(t) = F |yyy(t), yyy(t0) = yyy0. (2)

A convenient way of representing the vector field F , originally presented in [4], is to furnish M with a transitive
action ψ : G×M → M by some Lie group G of dimension d ⩾ dimM. We denote the action of ggg ∈ G on mmm ∈ M
as ggg ·mmm, i.e. ggg ·mmm = ψ(ggg,mmm). Let g be the Lie algebra of G, and denote by exp : g→ G the exponential map.
We define ψ∗ : g→ X(M) to be the infinitesimal generator of the action, i.e.,

Fξξξ

∣∣
mmm
= ψ∗(ξξξ )|mmm =

d
dt

∣∣∣∣
t=0

ψ(exp(tξξξ ),mmm), ξξξ ∈ g. (3)

The transitivity of the action now ensures that ψ∗(g)|mmm = TmmmM for any mmm ∈ M, such that any tangent vector
vvvmmm ∈ TmmmM can be represented as vvvmmm = ψ∗(ξξξ vvv)|mmm for some ξξξ vvv ∈ g. Consequently, for any vector field F ∈X(M)
there exists a map f : M → g such that

F |mmm = ψ∗( f (mmm))|mmm , for all mmm ∈ M. (4)

Example 1. The implicit Lie-Euler method
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Given the initial value problem (1), the well known implicit Euler method is defined as

yyyn+1 = yyyn + τF(yyyn+1), (5)

for some stepsize τ . One can think of (5) as the τ-flow of the constant vector field Fyyyn+1(yyy) = F(yyyn+1), that is

yyyn+1 = exp(τFyyyn+1)yyyn. (6)

Method (6) makes sense also when F is replaced by a vector field on some manifold. In this case, it is known
as the implicit Lie-Euler method.

In [3], we consider the two classes of methods known as Runge-Kutta-Munthe-Kaas (RKMK) methods and
Commutator-free Lie group methods. As the name suggests, in contrast to the former group, the latter one does
not include commutators in the scheme. Both groups of methods have been tested on simulating the dynamics
of a chain of pendula and the dynamics of two quadrotors transporting a mass point. The Lie group setting of
both examples is presented and properties such as the rate of convergence, the preservation of the configuration
manifold and phase space are tested.

3. Investigation of stability

While the stability and the contractivity of classical numerical integrators have been studied in detail, for Lie
group integrators, they are to be investigated. In the present work, we investigate stability, global error esti-
mation, and convergence for simple Lie group integrators. The engine for this study is the use of Riemannian
metrics for measuring distance on a manifold. A starting point is the article [5] where some Grönwall estimates
are given in this setting. Compared to the usual situation in linear spaces, on the estimates they obtained, the
norm is replaced by a Riemannian distance function, and the Lipschitz constant is replaced by the operator
norm of the Riemannian connection. The operator norm of the Riemannian connection can actually be replaced
by a bound for a logarithmic norm that might be useful when strongly damped or stiff systems on manifolds are
to be considered. We show an alternative proof to a one-sided Lipschitz condition obtained via the logarithmic
norm and we derive a bound for the global error. We consider how analytical contractivity results for simple
Lie group integrators applied to contractive systems can be derived. Numerical experiments are performed to
better illustrate the theory.

4. Conclusions

Contractivity is a desired property for numerical methods which integrate stiff systems and such methods exist
in the Euclidean case. Since many stiff systems evolve on manifolds, e.g., Lie Groups, Riemannian manifolds,
etc., Lie group integrators have been developed to integrate such systems. The goal of this work is to prove the
contractivity of such integrators.
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1. Introduction
We consider nonlinear dynamical systems arising in engineering, such as when modelling slender structures in
large amplitude vibration. In this paper, we consider reduced order model construction and solution approx-
imation through the computation of a normal form up to a given order [1, 2, 3]. Usually, the normal form
method is presented by considering a system with only polynomial nonlinearities (or a Taylor expansion of
the nonlinearities), but this reduces the precision of the results. To increase the generality of the normal form,
we propose to consider that the initial dynamical system is under the form of a differential-algebraic equation
(DAE) with quadratic nonlinearities only. This is the same hypothesis as that of the Manlab package, which
allows for application of the Asymptotic Numerical Method on a wide variety of systems [4]. Although this
seem restrictive, it can be shown that most nonlinear systems can be written under this form, provided that one
includes enough auxiliary variables in the so-called quadratic recast [4]. In this paper, we present a general
method to compute the (reduced) normal form of a quadratic DAE up to any order. To present the computation,
we rely on multivariate polynomials theory with a focus on linear operations such as derivation and multiplica-
tion. The resulting homological equation and the solving strategy is presented. The presented method is quite
general and can be applied to many different systems provided it can be written under the form of a quadratic
DAE.

2. Method
We consider the following quadratic DAE: Aẏ = Ly+Q(y,y), where y is the vector of unknowns containing N
generalized positions, N generalized velocities and M auxiliary variables (Lagrange multipliers from mechani-
cal constraints or auxiliary variables arising from the quadratic recast). A is the mass matrix (of size 2N +M,
possibly singular), L is a linear operator (matrix of size 2N +M ) and Q a quadratic operator. For the normal
form computation, we are searching for:

• (i) : a change of coordinates y=W (z) where z∈Cn is a set of (complex) normal variables with n elements
(n even, and usually n << 2N)

• (ii): a (reduced) dynamic function f (z) ∈ Cn for the normal variables, such that: ż = f (z)

Substituting the expression for the normal dynamics and the change of variable into the original DAE leads to
the following homological equation: A(∇zW ) f = LW +Q(W,W ). In this study, both the change of coordinates
(W ) and the reduced dynamics ( f ) are considered to be (multivariate) polynomials of given degree d, so that
they can be written as:

W (z) = ∑Wi zαi , with Wi ∈ C2N+M,

f (z) = ∑ fi zαi , with fi ∈ Cn.

The computation of the normal form then reduces to finding the vectors of coefficients Wi and fi for each mono-
mial zαi up to degree d. This is realized by balancing the coefficients of each monomial zαi in the homological
equation, resulting in the following series of equations:

(Aσi( f )−L)Wi +AΛ(W ) fi = Ri(W ). (1)

Note that a closed form for the expression of Ri(W ), Λ(W ) and σi( f ) can easily be obtained if one considers
derivation and multiplication as linear operations in the vector space of multivariate polynomials. The resolution
is sequential, by increasing degree. At first order, the equations are associated to the linear monomials zαi = zk
and can be solved using the (complex) linear eigenmodes of the system (λ ,Y ) defined by λAY = LY . The
results yield the linear part of the change of variable and of the reduced dynamics under the form:

y =
n

∑
k=1

Ykzk, and żk = λkzk. (2)
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At higher orders, one has to solve an equation of the form:

(Aσi( f )−L)Wi +A
n

∑
k=1

Yk fi,r = Ri(W ). (3)

Note that the functions Ri(W ), and σi( f ) depend only on terms associated to monomials of lower degree, and
are therefore known at this point. The idea is to have a reduced dynamic under its simplest form, so most of
the coefficients fi should be zero and the equation should be solved by the change of variable Wi. However, if
it happened that Aσi( f )−L is singular then the component of Ri(W ) parallel to the kernel cannot be generated
by the term [Aσi( f )−L]Wi. As a result, some terms in the reduced dynamics must be included by keeping the
vectors generating the kernel (i.e the resonant modes): ∑r∈Res. ModesYr fi,r. The coefficients associated to the
non-resonant modes can be set to zero, i.e. fi,r = 0 if r /∈ Res. Modes. Finally one sets the part of Wi parallel
to the kernel to be zero, i.e. XT

r Wi = 0 for r ∈ Res. Modes (where XT are the left eigenvectors). To summarize,
the coefficients of the monomial zαi can be obtained by solving the following linear system of equations: Aσi −L AYr∈Res. Modes 0

XT
r∈Res. Modes 0 0

0 0 I

 Wi

fi,s∈Res. Modes
fi,s/∈Res. Modes

=

Ri

0
0

 . (4)

This system is solved for each monomial of a given degree and the operation is repeated iteratively for the
monomials of the next degree until the maximum degree d has been reached.

3. Examples
Fig.1 (left) depicts the backbones curves of a Duffing oscillator obtained with the normal form for several
orders, along with the exact result using Jacobi elliptic functions. As the order of the normal form increases, a
very good agreement can be observed with the exact results. Fig. 1 (right) depicts the same kind of results for
a cantilever beam modelled with geometrically exact beam elements.
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Figure 1: Comparison between normal form solution and reference solution. Left: Duffing oscillator, right: cantilever
beam.
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1. Introduction

Fractional dissipation is a powerful tool to study non-local physical phenomena such as damping models. The
design of geometric, in particular, variational integrators for the numerical simulation of such systems relies
on a variational formulation of the model. In [4] a new approach is proposed to deal with dissipative systems
in a variational way for both, the continuous and discrete setting. It is based on the doubling of variables and
their fractional derivatives. In this contribution we derive higher-order fractional variational integrators based
on convolution quadratures and study the numerical properties of those integrators.

1.1. Fractional integrals and convolution quadrature method

Let α ∈ [0,1] and f : [0,T ]→ R be a AC2- function. The Riemann-Liouville α-fractional integrals of f are

Iα
− f (t) =

1
Γ(α)

∫ t

0

f (τ)
(t − τ)1−α

dτ, t ∈ (0,T ], Iα
+ f (t) =

1
Γ(α)

∫ T

t

f (τ)
(τ − t)1−α

dτ, t ∈ [0,T ). (1)

Focusing on the retarded fractional integral, Iα
− f (t), it is easy to see that it may be written as a convolution

Iα
− f (t) =

(
κ
(α) ∗ f

)
(t) :=

∫ t

0
κ
(α)(t − τ) f (τ)dτ, where κ

(α)(t) =
tα−1

Γ(α)
. (2)

The Laplace transform of this convolution kernel κ(α) is given by K(α)(s) = s−α . An approximation of the
convolution integral (2) was introduced by [1, 2, 3] using the so-called convolution quadrature method. This
method numerically approximates the integral (2) based on a special quadrature rule with the help of the Laplace
transformed function and a linear multistep method. The discrete convolution is defined by(

κ
(α) ∗ f

)
(tk)≈ Jα

− fk :=
k

∑
n=0

ωn(h) fk−n =
k

∑
n=0

ωk−n(h) fk, (h ∈ R+ the time step). (3)

The convolution quadrature weights ωn are defined as the coefficients of the generating power series

K(α)

(
γ(z)

h

)
=

∞

∑
n=0

ωnzn, |z| small, (4)

where γ(z) is the quotient of the generating polynomials of a linear multistep method for y′ = f (y).
The important properties of this CQ are semi-group and asymmetric integration, which allows us to derive the
fractional variational integrators. A convolution quadrature determined by the coefficients ω

(α)
n is convergent

of order p (to Iα
σ ) if

Iα
σ tβ−1 −Jα

σ tβ−1 = O(hβ )+O(hp), for all β ∈ C, β ̸= 0,−1,−2, · · · . (5)

Therefore, for a fixed β > 0, we expect the saturation of the convergence order at min(β , p), i.e., the error
is still limited to the order O(hβ ) even for a larger p. A technique to obtain the correct order for functions
f (t) = tβ−1g(t), g(t) smooth, was introduced in [1] by adding a correction term in approximation (3).
To illustrate the saturation, we make a log-plot of h versus the error e(h) in Figure 1, which is defined as usual
in the literature by means of the maximum norm.
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Figure 1: Log-log plot of h versus the error e(h) with α = −1/2 corresponds to the half Caputo fractional
derivative. As expected, the convergence starts to saturate at p = 3 (left), p = 4 (middle) and p = 5 (right),
respectively.

2. Fractional Variational integrators with CQ

A restricted calculus of variations [4] is used to obtain the dynamics of a fractional damping Lagrangian
system. In particular, the fractional variational integrators have been derived with order 1 approximation for
the fractional derivatives.
Let I−α

− and I−β

+ be the Caputo fractional operators, we define the following action:

L (x,y) = L
con
(x,y)+L

frac
(x,y) =

∫ T

0
(L(x, ẋ)+L(y, ẏ)) dt −ρ

∫ T

0
I−α
− x(t)I−β

+ y(t) dt. (6)

For a higher-order approximation, we choose a quadrature rule (bi,ci)
r
i=1 for the conservative part L

con
and a

convolution quadrature for the fractional integrals involved in L
fra

. For that, we take into account two discrete
series xd = {xk}0,...,N ∈ (Rd)N+1, yd = {yk}0,...,N ∈ (Rd)N+1 and s+1 inner nodes {xν

k }0,...,s ∈ (Rd)s+1 in each
interval [k,k+1] such that xs

k = x0
k+1 (equiv. for y). Namely

Ld(xd ,yd) = L
con

d (xd ,yd)+L
frac

d (xd ,yd) =
N−1

∑
k=0

(Ld(xk)+Ld(yk))−ρh
N

∑
k=0

J−α
− xk J

−β

+ yk, (7)

where Ld(xk) = ∑
r
i=1 biL(xd(cih;k), ẋd(cih;k)) (equiv. for Ld(yk)) is the piecewise polynomial on [k,k + 1]

(equiv. for yd(t;k)). The restricted calculus of variations lead to the so-called fractional variational integrators

Ds+1Ld(x0
k−1, . . . ,x

s
k−1)+D1Ld(x0

k , . . . ,x
s
k)−ρ hJ−(β+α)

− x0
k = 0, k = 1, . . . ,N −1, (8)

DiLd(x0
k , . . . ,x

s
k) = 0, k = 0, · · · ,N −1, i = 2, · · · ,s, (9)

Ds+1Ld(y0
k−1, . . . ,y

s
k−1)+D1Ld(y0

k , . . . ,y
s
k)−ρ hJ−(α+β )

+ y0
k = 0, k = 1, . . . ,N −1, (10)

DiLd(y0
k , ...,y

s
k) = 0, k = 0, . . . ,N −1, i = 2, . . . ,s. (11)

These equations correspond to discretized dynamics of a Lagrangian systems subject to fractional damping in
forward (equations (8)-(9)) and backward time (equations (10)-(11)), see also [4]. In this contribution we will
sturdy convergence properties of the fractional variational integrators, saturations effects due to the approxi-
mation of the fractional derivatives and discuss ideas how to improve the accuracy. Furthermore, we will also
apply Runge-Kutta convolution quadrature and compare the resulting integration methods.
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1. Introduction

There is an increasing interest in data-driven modelling of pysical systems with machine learning – in particular
deep learning – techniques. In Hamiltonian mechanical systems, the dynamics is fully determined by the
Hamiltonian, a scalar function which corresponds to the total energy of the system. As a consequence, multiple
approaches have been proposed to approximate this energy function. In this talk, we focus on the task of
learning the Hamiltonian of constrained mechanical systems with neural networks, given observations of the
solution trajectories [1, 2].

We consider Hamiltonian functions of the form

H(q, p) =
1
2

pT M−1(q)p+V (q), (1)

where M(q) is the mass matrix, possibly depending on the configuration q∈Rn, and V (q) is the potential energy
of the system. The solution trajectories are often constrained to evolve on a submanifold of a linear vector
space. In particular, we focus on systems that are holonomically constrained on some configuration manifold
Q = {q ∈ Rn : g(q) = 0} embedded in Rn, and we model them either by means of Lagrange multipliers or
some projection operator. In the first case, we end up with a system of differential algebraic equations, while
in the second case the vector field is written in such a way that it directly respects the constraints, without the
addition of algebraic equations [3, 4]. We provide a brief account of the different formulations.

2. Method

We assume to be given N training trajectories denoted by{(
xi,y2

i , . . . ,y
M
i
)}

i=1,...,N . (2)

To obtain an approximation of the Hamiltonian H in (1), we define a parametric model HΘ and look for a Θ so
that the trajectories generated by HΘ resemble the given ones. In our approach, Θ will collect a factor of the
mass matrix and the weights of a neural network. To learn HΘ, we use some numerical one-step method ψ∆t

XHΘ

to generate the trajectories

ŷ j
i (Θ) := Ψ

∆t
XHΘ

(
ŷ j−1

i (Θ)
)
, ŷ1

i (Θ) := xi, j = 2, . . . ,M, i = 1, . . . ,N, (3)

and we optimize a loss function measuring the distance between the given trajectories y j
i and the generated ones

ŷ j
i , defined as

L (Θ) :=
1
2n

1
NM

N

∑
i=1

Li(Θ) =
1

2n
1

NM

N

∑
i=1

M

∑
j=1

∥∥∥ŷ j
i (Θ)− y j

i

∥∥∥2
, (4)

where ∥ · ∥ is the Euclidean metric of R2n.

3. Results

We consider systems whose configuration manifold is given by a product of unit sphere in R3. We present in
Figure 1 the results obtained in the case of a double spherical pendulum. To train HΘ, a Lie group method is used
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in (3). This gives a final training loss (4) of 1.3 ·10−9 and an approximation accuracy E1 = 2.05 ·10−6, where E1,
defined in [1, Equation 2], is given by the square of the 2-norm of the difference between the learned trajectories
and the given ones (considering both positions and momenta), averaged over the number of trajectories.

Figure 1: Comparison between 100 test trajectories obtained with the true Hamiltonian H and the predicted one
HΘ.

In general, numerical integrators do not preserve the geometry of the system and there might be a drift from the
constrained manifold. Experimentally this does not seem to have a great impact on the quality of the predicted
Hamiltonian in most of the cases, while the order of the numerical integrator plays a significant role.

4. Conclusions

Our main contribution is an approach to learn the Hamiltonian for systems defined on the cotangent bundle T ∗Q
of some manifold Q embedded in a vector space. Under the assumption that T ∗Q is homogeneous, we show
how to do that while preserving the phase space during the learning procedure with a Lie gorup method. The
influence of the preservation of other geometric properties will be investigated, by using different geometric
integrators in (3).
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1. Introduction

Flexible endoscopes are medical devices that can be modelled as beam-like objects due to their slender geom-
etry. During operation, endoscopes mainly undergo bending and this justifies the choice of a beam model able
to capture the behaviour under large bending deformations. In this work, we consider a 2D Euler elastica and
assigned boundary conditions, associated to a second-order Lagrangian L. We derive its equations of equilib-
rium through a variational principle. Moreover, in order to describe the motion of endoscopes in narrow tubes,
the contact problem is modelled by an augmented Lagrangian formulation proposed in [1].

2. Euler elastica beam model

An inextensible 2-dimensional Euler elastica can be treated as a constrained second order Lagrangian problem
with augmented Lagrangian L : T (2)Q×R→ R, where Q ∼= R2 is its configuration manifold

L
(
q,q′,q′′,Λ

)
=

1
2

EI||q′′||2 +Λ(||q′||2 −1) (1)

Here q represents the coordinates of the centerline of the beam, q′ and q′′ are its first and second spatial deriva-
tives respectively, E is the Young’s modulus of the beam, I is the second moment of the cross-section area, Λ

is a Lagrange multiplier. Applying Hamilton’s principle to the action functional S =
∫ l

0 L(q,q′,q′′,Λ) ds, where
length l > 0 is the length of the beam, yields the Euler-Lagrange equations

EI q(4) = 2(Λq′′+Λ
′q′) ||q′||2 = 1 (2)

subject to boundary conditions (q(0),q′(0)) = (qa,q′a) and (q(l),q′(l)) = (qb,q′b). The action integral is discre-
tised in N intervals with space steps ∆s. For the discrete Lagrangian Ld : T Q×T Q×R×R→ R we refer to a
discretisation proposed in [4] based on the trapezoidal rule.

Ld
(
qi,q′i,qi+1,q′i+1,Λi,Λi+1

)
=

∆s
2
[
L(qi,q′i,(q

′′
i )

α ,Λi)+L(qi+1,q′i+1,(q
′′
i+1)

α ,Λi+1)
]

(3)

Where

(q′′i )
α =

[
(1−3α)q′i+1 − (1+3α)q′i

]
∆s+6α(qi+1 −qi)

∆s2 (4a)

(q′′i+1)
α =

[
(1+3α)q′i+1 − (1−3α)q′i

]
∆s−6α(qi+1 −qi)

∆s2 (4b)

By applying the discrete Hamilton’s principle [5, 3] to the resulting discrete action Sd =∑
N−1
i=0 Ld(qi,q′i,qi+1,q′i+1,Λi,Λi+1),

with fixed (q0,q′0) = (qa,q′a) and (qN ,q′N) = (qb,q′b), we obtain the discrete Euler-Lagrange equations (DEL),
which are the discrete equilibrium equations.

D1L
(
qi,q′i,qi+1,q′i+1,Λi,Λi+1

)
+D3L

(
qi−1,q′i−1,qi,q′i,Λi−1,Λi

)
= 0

D2L
(
qi,q′i,qi+1,q′i+1,Λi,Λi+1

)
+D4L

(
qi−1,q′i−1,qi,q′i,Λi−1,Λi

)
= 0

D5L
(
qi,q′i,qi+1,q′i+1,Λi,Λi+1

)
+D6L

(
qi−1,q′i−1,qi,q′i,Λi−1,Λi

)
= 0

(5)
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Results will be shown in terms of internal forces, i.e. normal and shear forces and bending moment, and total
energy of the system. Axial force and shear are conserved along the beam due to the translational invariance of
L, i.e. under different boundary conditions. Moreover, a convergence study is performed looking at the energy
behaviour. The variational integrator is proved to be symplectic and structure preserving method.

3. Augmented Lagrangian formulation for contact problem

The problem of a beam in contact with a rigid wall is described by the augmented Lagrangian L̃ in Eq. 6 [1].

L̃ = L− kgΛc +
p
2

g2 − 1
2p

(
dist

(
kΛc − pg,R+

))2 (6)

Here, k is a scaling factor, g is the gap function w.r.t. the wall, Λc is a Lagrange multiplier, and p is a positive
penalty coefficient. One can recognise a Lagrange multiplier term, a penalty term and distance term, where
ξ = kΛc − pg is the augmented Lagrange multiplier. The latter can represent two possible scenarios, i.e. for
ξ < 0 the contact forces are not active, while for ξ > 0 the contact is activated.

4. Conclusions and remarks

Figure 1 shows the elastica in a straight tube, where contact points are identified at the interfaces with the two
walls. More complex and narrow geometrical shapes are of particular interest when using the presented contact
Lagrangian formulation.

Figure 1: Elastica in a straight tube
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1. Introduction

The stability of a time-stepping algorithm for mechanical systems has long been associated with its ability to
conserve linear and angular momentum and energy. The same principle can be applied to Cosserat beam prob-
lems where the geometrically-exact strains present non-linearities to the system due to the non-commutative
properties of the special Euclidean group.

2. Beam kinematics

A beam is characterised by the position of its centreline to which an oriented rigid cross-section is attached. As
such, a beam can be placed on the special Euclidean group SE(3) by parametrising its configuration as

H : R× [0,L]⊂ R→ SE(3);(t,s) 7→H(t,s). (1)

Traditionally, the position and the orientation have often been considered separately

xxx ∈ R3, ΛΛΛ ∈ SO(3). (2)

In SE(3), its configuration can be represented using a configuration matrix, expressed as

H =

[
ΛΛΛ xxx
000T 1

]
. (3)

The time derivative of H can be written as
Ḣ = Hv̂vv, (4)

where vvv is the velocity in the material frame. Strains εεε are obtained through spatial differentiation

H′ = Hêee, (5)

εεε = eee− eee0, (6)

where eee is the configuration spatial derivative in the material frame and index 0 denotes the undeformed con-
figuration.

3. Equation of motion

For a beam of initial length L, the variational formulation of the equilibrium equation in the fixed-pole frame,
as presented by Bottasso in [1], can be expressed as follows

−δηηη(0)T qqq(0)−δηηη(L)T qqq(L)+
L∫

0

δηηη
T (ṗpp−qqq)+δηηη

′T fff ds = 0, (7)

where δηηη are the variations defined as
δH = δ̂ηηηH, (8)

qqq denotes external forces, while inertial and internal forces are defined as

ppp = H−T Mvvv, (9)

fff = H−T Kεεε, (10)

and M and K are the matrices of mass and the stiffness properties of the beam’s cross-section.
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4. Finite element formulation

Let us define a 2-node SE(3) configuration interpolation as

H(s) = HA exp
( s

L
d̂dd
)
, exp(d̂dd) = H−1

A HB, (11)

where indices A and B indicates nodal values.

An energy-momentum conservative time-stepping algorithm is one that maintains constant total energy, linear
momentum, and angular momentum along the solution. It can be showed that the following residual meets
these requirements when RRRm = 000

RRRm =
∫
L

ΨΨΨ
T (ṗppm−qqqm)+ΨΨΨ

′T fff mds, (12)

where ΨΨΨ =
[
ψAI ψBI

]
and ψi are the Lagrange polynomial shape functions. The midpoint values (denoted by

m) are approximated as

ṗppm =
pppn+1− pppn

∆t
, (13)

fff m =
1
2
(
T(−ηηη)T fff n+1 +T(ηηη)T fff n

)
, (14)

where T is a tangent map in SE(3) [2]. The nodal configuration values are updated from time tn to tn+1 with the
time step ∆t = tn+1− tn as

Hn+1 = exp(η̂ηη)Hn (15)

while the integration point velocity values are updated as

AdH−1(ηηη) = ∆t
vvvn+1 + vvvn

2
. (16)

In addition, energy conservation requires interpolation of incremental kinematics and use of the same interpo-
lation functions for the test functions.

5. Conclusions

A new energy-momentum preserving time integration algorithm was developed using beam elements interpo-
lated on the SE(3) Lie group. Conservation of momentum is guaranteed in the absence of external forces using
configuration-independent test functions, while conservation of energy is achieved via midpoint approximation
of the velocity field and internal forces. An energy decaying algorithm may be obtained by adding an extra
term controlled by a damping parameter. The method is easy to implement and can handle large time steps.
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1. Introduction

An established model for highly flexible slender structures is the Cosserat rod model. It describes the body
with a centreline parameter and discrete cross sections along it. To determine the orientation of the cross
sections, one needs a parameterization of large rotations without singularities [5]. Typically, the most suitable
elements are rotation matrices SO(3) or unit quaternions S3. In particular, the configuration spaces are direct or
semi-direct products of the previous sets with R3, equipped with a group operation they are Lie groups (G,◦).
More concerns arise when constraints are introduced. If we consider holonomic constraints, the model includes
algebraic variables alongside the differential ones. In fact, the equations describing the constraints are usu-
ally coupled with the ODE by the use of Lagrangian multipliers. The approach leads to differential-algebraic
equations DAEs, which limit the solution to sub-manifolds of the previous Lie groups [2].

Existing methods include the Lie group version of half-explicit Runge-Kutta methods [1], the Runge-Kutta
Munthe-Kaas methods [4], the Lie group generalized-α [2], RATTLie [3]. If the stability for classical Runge-
Kutta methods and constrained systems in linear spaces is deeply studied and well known, the numerical stabil-
ity of the Lie group methods is still an open problem, because nonlinear configuration spaces are involved.

The implementation of the previous methods faces some criticality when introducing the derivative of the
exponential map and its inverse. The tangent operator of the exponential map [2] and its derivative may be
useful to implement Lie group methods in local parametrization [2, Section 6]. While the tangent operator and
its inverse have been inspected and a closed form for the sake of the implementation obtained [3], the evaluation
in closed form of the derivative of the tangent operator is an ongoing subject of study. In the present paper, we
address the investigation of the stability of the methods in nonlinear settings and the implementation issues for
local parametrization of the methods, such as the Lie group half-explicit RK.

2. Numerical results

Typical results involve the discretisation of beam by a staggered grid. On the nodes one may assign the position
variable in R3 and on the segments’ midpoints the rotation variables, unit quaternions S3 in our case, see [3].
In Figure 1, we simulate a clamped Cosserat rod subject to a constant momentum on the free extreme. On

(a) Position at multiple times. (b) Absolute error over the time step h.

Figure 1: Roll-up of a clamped beam.
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the left, Figure 1a, we observe snapshots of the beam at different time steps. The time discretisation by the
generalized-α Lie group method [2] in the implementation of [3] has second order convergence, see Figure 1b.
The plot represents the absolute error of the system variables over the time step size h.

3. Implementation of Lie group integrators

The present paper aims to solve the dynamics of a constrained system of equations using a parametrization of
the Lie group in terms of the exponential map. Consider the following equations of motion [2]

q̇ = DLq(e) · ṽ, M(q)v̇ =−g(q,v, t)−B⊤(q)λλλ , ΦΦΦ(q) = 000 (1)

where the details can be read in [2]. Numerical solutions of the system could be obtained with a Lie group
generalized-α scheme as in [2] or with half-explicit Runge-Kutta methods [1]. We here present the latter, start-
ing from the notion that in a neighbourhood of t = tm any element q(t)∈G is parametrized by elements of the Lie
algebra g, so that q(t) = q(tm)◦exp

(
θ̃θθ m(t)

)
, where θθθ m(t) is the solution of θ̇θθ m(t) = dexp−1

θ̃θθ m(t)
v(t), θθθ m(tm) = 000.

The first stage is Qm1 = qm ◦ exp(Θ̃ΘΘm1) with ΘΘΘm1 := θθθ m(tm) = 000 and Vm1 = vm, while the following stages are
given by

Qmi = qm ◦ exp(Θ̃ΘΘmi), ΘΘΘmi = h
i−1

∑
j=1

ai jΘ̇ΘΘm j, Vmi = vm +h
i−1

∑
j=1

ai jV̇m j, (i = 2, . . . ,s+1) (2a)

with
Θ̇ΘΘmi = dexp−1

θ̃θθ mi
Vmi, M(Qmi)V̇mi =−g(Qmi,Vmi, tm + cih)−B⊤(Qmi)ΛΛΛmi, (i = 1, . . . ,s) (2b)

The stages for the Lagrange multipliers ΛΛΛmi are obtained enforcing the constraints (2c) at the velocity level

000 = B(Qm,i+1)Vm,i+1 = B(Qm,i+1)

(
vm +h

i−1

∑
j=1

ai+1, jV̇m j +hai+1,iV̇mi

)
, (i = 2, . . . ,s) (2c)

except for ΛΛΛm1 := λλλ m for which we apply an explicit stage. The numerical solution at t = tm+1 is defined by
qm+1 = Qm,s+1 and vm+1 = Vm,s+1 with some s ≤ s, for the Lagrangian multipliers we have λλλ m+1 = ΛΛΛms.

4. Conclusions

We are interested in the Lie half-explicit RK methods because of the reduced computational costs and efficient
implementation. The study will highlight the efficiency in the implementation and will investigate their sta-
bility properties. Given the positive results in the local parametrization, we developed further studies on the
implementation of the generalized-α in local coordinates as in [2, Section 6]. Results from both methods will
then be compared for the solution of the constrained Cosserat rod model as described by equations (1).
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1. Introduction

THREAD is a European Training Network (ETN) with funding support from the European Commission ad-
dressing modeling and simulation of highly flexible slender structures and their applications.

The mechanical response of slender structures like rods and beams is dominated by very complex phenomena
that occur at different spatial and temporal scales. Full-scale 3D models of multimaterial rods based on a de-
tailed representation of their internal structure would imply high complexity and high computational cost. Usual
1D rod models lead to lower-dimensional problems but can hardly reproduce experimental results because of
their inadequacy to render local, nonlinear phenomena. On the other hand, geometrically exact 1D beam mod-
els (Cosserat rods) provide a faithful representation of the mechanical properties of the slender structures at an
acceptable computational complexity.

To understand the geometrical foundations of these models requires however knowledge of differential geome-
try and Lie groups. This kind of mathematics is taught at universities in advanced courses at master level and
it is not part of the standard curriculum in mechanical engineering. The equations are geometric PDEs inter-
esting for their mathematical properties and challenging to approximate with numerical methods. Typically,
they require the use of special types of finite element methods to be successfully discretized. The purpose of
THREAD is to crate a multidisciplinary learning environment of PhD students and senior researchers where
mathematicians and mechanical engineers learn and advance together the theory of slender structures for in-
dustrial applications. THREAD is a unique network of universities, research organisations and industry from
Austria, Belgium, Croatia, France, Germany, Norway, Slovenia and Spain that brings together mechanical
engineers and mathematicians around major challenges in industrial applications and simulation software de-
velopment. It establishes an innovative modelling chain starting from detailed 3D models and experimental
measurements to build validated 1D rod models and producing software with outstanding numerical properties.

The 14 Early Stage Researchers (ESRs) benefit from cooperation with twelve industrial partner organisations
implementing a comprehensive programme of research secondments and contributing their experience.

2. The training programme of THREAD

With a focus on interdisciplinarity and transferable skills, the THREAD training programme aims at producing
candidates that are highly attractive on the job market, in Europe and worldwide.

The training activities of THREAD started in July 2020, with a Summer school on “Fundamentals of beam
theory and flexible multibody dynamics” and “Parametrisation of rotations” at the University of Erlangen-
Nuremberg, Germany. It comprises 14 network-wide training events organised across Europe and divided in
core research training, advanced research training and transferable skills training. The ECOMMAS Interna-
tional Conference on Highly Flexible Slender Structures is the last of the network wide training events. This
conference will include special sessions aimed at career perspectives for young researchers.

Acquiring advanced knowledge of Cosserat rod models has been the prime objective of the training programme.
The PhD students have been assigned individual research projects and learn through the network wide training
activities as well as by discussion with their supervisors and fellow students. Each PhD-project is contributing
to address one of the main industrial challenges targeted by the THRREAD project. The young researchers
acquire inter-sectoral experience by working in tight collaboration with the industrial partners and performing
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industrial secondments. Particular attention is paid to the training and development of communication skills
with numerous, dedicated activities.

The core research training consists of mandatory course work, locally, at each partner institution, and is com-
plemented by advanced and additional research training provided by the consortium via short courses, summer
schools, workshops and conferences. The network wide training activities are open for external participation.

The transferable skills training is organised partly locally and partly by the network. The involvement of the
industrial partners in the planned training activities is substantial. Each PhD fellow will spend a period of at
least three months at one of the partner industries.

3. Conclusions

There is a pressing need of young engineers and mathematicians capable of addressing fundamental questions
related with theory and simulation of slender structures. The THREAD project will leverage the training of
this new generation of researchers. In this talk I will present the training programme of THREAD, discuss
experiences of the practical implementation of the training plans and draw some conclusions about lessons
learned and success stories.
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1. Introduction 

As part of the THREAD Network Wide Training program, the author had the opportunity to teach the courses: 

1. FMBS_FFR: “An introduction to flexible multibody dynamics. The floating frame of reference approach”  

2. RV_ALE: “Modeling and simulation of reeving systems using an arbitrary Lagrangian-Eulerian approach” 

These two courses correspond to computer techniques for the dynamic analysis of small (FMBS_FFR) and 

large (RV_ALE) deformation analysis in multibody dynamics. This paper shows the experience and 

difficulties preparing these courses and the students response. 

2. Teaching small deformation analysis in multibody dynamics 

The subject of flexible multibody dynamics (FMBS) with the floating frame of reference (FFR) approach is 

the combination of two computational mechanics fields:  

1. Rigid multibody dynamics (MBS) and  

2. Linear finite elements (FEM).  

Probably all master students in mechanical engineering are educated in FEM. However, MBS are less 

extended. Instead, students use to have basic knowledge on the theory of machines and mechanisms, but 

probably not oriented to computer analysis. That is why the FMBS_FFR started with an introduction to MBS.  

Other topics that the students need to know in advance to follow the course are: 

1. Rayleigh-Ritz modeling (modal superposition) of flexible bodies. This technique uses to be covered in 

medium-level mechanical vibrations course on master level. 

2. Analytical mechanics techniques to find the equations of motion of complex dynamics systems, like 

principle of virtual work in dynamics or Lagrange equations. 

           
Figure 1. Flexible multibody dynamics. Left: kinematics of the FEM model for large rigid body motion. Middle: 2D 

truss in space. Right: the flight of a javelin. 

In many cases students do not include in their background some of the 4 topics described above. This is a 

difficulty when teaching FMBS_FFR that is associated with the non-uniformity of the education of the 

audience. Other difficulties, more related to the contents of the course are: 

1. Dealing with many different frames and the required 3D vector and matrix transformation (see Fig. 1). 

2. Dealing with the matrix notation. 

3. Understanding the calculation, and the importance, of the generalized inertia forces. 

The FMBS_FFR included two application examples:  

1. The launch of a stone with a catapult, and 

2. The free flight of a javelin. 

The examples where simple and selected to show the combined analysis of rigid body motion and vibrations, 

that is the may objective of FMBS. The FMBS_FFR also included a simple, home-made, general purpose 

Matlab code based on beam models. 
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The output of the students showed that the got a taste of FBMS and they could understand the concepts used 

to build the theory and what they can do with it. Following the calculations would require a deep study of the 

contents of the course. 

3. Teaching large deformation analysis in multibody dynamics 

While the FMBS_FFR described a well-known, most used method in FMBS, the RV_ALE explained a very 

specific method of analysis of very flexible mechanical systems. It is clear for the author that the FMBS_FFR 

was much more important for the education of most of the students than the RV_ALE. However, the RV_ALE 

brought other benefits, like dealing with very practical large deformable FMBS and advanced modeling 

techniques under research.  

              
Figure 2. Reeving systems and their modeling with the ALEM approach. 

Under the engineering practice point of view, students learnt some insights about how reeving systems work 

and the mechanical behavior of wire ropes. The specific method for modeling the dynamics of reeving systems 

is a finite elements method that combines three types of coordinates in the kinematic description of the ropes: 

(1) absolute position coordinates of the ends of the span, qa, (2) arc-length coordinates of the nodal points 

within the rope, qs, and (3) modal coordinates for the description of transverse and axial deformation of the 

ropes, qm. But the most prominent property is the use of an arbitrary Lagrangian-Eulerian description. That 

means that the finite element nodes are not necessarily attached to material or geometric points. Their position 

within the flexible body is arbitrary, user defined. The benefits of this approach in dynamic systems where the 

length of the rope free spans changes continuously are very important, as shown in the 2nd sketch of Fig. 2.  

The educational background needed to follow this course was similar than that needed to follow the 

FMBS_FFR. Main difficulty of RV_ALE was to get familiar with the ALE approach. The used of the arc-

length coordinates as nodal coordinates to locate the finite element nodes is not common in computational 

mechanics. Getting the equations of motion in non-material volumes is also non-conventional in solid 

mechanics. In comparison with other topics in high deformable flexible bodies, the RV_ALE was original and 

practical, because: 

1. It deals with one of the most common types of mechanism used in machinery that show large deformation 

and rigid body motion. 

2. It deals with a specific structure, the wire rope, that being very important in the industry, does not match 

the behavior of “classical beams.” 

3. It shows a complete methodology and the software that can be used to model any reeving system. 

Students found difficulties to follow some of the mathematical derivations. They enjoyed learning practical 

aspects of the mechanical behavior of reeving systems and wire-ropes. 
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1. Introduction

The department Mathematics for the Digital Factory focuses on application-oriented research in the fields of
cable simulation and digital human modelling with (flexible) multibody dynamics as the joint methodical core.
PhD positions at Fraunhofer ITWM are typically motivated by challenges faced in industrial applications. In
the European Training Network THREAD, ITWM contributed to the industrial challenge dealing with vir-
tual product development, digital validation and development of digital twins with a focus on wiring systems
in the automotive industry. Specifically, active research topics derived from this challenge include advanced
constitutive models for cable systems and hoses as well as mesoscopic effects in multi-wire cables and cable
bundles. Doctoral students working on such projects are preferably trained in continuum mechanics in general
and specifically in flexible multibody dynamics, constitutive modelling and experimental mechanics.

ITWM contributed to THREAD’s core training programme and organised the network wide training (nwt) 2
“Virtual product development with interactive simulation of flexible structures” and nwt 3 “Experimental data
acquisition for modelling and validation in industrial applications”. The contents of nwt 2 were compiled to
achieve two goals in an early stage of the participants’ PhD projects: Getting an overview over the daily business
in computer-aided design and engineering for flexible structures and thus understanding the motivation for
application-driven research. The agenda consisted of practical trainings in IPS Cable Simulation [1], a software
for assembly simulation of and validation of cable routing, including typical use cases from automotive industry.
The practical sessions were accompanied by theoretical lectures explaining the models and research topics
behind different modules of IPS Cable Simulation.

Experimental mechanics are an essential (counter)part of mechanical modelling as they connect theory with
reality by determining parameters for a model in the relevant application range using a suitable experiment.
The main goal of nwt 3 was to teach the participants the basics of experimental mechanics, data acquisition
and model parameter identification specifically for flexible slender objects This involved teaching the ability to
choose the most fitting method to determine model parameters and estimate their range of validity. The training
included a practical course on experiments for cables including MeSOMICS R© measurements [2] and tasks in
IPS Cable Simulation.

In this contribution, the authors will describe the background knowledge that potential doctoral students prefer-
ably possess to be successful in an application-oriented research topic and give a summary of the contents of
THREAD’s nwt 2 and nwt 3.
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1. Introduction

Mechanical behavior of various slender bodies at micro- and nano-level is often governed by intermolecular
forces. These forces arise from interaction potentials (IP). The examples are electrostatic, steric and van der
Waals forces. If the IP law is known, computational modeling of these interactions is rather straightforward
using the molecular dynamics approach where an IP between each molecule is taken into account. However,
such an approach is computationally expensive for the fine time and spatial resolutions that are often required.
The main problem is that the integration has to be done with respect to the volumes of all interacting bodies.
In order to accurately and efficiently model these interactions, a coarse-grained approach is proposed in the
literature [1]. This technique provides a reasonable balance between accuracy and efficiency by coarse-graining
and homogenizing the molecular model, and using the well-established continuum mechanics of solid bodies.

A novel method for the modeling of potential-based (PB) interactions between deformable beams has recently
been developed [2]. The main idea is to pre-integrate an IP with respect to the cross-sections of interacting
beams. The approach is designated as section-section IP (SSIP) and compelling results are obtained [3, 4].

Motivated by the importance of PB interactions between slender bodies, this work further investigates the SSIP
approach. IP is modeled using rotation-free Bernoulli-Euler (BE) beam theory and isogeometric analysis (IGA).

2. Methods

Let us consider two beams that represent assemblies of molecules with positions r̄i. An IP between two
molecules, separated by the distance x = ∥r̄12∥ = ∥r̄2 − r̄1∥, is Φ(x). Among various IPs, let us focus on the
well-known Lennard-Jones IP that is suitable for the modeling of van der Waals attraction and steric repulsion:

ΦLJ (x) = 4ε

[(
σ

x

)12
−
(

σ

x

)6
]

→ f21 =−∇2ΦLJ (x) =−∂ΦLJ (x)
∂x

r̂, with r̂ =
r̄12∥∥r̄12

∥∥ , (1)

where −ε is the minimal value of the IP, σ is the distance at equilibrium, and f21 is the force acting on molecule
2. To find the total IP and corresponding force, this potential must be integrated over both assemblies leading
to two nested 3D integrals. The SSIP technique allows us to reduce this integral to two nested 1D integrals
with respect to the axes of both beams. In order to make SSIP feasible, several assumptions are required,
such as an assumption of rigid cross-sections. Furthermore, the utilized SSIP disregards orientation between
cross-sections. It is argued in [2, 3] that such a set of assumptions leads to an accurate and efficient formulation.

In this work, an IGA rotation-free BE beam model is utilized [5] and both static and implicit dynamic procedures
are implemented. Several issues emerge for PB computational models. For example, the forces that act on each
assembly depend on the configurations of both assemblies. This makes the off-diagonal blocks of the coupled
stiffness matrix dense. Furthermore, some IPs are short-ranged, meaning that they rapidly decay with distance,
see Eq. (1) . To save computational time, it is possible to employ a cut-off distance. This significantly reduces
computational time but requires an efficient interaction-pair search algorithm.

3. Numerical example

Let us consider a numerical experiment of peeling and pull-off of two fibers with circular cross-sections that
interact via the LJ potential, Fig. 1a. Almost all input data is the same as in [3] and no units are specified. Since
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this example requires very fine spatial and time discretizations, we have reduced the length to 2 in order to speed
up the computation. Each beam is meshed with 20 quartic elements, while 24 integration points per element
are employed for integrating the IP. For static analysis, the nonlinear solver struggles to find equilibrium after
the pull-off [3]. To alleviate this issue, we have employed dynamic analysis with a mass density of ρ = 0.001
and stiffness-proportional viscous damping with kc = 0.0025. The displacement Ux (t) = 5t is prescribed to
the supports of the right beam, and the characteristic simulation snapshots are shown in Fig. 1b. Furthermore,
the horizontal reaction is plotted in Fig. 1c. The observed behavior is quite complex and in-line with the
observations in [3]. Moreover, a brief parametric analysis is done by varying cut-off distances. Fig. 1c shows
the corresponding results for d = 0.1 and d = 0.05. The results are practically the same until the pull-off phase,
while the computational time is reduced by a factor of 3.

Figure 1: Peeling and pull-off of two fibers. a) Problem setup. b) Characteristic snapshots. c) Reaction force
for two values of cut-off distance.

4. Conclusions

The SSIP approach is implemented in the context of IGA using the rotation-free BE model. The dynamic
analysis allows for finding equilibrium configurations after the pull-off phase. By a careful selection of the
cut-off distance, computational can be significantly reduced. Several new research directions are envisaged,
such as consideration of Timoshenko beam, beams with deformable cross-sections and self-interactions.
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1. Introduction

We present an isogeometric mixed finite element formulation for geometrically and materially nonlin-
ear beam structures, based on the three-field Hu-Washizu variational principle. This alleviates not
only membrane and transverse shear locking, but also curvature-thickness locking, associated with
an artificial cross-sectional stretching by the finite element approximation of the extensible director
field. It further significantly improves the stability of the convergence in the Newton-Raphson itera-
tion in the thin beam limit. We employ the B-spline basis functions, to approximate the displacement
and director fields along the beam’s center axis, which is referred to as isogeometric analysis. The
higher order continuity of the basis functions eventually gives superior per-degree-of-freedom accuracy,
in comparison to conventional C0 finite element analysis (FEA). In several numerical examples, we
verify the accuracy and efficiency of the formulation, as well as the path independence of the solution.

2. Three-field mixed variational formulation of beams

The beam kinematics assumes the position vector of an arbitrary point in the cross-section to be a
linear function of the transverse coordinates ζ1 and ζ2, as

xt(ζ1, ζ2, s) = φ(s) + ζ1d1(s) + ζ2d2(s), (1)
where φ(s) denotes the position of the beam’s center axis, and d1 and d2 denote the extensible directors.
s denotes the arc-length coordinate of the initial center axis. This first order beam kinematics can
be further generalized to an arbitrary order, see [2]. In the mixed formulation, we obtain the internal
virtual work, as

GHW
int :=

∫ L

0

δy · BT
totalrp + δrp · {ε(y) − εp}︸ ︷︷ ︸

compatibility

+δεp ·
{
∂εpΨ(εp) − rp

}︸ ︷︷ ︸
constitutive law

 ds, (2)

where εp and rp denote the arrays of the physical strain and stress resultants of the beam, respectively,
and ε denotes the array of geometrical (compatible) strains. y denotes the displacement of the center
axis and the directors. Ψ denotes the strain energy density function. The strain-displacement operator
Btotal for the geometrical strain can be found in [1]. The physical beam strains and stress resultants
are considered as independent unknown variables.

3. Numerical examples

The first example shows the superior per-degree-of-freedom accuracy of IGA, compared with the con-
ventional FEA (see Fig. 1b). The second example verifies the path independence of the IGA solution,
see Fig. 2b for the exactly overlapped deformed beam configuration between every prescribed rotation
angle (θ̄) and its multiples.
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(a) Problem description
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(b) Convergence of the solution

Figure 1: Cantilever beam under end moment. Young’s modulus E = 1.2 × 107 Pa, Poisson’s ratio
ν = 0, and the slenderness ratio L/h = 105. For the same number of elements nel = 10, every data
point in each graph represents the result of using degree of basis functions p = 2, 3, ..., 9.

(a) Problem description (b) Rotation after the deflection

Figure 2: L-shaped beam. Young’s modulus E = 107 Pa, and the Poisson’s ratio ν = 0.3, and the
distributed force T̄ 0 = −200 N/m.

4. Conclusions

We present an isogeometric mixed finite element formulation for hyperelastic beam structures, based on
the three-field Hu-Washizu variational principle. We verify that the developed formulation alleviates
the locking effects, and significantly improves the stability in the Newton-Raphson iteration process
in thin beam limit. Further, in the numerical examples, we show the superior per-degree-of-freedom
accuracy in the isogeometric analysis due to the higher order continuity of basis functions, compared
with the conventional FEA.
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1. Introduction

n-pendula with rotational springs have previously been used to describe 2D dynamics of slender structures (e.g.,
simple beams), but this approach has not so far been generalized to the case of 3D dynamics. The research
presents a method for applying a set of inverse and forward dynamics algorithms to this type of highly flexible
structural system. The motivation of this method over those using traditional continuum formulations is that the
joint-angle coordinate system potentially allows a more efficient simulation of structures that primarily undergo
bending, without significant shearing and stretching deformations.

2. Methodology

In Ref. [1], Saha has derived modifications to general equations of 3D multi-body motion, applying distance
constraints to serially connect rigid bodies. The resulting equations are written in terms of twist and wrench, i.e.,
the six-dimensional vectors used in Ball’s “screw theory”, widely used in robot mechanics (e.g., [2]). Recursive
forward and inverse dynamics algorithms are provided with O(n) complexity, where n is the number of rigid
bodies. In Ref. [3], Shah extends these algorithms to describe branching (non-serial) assemblies. In this work,
the dynamics of branching n-pendula are solved with these algorithms.

Three orthogonal rotary springs are added at each pendulum joint to model material stiffness, akin to how this
is achieved in 2D models. Within the algorithms presented by Shah [3], these springs can simply be included as
internal (driving) forces. Additionally, an algorithm change is proposed to facilitate the application of spatially
and temporally varying external forces. In the original method, a constant vector ρ = { 0, 0, 0, g, 0, 0}⊤ for grav-
ity is added to the rate-of-twist of the root node, and the effect of this is propagated over the rigid body network
by the inverse dynamics algorithm. In this paper, this step is replaced by adding a new vector ρ(t,nodei) to
the twist-rate of each node i after the propagation step, where ρ is now a function of the time t and the node’s
physical and kinematic properties and represents the sum of the external forces applied to that node.

In this study, the above modifications have been implemented to dynamically model flexible assemblies with
serial and tree topologies, for validation first and then demonstration, respectively. Readers interested in the
implementation of looping topologies can find a method for doing so in Ref. [4].

3. Results

3.1. Cantilever Deformation

To validate that the kinematic methods were implemented correctly and appropriately, two tests were per-
formed on a cantilever beam with circular cross section. In Fig. 1(a), the deformed states under two load cases
are shown, with their inaccuracy given in comparison to Euler-Timoshenko beam theory. A pendulum with 15
elements was used to model the beam. In Fig. 1(b), an example of 3D behaviour is assessed. Under a perpendic-
ular load, a circular section rod should theoretically deform parallel to the load direction, which the model only
fails to reasonably achieve at very low resolutions. Between cardinal directions the error is non-zero, because
the rotational springs act independently.

3.2. Complex Assemblies

The nature of the n-pendula model makes it well-suited to describing structures of inhomogeneous geometry
and rigidity. The results in Fig. 2(a) demonstrate this capability, by replicating the results of a two-dimensional
n-pendula, which was formed and validated experimentally by Marjoribanks & Paul [5]. Two 30 cm cantilevers
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Figure 1: (a) Rest positions for a cantilever under two point loads (Inset, time history of end load oscillation).
(b) The variation of error with deformation direction at different pendulum resolutions, in another test.

Figure 2: (a) Bending of composite beams under increasing flow speeds. Materials A,B, and C have decreasing
rigidity (see Ref. [5] for details). (b) Deformation of two fractal structures under increasing flow speed, from
three viewing planes, exhibiting vertical and horizontal compaction.

of varying rigidity are shown deforming under increasing fluid flow speeds, with the effect of the water given
by the buoyant force plus a modified drag equation as used in the original study.

In Fig. 2(b), three fractal structures are shown deforming under increasing flow speeds. This demonstrates how
the model can be used for complex assemblies, such as multi-stem aquatic plants which, so far, have not been
simulated at the scale of individual stems like in the present study.

4. Conclusions

Modifications are made to a set of 3D dynamics algorithms in order to model complex tree structures with flex-
ible, slender components using an n-pendula representation. These modifications, which implement material
stiffness and spatially/temporally varying external forces, are shown to be valid for the deformation of a simple
cantilever. They are further validated by replication of results for a variable-rigidity cantilever and, finally, are
demonstrated on fractal trees to showcase initial results with assemblies of complex topology.
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1. Introduction

This contribution presents an approach to couple solid and beam elements such that no spurious stresses occur
on the solid side at the transition zone. The proposed element formulation achieves the transition from a solid to
a beam displacement field, allowing general cross-sectional deformations, see [1]. One of the key features of the
element is that it only requires data of the mesh and the solid material data. Further information, like the warping
function, center of gravity, or other cross-sectional information, is not required. This allows the connection of
beam elements at any point of the cross-section without additional considerations. Such transition elements are
essential in many applications, e.g., substructural modeling or homogenization. In the latter, avoiding spurious
stresses at the boundaries is very important to reduce the necessary length of a so-called representative volume
element.

2. Assumed Kinematics

The proposed element connects a solid surface to a beam node, achieving the transition from a continuum
displacement field uS to a beam displacement field uB = uB0 +ξ2 A1 β . Herein, A1 is the normal vector on ΓS

and ΓB, uB0 the displacements on the beam point, β the rotation of that point, and A1 and A2 represent the local
orthonormal basis system of the beam. Additionally, faces ΓS and ΓB are identical and only shifted by ℓ in the
A1 direction. Both faces are initially plane and parallel. The transition is achieved inside the domain ΩI of the

Figure 1: Solid model (gray), connected by transition element (yellow) to beam model (gray line).

transition element; see Figure 1. The domain possesses the same material properties as the solid gray part of the
model. The connection point of the beam element is arbitrarily located on the cross-section plane. With this at
hand, the displacement field inside the transition zone is a linear interpolation between the displacements of the
solid side uS and the beam displacements uB. In the local coordinate system Ai, the displacement field reads:

u =

[
u1
u2

]
=−ξ1

ℓ

[
A1 ·uS

A2 ·uS

]
+

(
1+

ξ1

ℓ

)[
A1 · (uB0 −β ξ2 A1)

A2 ·uB0

]
. (1)

With eq. (1) the strain state can be defined. Assuming small strains, it reads

 ε1
ε2

2ε12

=

 u1,1
u2,2

u1,2 +u2,1

=


1
ℓ
(uB0 −β ξ2A1 −uS) ·A1

−ξ1

ℓ
A2 ·uS,2

−ξ1

ℓ
A1 ·uS,2 −

(
1+

ξ1

ℓ

)
β +

1
ℓ
[uB0 −uS] ·A2

 . (2)
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It is important to note that in eq. (2) the cross-section at the beam node does not deform.

3. Weak form of equilibrium

Based on Figure 1, the weak form of equilibrium can be written as:

g = gS +gI +gB = 0. (3)

In eq. (3) gS are the solid, gB the beam, and gI the transition zone part of the weak form of equilibrium. The
part gI of the weak form of equilibrium is the actual contribution of this paper. It reads:

gI (u,σσσ p,εεε p,εεεc,δu,δσσσ p,δεεε p,δεεεc) =
∫

ΩI

{
(δεεε +δεεεc)

T
σσσ p +δσσσ

T
p ((εεε + εεεc)− εεε p)+δεεε

T
p (Cεεε p −σσσ p)

}
dΩ.

(4)
The parts of eq. (4) are the displacements u, the geometric strains εεε resulting from the symmetric gradient of
u, the independent strains εεε p, the independent stresses σσσ p, and the correction strains εεεc. The correction strains
are responsible for the cross-sectional deformations, and their approximation is inspired by [2] and read

εεεc =

 ωωω1 0 0
0 ωωω2,2 0
0 0 ωωω1,2

 ε̂εεc, with
∫

h
ωωω

T
1 dΓB = 0,

∫
h

ξ2 ωωω
T
1 dΓB = 0, and

∫
h

ωωω
T
2 dΓB = 0. (5)

The correction strains are specified by general deformation function ωωω1 and ωωω2 which fulfill the orthogonality
condition in eq. (5) , and are scaled with their associated values in ε̂εεc.

4. Finite Element Formulation

Due to the non-local character of the correction strains, the element formulation is not a standard finite element
formulation. It consists of an assembly of all the surface elements of the solid boundary ΓS and the beam node.
The surface displacement field uS is approximated with standard local nodal shape functions. Furthermore, the
geometry and displacement field interpolation are comparable to the approximation in [3]. The independent
stresses and strains are interpolated with shape functions local to a single surface element, thus discontinuous
inside the transition element. For the correction strains, the same shape functions as the displacement field uS

are chosen, but they get extended with a non-local component such that the orthogonality conditions in eq. (5)
are satisfied. Further details about the element formulation can be found in [1].

5. Conclusion

The proposed element formulation incorporates cross-sectional deformations based on local degrees of freedom
(Dofs). These additional Dofs can be condensed out on the element level such that the element has only
displacement degrees of freedom. Thus, connecting classical solid elements with classical beam elements is
possible. For the present 2D case, the element possesses exactly three non-zero eigenvalues, which can be
related to the beam’s tension, bending, and shearing stiffness. The resulting shear stiffness of the element
includes the correct shear correction factor. One key feature is that only the mesh and the typical continuum
material parameters must be specified. It is not required to compute any additional parameters like warping
functions a priori.
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1. Purpose

Specific applications require fibrous structures to be embedded inside a matrix. The penetration of the matrix
between the fibres may result in important local stresses, which affect the macroscopic behaviour of the com-
posite. This represents a challenge for numerical simulation, which can be addressed using a full 3D finite
elements model. Considering the slenderness of the fibres, a more time-efficient approach consists in using a
1D-3D finite elements model with non-conforming meshes [1]. In the proposed model, coupling is ensured
using a pointwise penalty method. Additional 1D structural elements are introuced between fibres when the
thickness of the matrix layer is smaller than the 3D solid elements of the matrix mesh, to account for the
specific behaviour of such a thin layer.

2. Methodology

The model uses overlapping meshes. The fibres are modelled using 1D elements with enriched kinematics, as
described in [2]. The matrix is modelled using a coarse, structured 3D mesh. Both meshes overlap and are
coupled with a pointwise penalty method: coupling elements are equally distributed at the surface of the fibres
embedded in the matrix (Figure 1). Each coupling element EF-M

i links a fibre particle ξ F
i to its overlapping

matrix particle ξ M
i in the reference configuration:

EF-M
i =

(
ξ

F
i ,ξ

M
i
) ∣∣ x0 (

ξ
F
i
)
= x0 (

ξ
M
i
)
= Ai (1)

where x0 refers to the particle position in the reference configuration. The relative displacement of the two
particles is penalised by adding a term wF-M to the virtual work:

wF-M = KF-M
(
x
(
ξ

F)− x
(
ξ

M)
,v
(
ξ

F)− v
(
ξ

M))
(2)

where KF-M represents the coupling element stiffness, x is the current position of the particle and v is its virtual
displacement. Whereas standard displacement fields are used to describe the kinematics of the matrix particle
ξ M, beam displacement fields are used to follow the fibre particle ξ F.

Fibre’s actual edge

3D matrix mesh

1D fibre element

at positions Ai

Coupling elements EF-M
i

Figure 1: Representation of the fibre-matrix coupling in a fibre cross-section

When the thickness of the matrix is small compared to the dimensions of the 3D elements of the matrix mesh,
additional refining 1D bridge elements are introduced between wires to account for the matrix behaviour at
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these locations [3]. The bridge elements act as springs, coupling two wires in three directions, as shown in
Figure 2. The stiffness of the bridge elements is non-linear, and determined using a full 3D finite elements
model of a matrix bridge.

Longitudinal direction

Normal direction
Transverse direction

Figure 2: Representation of a 1D bridge element between two fibres and the associated coupling forces
directions

3. Results

Simple tests with two fibres were performed to validate the model. It was then used to simulate rubber-
embedded metallic cables. Further developments were made to deal with the matrix material incompressibility,
especially regarding computation stability. Tensile tests were performed against experimental data to validate
the model at the cable scale. More complex loading cases such as cable indentation were then simulated.

Figure 3: Deformed shape of a two-fibre geometry used to validate the model
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1. Introduction

Standard continuum finite element formulations are unable to capture the deformation behaviour of slender
beams due to the presence of spurious strains or stresses, which will overestimate the stiffness. This leads
to the underestimation of field variables, i.e., locking. On the other hand, beam theories have limitations due
to the abstraction of kinematic and stress quantities from the three-dimensional geometric model to the beam
axis. Thus, constitutive models have to use the reduced stress state, which yields complications for finite
strains with hyperelastic or inelastic material models. Furthermore, the coupling with the continuum elements
is not straightforward. To tackle these problems, in this work a solid-beam element is developed which inherits
the advantageous property of solid elements of having only displacement degrees of freedom. To eliminate
transverse shear and membrane locking, the assumed natural strain (ANS) method is used [1]. Furthermore,
the concept of isogeometric analysis (IGA) is applied by NURBS basis functions for the description of the
geometry and the discretization of unknown field variables [2]. This yields a highly accurate, locking-free
solid-beam formulation that is applicable to also to slender beams.

2. Governing Equations

The governing equations correspond to the balance of linear momentum of the solid continuum:

Div(FS)+ρ0b = 0 in Ω0
u = ū on Γd

(FS) ·n = t on Γn



 ⇒

∫

Ω0

δE : SdV −
∫

Γn

δu · tdA−
∫

Ω0

δu ·ρ0bdV = 0 ∀δu. (1)

Here, the weak form is discretized by an isogeometric finite element discretization of the solid displacement
field u : Ω0 → R3. The Green-Lagrange strains are computed from the deformation gradient F = I+∇u as
E= 1

2(F
T F−I) and the 2nd Piola-Kirchhoff stress from a hyperelastic strain energy potential W as S= dW/dE.

3. Assumed Natural Strain Method
ξ

√
3
5

√
3
5

√
1
3

√
1
3

Integration Points

Tying Points

1

Figure 1: Tying points for the integration of Eξ ξ ,
Eξ η and Eξ ζ

To cure transversal shear and membrane locking effects
for slender continua, the ANS method [1] is applied to the
IGA discretization of eq. (1). The main idea behind the
ANS method is to calculate the strains components of E
at tying points and then projecting them to the integration
points with the help of interpolation functions. The tying
points are defined with the help of a reduced integration method. Following Caseiro et al. [2] for the iso-
geometric analysis of solid-shell finite elements, the ANS method for the isogeometric solid-beam element is
defined accordingly. The tying points for the membrane strain Eξ ξ and the transversal shear strains Eξ η , Eξ ζ

are illustrated in Fig. 1. They can be expressed as:

EANS
i (ξ ,η ,ζ ) =

nt

∑
j=1

N j(ξ )Ēi(ξ̂ j,η ,ζ ) with i ∈ {ξ ξ , ξ η , ξ ζ}, (2)

where nt is the number of tying points and N j are the univariate basis functions of the local NURBS space in
the ξ -direction, calculated at the Gauss integration point k. Ēi(ξ̂ j,η ,ζ ) is the compatible strain field calculated
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in the local space with the help of the tying points with coordinates (ξ̂ j,η ,ζ ). Thus, in the finite element
implementation, the strain displacement operator that maps u to E is adjusted to account for the modified
membrane strain and transverse shear strains.

4. Numerical Example

1

H
W

L

M
ϕ

H = 0.5,W = 1, L = 100

E = 12000, ν = 0

X
, u Y, v

Z, w

1

Figure 2: Geometry and material properties
of cantilever beam under bending

To verify the IGA solid beam formulation for large (finite) ro-
tations, a cantilever beam with an applied bending moment is
considered. The bending moment is applied by means of a non-
conservative equivalent load. In Figure 2, the geometry and the
material parameters of the cantilever beam are shown. The solid
beam is meshed with 5 or 20 elements (knot spans) in the lon-
gitudinal direction. The horizontal and vertical displacements
and the rotation angle are calculated at the centre of the free-end
cross-section of the beam. The horizontal displacement of the solid-beam element (HnANSB) is compared with
the analytical beam solution, an IGA solid element (Hn) and an isoparametric solid beam element [1] (Q1STb),
see Fig. 3a, where n is the degree of the shape functions along the beam axis. Furthermore, in Fig. 3b, the
results of the formulation are compared with an IGA solid element (H2) for different slenderness ratios.
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Figure 3: Large rotation of cantilever beam under bending

5. Summary

The developed solid-beam formulation is able to elevate locking effects and yields results comparable to beam
formulations even for highly slender beams. In further research, the IGA solid beam element will be used to
analyse metamaterials and will be coupled with a diffusion equation to analyse the chemo-mechanical behaviour
of battery microstructures.

Acknowledgments

The authors acknowledge financial support of the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – grant no. 460684687.

References

[1] J Frischkorn and S Reese. A solid-beam finite element and non-linear constitutive modelling, Comput. Methods Appl.
Mech. Eng. 265 (2013) 195–212

[2] JF Caseiro, RA Valente, A Reali, J Kiendl, F Auricchio, and RJ Alves De Sousa. On the Assumed Natural Strain
method to alleviate locking in solid-shell NURBS-based finite elements, Comput. Mech. 53 (2014) 1341–1353

148 



ECCOMAS Thematic Conference and IACM Special Interest Conference
Highly Flexible Slender Structures (HFSS 2023)

25–29 September 2023, Rijeka, Croatia

A mixed-dimensional beam-to-solid interaction framework: From embedded
fibers to contact

Ivo Steinbrecher1, Christoph Meier 2, Alexander Popp1

1 Institute for Mathematics and Computer-Based Simulation (IMCS),
Universität der Bundeswehr München Neubiberg, Germany

2 Institute for Computational Mechanics, Technical University of Munich, Germany

Keywords: Mixed-dimensional interaction, Nonlinear beam theory, Mortar methods

1. Introduction

The interaction between slender fiber- or rod-like components, where one spatial dimension is much larger than
the other two, with three-dimensional (2D) structures (solids) is an essential mechanism of mechanical systems
in numerous fields of science, engineering and bio-mechanics. Various modeling techniques exist to create a nu-
merical model of the described problems, almost all of them being based on the finite element method. Classical
modeling techniques usually require a compromise between a detailed description of the slender structures and
overall model complexity. Based on the example of fibers embedded in a material matrix, common approaches
can be categorized into 2 categories: homogenization approaches where the stiffness contributions from the
fibers and matrix are homogenized, thus resulting in an anisotropic material law for the combined volume.
The fibers are not explicitly modeled which reduces the modeling and meshing effort, however, the results
obtained with such methods only give limited insight on the detailed interaction between the fibers and the
matrix. In the second commonly used approach the fibers as well as the material matrix the are fully resolved
using 3D continuum theory, thus resulting in an highly accurate description of the compound structure and
the interactions between fibers and matrix. However, the resulting model comes with considerable modeling
effort computational complexity. The main idea of the presented framework is to provide finite element formu-
lations to combine the successful and rich history of nonlinear beam theories based on 1D-Cosserat continua
with classical 3D continuum finite elements. This allows to explicitly model the fibers while still maintaining a
moderate overall model complexity compared to the fully resolved model. The resulting problems are referred
to as beam-to-solid (BTS) interaction problems.

2. Beam-to-solid modeling assumptions

Since the dimensions of the coupled differential equations are not equal in, the resulting combined interaction
problem is a mixed-dimensional beam-to-solid interaction problem. Not only the governing equations of the
beam but also the developed interaction schemes are exclusively formulated along the one-dimensional beam
centerline. From a mechanical point of view, the resulting mixed-dimensional interaction of nonlinear geo-
metrically exact beam finite elements with classical continuum finite elements introduces a singular solution,
similar to the problem of a concentrated line load acting on a three-dimensional continuum. It can be shown that
this singularity does not affect the usability of the BTS interaction framework as long as the solid element di-
mensions are larger than the beam cross-section, i.e., if the beam cross-section is smaller than a solid element,
the exact distribution of the interaction forces does not effect the global system response. The second main
modeling assumption for the case of embedded fibers is that the volume occupied by the fibers is not removed
from the modeled matrix volume, thus resulting in overlapping volumes. For the typical stiffness relations be-
tween fiber and matrix material, this modeling inconsistency can be neglected. Since the matrix volume is not
affected by the fibers, matrix and fibers can be discretized independently of each other. This drastically reduces
the required meshing effort and allows for arbitrary configurations of the beams with respect to the solid, thus
resulting in inevitably non-matching finite element grids.

3. Finite element formulation for beam-to-solid interaction

The presented beam-to-solid interaction framework can be applied to existing beam and solid formulations,
i.e., it allows for the combination of modern finite element technologies developed for pure beam or pure solid
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(a) (b) (c)

Figure 1: Illustration of various BTS application scenarios – fiber-reinforced composite plate (a), supported
shell (b) and four-point bending test (c).

problems. The interaction constraints act along the beam centerline and they are discretized in a weighted sense
using a mortar-type approach [1]. A penalty regularization is performed to eliminate the Lagrange multipliers
from the global system of equations, which results in a robust coupling scheme. Special caution has to be taken
when the rotations of the Cosserat continua are coupled to the solid. This requires the construction of a suitable
rotation (i.e., triad) field inside the solid (Boltzmann) continuum [2]. Furthermore, the interaction between
1D beams and 2D surfaces of solid continua introduces the additional complexity of having to account for the
surface normal vector in the coupling constraints. The presented framework is able to handle and combine all
of the complexities mentioned above.

4. Numerical examples

Figure 1 showcases possible application scenarios for the presented beam-to-solid interaction framework. In
Figure 1(a) a fiber-reinforced composite plate is shown where the fiber reinforcements are explicitly modeled
using 1D beam elements. Due to the non-symmetric layer buildup of the plate, the plate twists even tough the
loading is entirely in-plane. Figure 1(b) illustrates a beam-reinforcement coupled to an isogeometric shell, based
on NURBS basis functions. Finally, Figure 1(c) illustrates a four-point bending test modeled with unilateral
beam-to-solid contact. The employed beam models are based on the geometrically exact beam theory [3].

5. Conclusions

Among the main topics addressed in this talk are a detailed outline of the beam-to-solid interaction framework,
as well as a discussion of the characteristic traits of mixed-dimensional interaction in solid mechanics. Selected
quantitative and qualitative examples are presented to highlight in order to underline the usability for real
life science and engineering applications. Furthermore, the open-source beam finite element pre-processor
MeshPy1 is presented.
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1. Introduction

Formulations of the mixed type of finite elements are generally considered to solve special problems: anal-
ysis of nearly incompressible solids, locking in shells and beams. When additional unknown fields are con-
strained to the original (variational) problem by means of Lagrange multipliers, additional equations in the
Euler-Lagrange system of equations result. In case where kinematic equations are constrained to original prob-
lem, the Lagrange multipliers are interpreted as ‘equilibrium’ stresses, and the expanded problem contains the
so-called consistency conditions which ensure that the equilibrium stresses are equal to the ‘true’ or constitu-
tive stresses resulting from the strain-dependent constitutive law. The equilibrium and constitutive stresses are
theoretically identical, however this need not be the case in the numerical implementation of standard finite
elements, therefore consistency conditions are proposed to solve this problem [1].

In the research group at Chair of Mechanics at the Faculty of Civil and Geodetic Engineering (University of
Ljubljana), a large number of finite element formulations for beams have been developed over the last 25 years,
in which consistency conditions play a central role.

2. Consistency of beams cross-sectional equilibrium and constitutive stress-resultants

Consistent equilibrium of the cross-section of a beam is defined as
⇀

f C (x) =
⇀

f (x)
⇀mC (x) = ⇀m(x)

. (1)

Here, x is the material coordinate of the beam’s reference line,
⇀

f C and ⇀mC denote stress-resultant constitutive
force and moment vectors, which depend only on strain measures of the beam

⇀
γ and

⇀
κ:

⇀

f C = CF
(⇀
γ,

⇀
κ
)
, ⇀mC =

CM
(⇀
γ,

⇀
κ
)

1.
⇀

f and ⇀m are equilibrium force and moment vectors of the beam’s cross-section, that correspond to

balance equations: d
dx

⇀n+⇀next =
d
dt

(
Aρ

⇀v
)

and d
dx

⇀m+ d
dx

⇀r×⇀n+ ⇀mext =
d
dt

(
Jρ

⇀

Ω

)
2.

2.1. Discrete form of consistency conditions

Continuous equations (1) can be converted to discrete equations when Galerkin-type finite element method is
used. When standard interpolation points are used, consistency conditions are satisfied at some discrete points
that lay between integration and interpolation points [2]. However, when integrating through interpolation
points, the consistency is satisfied at integration/interpolation points and the discretization can be considered as
a collocation method [6].

3. Beam formulations employing consistency conditions

The phenomenon of inequality of equilibrium and constitutive internal forces in a cross-section of an elastic-
plastic planar beam is discussed in a paper by Vratanar and Saje [1] and a possible treatment – the use of
consistency conditions – is presented. In the paper by Planinc et al. [2] a weak formulation of the Reissner
theory for plane beams with finite strain, using the consistency condition, is presented. The pseudocurvature
of the deformed axis is the only unknown function. A finite element formulation of a geometrically and mate-
rially nonlinear plane beam for the structural analysis of reinforced concrete frames is presented in the paper

1Operators CF and CM must be invariant under superimposed rigid-body motions and at least once differentiable with respect to
⇀
γ ,

⇀
κ .

2⇀next and ⇀mext are the external distributed force and moment, Aρ and Jρ are mass-area and mass-inertia matrix of the cross-section.
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by Bratina et al. [3]. In the formulation, the strain measures are the only interpolated unknowns, and the
constitutive and equilibrium internal forces are equal at the integration points. Čas et al. [4] presented finite
element formulation for the non-linear analysis of two-layer composite planar beams with an interlayer slip.
An extension of the planar geometrically exact beam, where strain measures are the interpolated unknowns,
to dynamics was given by Gams et al. [5]. The pioneering strain-based formulation for geometrically exact
spatial beams was presented by Zupan and Saje [6]. In their work, the consistency condition is enforced to be
satisfied at selected points, and the solution is found by a collocation algorithm. Češarek et al. [7] presented
a special derivation of the formulation presented in [6], assuming a constant strain field along the element. A
strain-based finite-element formulation was presented where numerical integration in the governing equations
and their variations is completely omitted and replaced by analytical integrals. A further extension of the orig-
inal strain-based formulation [6] was presented by Pirmanšek et al. [8] in which the strain field is enhanced
with embedded discontinuity. The newly developed beam finite element can account for the softening of the
material. In the paper, it was shown that the consistency condition is naturally suited for the implementation
of the discontinuous formulation. An extension of the static formulation [6] to dynamics was presented by
Češarek et al. [9]. Another application of consistency constraints in the dynamic formulation of spatial beams
was presented by Zupan et al. [10]. In their work, the configuration variables are interpolated and the rotations
are described with quaternions. A special formulation of spatial beam dynamics was presented by Češarek and
Zupan [11], in which the spatial derivatives of velocities and angular velocities are the primary interpolated
unknowns and consistency conditions are used.
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1. Introduction

One particular challenge in the numerical analysis of structures using the finite element method is the handling
of strain localization caused by localized decreases in the bearing capacity of structural elements commonly
referred to as ‘softening’. To address this issue, the finite element method with embedded discontinuities was
introduced [1]. This approach involves superimposing discrete displacement increments onto the continuous
strain or displacement field within the finite element. By doing so, the discontinuous nature of the localized strain
at the element level is accounted for, while maintaining the chosen degree of interpolation for the continuous
part of the strains or displacements.

2. Formulation of kinematically exact beam finite element with embedded strain discontinuity

Here, we focus on the formulation of geometrically exact beam finite element with embedded discontinuity.
Formulation is an enhancement of kinematically exact beam finite element, presented by Češarek et al. [2], with
discontinuous strain field.

2.1. Kinematics of a beam with discontinuous strain field

Kinematic equations3 of the beam read: 𝑑
𝑑𝑥

𝚲(𝑥) = 𝚲(𝑥)
(
K̂(𝑥) − K̂0(𝑥)

)
4 and 𝑑

𝑑𝑥
𝒓 (𝑥) = 𝚲𝑇 (𝑥)

(
𝜞(𝑥) − 𝜞0

)
5,

where the strain measures 𝜞 and 𝑲 denote the rate of change of the position vector 𝒓 and rotation matrix 𝚲,
with respect to 𝑥6. In the localization model with embedded discontinuity, the onset of localization is assumed
in discrete (singular) cross-section, located at 𝑥𝑠. At this material point, the discontinuity of strains is assumed
to take the form of an impulse function embedded in the continuous field of strains. This variation of strains
along the beam axis can be represented by a generalized function that combines regular continuous functions
𝜞(𝑥) and 𝑲 (𝑥) with peak-like strain jumps 𝛿𝑥𝑠Δ𝑼7 and 𝛿𝑥𝑠Δ𝜣 7, respectively.

We assume a uniform (regular) strain field along the axis of the element, i.e. 𝑲 (𝑥) = 𝑲 and 𝜞(𝑥) = 𝜞. The
enhanced strain field of the beam is defined as 𝑲 (𝑥) = 𝑲 + 𝛿𝑥𝑠Δ𝜣, 𝜞(𝑥) = 𝜞 + 𝛿𝑥𝑠Δ𝑼, however, it is important
to note that vector addition applies only to vectors expressed in the same (moving) reference frame. The strain
vectors 𝑲 and 𝜞 are defined in the reference frame of regular cross-sections. Therefore, it is necessary to rotate
them accordingly starting from the discontinuity point 𝑥 > 𝑥𝑠. Here we can only make an assumption about
the rotation Δ𝚲 caused by the discontinuity: Δ𝚲 = exp

(
𝐻𝑥𝑠Δ�̂�

)
7. The kinematic equations of the beam with

enhanced strain field then read

𝑑

𝑑𝑥
𝚲(𝑥) = 𝚲 (𝑥)

(
exp

(
𝐻𝑥𝑠Δ�̂�

𝑇
) (

K̂ − K̂0
)
exp

(
𝐻𝑥𝑠Δ�̂�

)
+ 𝛿𝑥𝑠Δ�̂�

)
, (1)

𝑑

𝑑𝑥
𝒓 (𝑥) = 𝚲 (𝑥)

(
exp

(
𝐻𝑥𝑠Δ�̂�

) (
𝜞 − 𝜞0

)
+ 𝛿𝑥𝑠Δ𝑼

)
. (2)

3Vectors in a fixed frame are written with emphasized lowercase letters, vectors in a moving frame are written with emphasized uppercase
letters.
4𝚲(𝑥) is rotation matrix representing rotation of the moving frame, which is attached to the beam’s cross-section, with respect to the
fixed spatial frame. K̂ denotes skew-symmetric matrix composed from vector 𝑲. 𝑲0 (𝑥) describes the initial curvature or twist of the
beam centerline.
5𝒓 (𝑥) is the position vector of the beam’s reference line. 𝜞0 coincides with the normal of the cross section.
6𝑥 represents the arc length of the reference line in the reference configuration.
7𝛿𝑥𝑠 = 𝛿 (𝑥 − 𝑥𝑠) is the Dirac delta function, 𝐻𝑥𝑠 = 𝐻 (𝑥 − 𝑥𝑠) is the Heaviside step function.
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For the assumed constant 𝑲, the solution of the kinematic equation (1) with the initial condition 𝚲 (0) = 𝚲0 is

𝚲(𝑥) = 𝚲0 exp
(
𝑥

(
K̂ − K̂0

))
exp

(
𝐻𝑥𝑠Δ�̂�

)
= 𝚲(𝑥) exp

(
𝐻𝑥𝑠Δ�̂�

)
. (3)

The proof of solution (3) is straightforward if we differentiate the presumed solution with respect to 𝑥. Further-
more, if we consider the solution (3) in the kinematic equation (2), the equation simplifies to

𝑑

𝑑𝑥
𝒓 (𝑥) = 𝚲0 exp

(
𝑥

(
K̂ − K̂0

))
𝜞 + 𝚲 (𝑥) 𝛿𝑥𝑠Δ𝑼. (4)

Integration of equation (4), assuming initial condition 𝒓 (0) = 𝒓0, gives exact solution for the position vector:

𝒓 (𝑥) = 𝒓0 + 𝚲0W
(
𝑥

(
𝑲 − 𝑲0

))
𝜞 + 𝚲 (𝑥𝑠) 𝐻𝑥𝑠Δ𝑼 = 𝒓 (𝑥) + 𝚲 (𝑥𝑠) 𝐻𝑥𝑠Δ𝑼, (5)

whereW
(
𝑥

(
𝑲 − 𝑲0

))
=
∫ 𝑥

0 exp
(
𝑥

(
K̂ − K̂0

))
𝑑𝑥.

Equations (3) and (5) reveal the nature of the jumps of strains 𝑲 and 𝜞:

• Δ𝜣 is the rotation of the localized cross-section with respect to the adjacent regular cross-section, and
exp

(
𝐻𝑥𝑠Δ�̂�

)
rigidly rotates all cross-sections following the localized cross-section for the rotation vector

Δ𝜣, which is exactly what we assumed in equations (1) and (2).

• Δ𝑼 is the displacement of the localized cross-section written in the local frame of this cross-section.

2.2. Finite element formulation

The procedure for deriving the finite element formulation of the beam with strain vectors with embedded
discontinuity is presented in reference [3], except that in the present work, instead of a general interpolation
function for strains, we assume constant strain vectors and the solutions of the kinematic equations (3) and
(5). The formulation is an enhancement of the kinematically exact beam presented in [2] with two independent
vector unknowns – rotation and displacement jumps Δ𝜣 and Δ𝑼, and two vector equations recognized as
consistency conditions of the singular cross-section (see [2, 3] for details): 𝚲(𝑥𝑠) 𝑵𝐶 (𝑥𝑠) = 𝒏 (𝑥𝑠) and
𝚲(𝑥𝑠) 𝑴𝐶 (𝑥𝑠) = 𝒎 (𝑥𝑠)8. The resulting spatial finite element with discontinuities inherits crucial features from
its continuous counterpart [2], such as strain objectivity and locking-free behaviour. Additionally, the results
for discontinuities are insensitive to mesh refinement.
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Figure 1: First nonlinear mode of (a) cantilever beam: forced responses (—- F̂0 = 0.05, —- F̂0 = 0.08 in [1]) and
backbone curve of cross-section rotation θ at the free end of the beam plus snapshots of the nonlinear deformed shape; (b)
the same as (a) but for a ring structure (—- F̂0 = 0.5, —- F̂0 = 1) and showing the dimensionless transverse displacement
Uy/R of the node opposite the clamp.

1. Introduction

In this work, we propose a new method for simulating the nonlinear dynamics of highly flexible slender beam
structures based on a finite element discretization of the geometrically exact beam model solved entirely in
the frequency domain. The geometrically exact beam model is especially advantageous in modeling slender
beam structures since the geometrical nonlinearities tied to large displacement amplitudes are kept exact in the
equations, allowing the dynamical behavior to be captured even at extreme amplitudes of vibration (Fig. 1).

2. Geometrically exact beam model

A full derivation of the equations of motion of the geometrically exact beam model has been presented in
previous works (such as [2] in general or [1, 3] in 2D). In our method, Timoshenko kinematics is combined
with a total Lagrangian formulation in order to derive the governing equations. These are then discretized into
finite elements.

2.1. Finite element model

The finite element (FE) model is derived through discretization of the weak form of the equations of motion
([1, 2, 3]). In our model, Timoshenko beam elements with linear (in 2D) or quadratic (in 3D) shape functions
are used. The complexity of the geometrically exact beam model centers largely on treatment of the cross-
section rotations described by the rotation operator (R in [2]) which houses the geometrical nonlinearities. In
2D, the trigonometric functions characterizing the orientation of the cross-section are kept within the equations
of motion [1], while in 3D, the more numerically efficient quaternion parametrization of rotations is used [4, 5].
The FE dynamic equations ultimately fall into the general form:

Mü+Du̇+ fint(u) = fext, (1)

where u is the vector of nodal degrees of freedom, M the mass matrix and D the damping matrix, fint the internal
force vector and fext the vector of applied forces.
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3. Numerical resolution in the frequency domain

Periodic solutions of Eq. (1) are then found in either forced or free oscillation conditions using a combination
of the harmonic balance method (HBM) and the asymptotic numerical method (ANM) in a strategy which is
automated by the MANLAB software [6]. The details of this procedure being complex, it is recommended
to see Section 2.3 of [1] for a brief overview. However, two important points should be highlighted here, the
quadratic recast formalism and the solutions available with this method.

3.1. Quadratic recast

A subtlety imposed by the use of the ANM for continuation of periodic solutions is the quadratic recast. In order
to improve computational efficiency, Eq. (1) is rewritten as a differential-algebraic system of equations (DAE)
with polynomial nonlinearities of (at most) quadratic order. For example, in 2D, the trigonometric geometrical
nonlinearities are “recast” by introducing additional auxiliary variables and equations (see e.g. [1, 7, 8]). Our
specific quadratic recast has been outlined in [5] for 3D motions and in [1] when restricted to 2D in the plane.

3.2. Continuation with MANLAB

It is noteworthy to mention that solving with MANLAB permits two kinds of solutions, computation of the
periodic response under harmonic forcing (forced solution) or of the free and undamped solution (nonlinear
modes). In the former case, Eq. (1) takes the form:

Mü+Du̇+ fint(u) = FsinΩt, (2)

where F is the vector of harmonic forcing amplitudes, Ω is the frequency of the forcing and t is time. In the
latter case, however, Eq. (1) becomes:

Mü+ fint(u) = 0, (3)

which allows for computation of the nonlinear modes of the system (graphically represented as the so-called
“backbone” curves, see [1] for numerical details). An example of both types of solution can be found in Fig. 1.

4. Conclusion

We have briefly introduced our method for solving highly flexible nonlinear dynamical systems based on a
finite element discretization of the geometrically exact beam model solved in the frequency domain. There are
many advantages to using this approach, notably that the computational capacity of this method extends to a
multitude of structures so long as these can be discretized into beam elements.
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1. Introduction

The sufficient conditions for the existence and uniqueness of the classical and generalized solutions of a highly
flexible, planar, elastic, cantilever beam of the Reissner type when based solely on rotations and loaded by
a conservative load are presented. The derived inequalities are sharp. Under similar conditions, the global
convergence of Newton’s method is also derived. The numerical solution is obtained using simple nonconform-
ing finite element approximations that violate the requirements of the Iron’s Patch test. Since the numerical
solutions converge to the exact solution, the necessity of the Iron’s Patch test is questioned.

2. Reissner’s planar beam

Figure 1: Reissner’s beam (left), line loads (right).

The generalised solution of the Reissner’s planar cantilever beam, φ ∈
◦

H1 (0,L) =
{

u ∈W 1,2(0,L), u(L) = 0
}

,
can be obtained from the minimization of the functional Φ

Φ(φ) =
∫ L

0

(
φ ′2

2
+

R1

E J
(cosϕu − cosϕ)+

R2

E J
(sinϕ − sinϕu)

− c(R2
1 −R2

2)

4E J

(
cos(2ϕu)− cos(2ϕ)

)
− cR1 R2

2E J

(
sin(2ϕ)− sin(2ϕu)

)
−

my

E J
φ

)
ds

(1)

where the solution satisfies the prescribed boundary conditions φ ′(0) = 0 and φ(L) = 0. We have used abbre-
viations c = 1

GAs
− 1

E A and φ = ϕu −ϕ where ϕ , ϕu, L, my, E A, GAs, E J, R1 and R2 denote the rotations of the
cross section of deformed and undeformed cantilever, the length of the cantilever, the prescribed line moment,
the elastic axial, shear, and bending stiffnesses, and Lagrange multipliers, respectively

3. Existence and uniqueness of classical and generalized solution

Let be the distributed load functions, px, pz, my, and the initial pseudocurvature of the beam axis ϕu
′, satisfy

the conditions

−R′
1 = px ∈ L1(0,L) , −R′

2 = pz ∈ L1(0,L) , my ∈C[0,L] , (ϕu)
′ ∈ B[0,L] . (2)
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where B[0,L] denotes a set of bounded functions on interval [0,L]. Under these conditions one can prove [1],
that the boundary value problem corresponding to Equation (1) has a unique solution ϕ ∈C2[0,L] if

1
E J

(
‖R‖∞ + c‖R‖2

∞

)
<

π2

4L2 , where R(s) =
√

R2
1(s)+R2

2(s). (3)

4. Convergence of Newton’s method

In the paper [2] the global convergence of Newton’s method is proved under the following condition

1
E J

(
‖R‖∞ + c‖R‖2

∞

)
<

1
3

π2

4L2 . (4)

5. Convergence of nonconformnig finite elements that violate the Iron’s Patch test

Figure 2: i-th base shape function vhi (left), interpolation section (right) .

Following Ciarlet, one can denote the finite element in R1 with triple (I,P,Σ) where: (i) I is an open interval
in R1 of length h; (ii) P is two–dimensional space of real valued functions over the interval I; (iii) Σ is a set
of two linear forms denoted by degrees of freedom, Σ = {vh 7→ vh(t0),vh 7→ vh(t1)}, with two points t0, t1 ∈ I
with distances ζ h = o(h) from the initial and final points of the interval I, respectively [3]. We have also used
the well-known Landau symbol o. By applying the Shi F-E-M test, we can prove the convergence of presented
finite elements solutions [3].

6. Conclusions

The paper presents a summary of some related published results [1, 2, 3] for the planar Reissner’s cantilever
beam concerning the existence and uniqueness of classical and generalized solutions as well as the convergence
of numerical nonconforming finite element solutions using Newton’s method. Special attention has also been
given to the validity of Irons’ Patch test, which has been replaced by Stummel’s generalized Patch test.
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1. Introduction

In order to accurately describe the behaviour of heterogeneous materials and to capture the size-effect phe-
nomena, several continuum theories have been developed as alternatives to the classical (Cauchy) model. One
such theory is the micropolar or Cosserats’ theory of elasticity, which in addition to the Cauchy stress tensor
includes a couple-stress tensor. The presence of the couple-stress causes an additional independent kinematic
field (microrotation) and now, to describe a linear-elastic isotropic micropolar material, it is necessary to know
the values of six material parameters. The micropolar theory has been developed significantly so far, but it is
still not widely considered in the numerical analysis of structures for practical purposes. Therefore, the fur-
ther development of highly-quality micropolar finite elements is of great importance for the future progress of
Cosserat theory and its application. With the aim of developing a new 3D micropolar FE for linear static and
dynamic analysis, we start here with standard and some more innovative schemes used in non-linear mechanics
involving large 3D rotations and investigate how they transform when the analysis becomes linear. Among these
formulations, we specifically address helicoidal interpolation [1], fixed-pole approach [2] and linked interpola-
tion [3], in addition to conventional Lagrangian interpolation, pin-point the similarities in these interpolations
and numerically assess the particular interpolation which in this analysis has come up as optimal.

2. Relationship between the standard and innovative interpolations

In the process of the linearisation of Simo-Reissner beam theory, we derive Timoshenko beam, which is, in fact,
a 1D linear micropolar continuum. Therefore, in the following we provide an overview and the analysis of the
known standard and innovative interpolations in their linearised forms. All considered interpolation functions
for interpolating displacement u and rotation φφφ fields may be unified in a simple manner as

u(x1) =
m

∑
i=1

Ni(x1)
(

ui +
1
n

φ̂φφ −φφφ iro,i

)
, φφφ(x1) =

m

∑
i=1

Ni(x1)φφφ i, (1)

where Ni(xi) are the Lagrangian polynomials of order m− 1 and ro(x1) = ∑
m
i=1 Ni(x1)rrro,i is an initial position

vector. Their main difference manifest itself in the coefficients m which stands for the number of nodes of
an element, and n, whose values are shown in Table 1. A well-known shortcoming of standard Lagrangian
interpolation is that we are facing a shear-locking problem when reduced numerical integration is not applied.
This problem is eliminated using helicoidal interpolation [1], which arises from the requirement that the finite
element solution of a beam problem should be independent of the choice of the reference axis and consistent
with the configuration space. In linear analysis, the helicoidal interpolation is equivalent to the linked interpola-
tion [3] (for a two-node beam) which provides exact solutions for arbitrary polynomial loading and a sufficient
finite number of nodal points. Moreover, Bottasso and Borri introduced and applied the fixed-pole concept in
the dynamic analysis of geometrically exact 3D beams [2] where their main idea is to replace the resultant of
the stress-couple and the specific angular momentum, defined with respect to the beam reference axis, with
new ones, now defined with respect to the unique point as the origin of the whole observed system (fixed-pole).
The implementation of this concept demonstrates the ability of simultaneous conservation of both energy and
momentum vectors and can be applied to finite element beams of arbitrary order. Besides that, the fixed-pole
concept naturally introduces a new kinematic field ρρρ combining the displacement field and the rotational field,
which results in non-standard degrees of freedom in place of displacements. The linearisation of the fixed-pole
interpolation eventually leads to the same stiffness matrix as that obtained using Lagrange interpolation. There-
fore, the coefficient n = m is introduced instead of the original coefficient n = 1 to achieve an improvement
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which emerges from the comparison with the linked interpolation. From this follows the so-called enhanced
fixed-pole interpolation (EFP) [5].

Table 1: Coefficients m and n from the unified expression (1) of the considered interpolation functions.

Interpolation m n
Lagrangian ≥ 2 ∞

Helicoidal [1], linearised form in [4] 2 2
Fixed-pole [2], linearised form in [5] ≥ 2 1

Linked [3] ≥ 2 m

3. Vibration analysis of 3D micropolar continuum

The presented EFP interpolation has been then used for the development of new 3D hexahedral micropolar FE
with 8 nodes (Hex8EFP) which have been validated first through standard patch tests. The analysis of the first
natural frequencies of cantilever (i) plate and (ii) plate with a circular hole discretised by Hex8EFP elements has
been presented here, where all geometric and material characteristics are given in [5]. The results are compared
with Lagrangian elements (Hex8L) and Figure 1 shows a much faster convergence of Hex8EFP elements.

Figure 1: Convergence study of the 1st natural frequencies of the cantilever (i) plate and (ii) plate with a hole.

4. Conclusions

We have introduced and applied the EFP interpolation in vibration analysis of the 3D micropolar continuum
and showed its better convergence towards the solution than the Lagrangian interpolation. More details on the
EFP formulation and additional numerical examples can be found in [5].
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1. Introduction

In the micropolar continuum theory additional fields are present, leading to additional material parameters
needed to describe a micropolar material. Such a mathematical setup allows the description of new phenomena
which cannot be captured by the classical continuum theory. In this work geometrical nonlinearity in the linear
elastic region is considered. It is observed that the geometrically nonlinear finite elements presented in [1] are
computationally expensive and fail to converge in certain highly deformed configurations. Due to that, a need
for enhanced finite elements which would be able to describe such states in a reasonable computational time
persists. Here we analyse the new geometrically nonlinear hexahedral finite element of first order derived in [3].
The performance of the finite element is tested against Lagrangian elements of first and second order derived in
[1] (Hex8NL and Hex27NL).

2. Analytical and numerical geometrically non-linear micropolar continuum models

The analytical geometrically nonlinear micropolar continuum model analysed here is defined in terms of the
Biot-like stress and couple-stress tensors, together with their energy conjugate Biot-like strain and curvature
tensors. The constitutive equations are kept linear, which, for a micropolar continuum model, are expressed
in terms of six independent material parameters. The strong form of equilibrium equations in the material
description, together with the non-linear kinematic equations and the linear constitutive equations can be found
in [1].

A 3D hexahedral finite element with enhanced displacement interpolation (Hex8NLIM) is derived in [3] by
introducing the interpolation of the displacement and microrotation fields into the principle of virtual work.
The Lagrange interpolation of the displacement field is enhanced with appropriate local (incompatible) interpo-
lation functions. The virtual microrotation field is interpolated using only the standard Lagrange interpolation.
After straightforward, but extensive linearisation of the element residual force vector, the obtained system of
equations is solved using the standard Newton-Raphson solution procedure, as described in detail in [3].

3. Numerical analysis of pure bending

The enhanced finite element (Hex8NLIM) is tested on a pure-bending problem and compared against the La-
grangian finite elements of first and second order (Hex8NL and Hex27NL).

First, a thin cantilever beam with a length-to-height ratio L
h = 100 is loaded by a resultant bending moment

at the free end. In order to capture the size-effect phenomenon the characteristic bending length is varied
while keeping the remaining micropolar material parameters fixed. The numerical results are then compared
against the analytical solution derived in [2]. It is observed that the Hex8NL element shows very poor results
for a coarse mesh, especially so for small values of the characteristic bending length. However, by refining
the finite element mesh, the analytical solution is approached in all fields. On the other hand, both Hex27NL
and Hex8NLIM elements almost reproduce the analytical solution for a coarse mesh, with a slightly higher
accuracy of the Hex8NLIM element. More importantly, the computational time needed to obtain the solution
using Hex8NLIM is significantly lower than that needed by the Hex27NL element.

Next, in order to increase the strain energy of the problem analysed, the height of the cantilever, together with
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the resultant bending moment applied, are both increased. The Lagrangian finite element Hex27NL fails to
converge to a numerical solution, while the Hex8NLIM finite element converges to a numerical solution which
is in a satisfying agreement with the analytical solution (Figure 1). Interestingly for certain values of material
parameters a numerical convergence is not achieved, even though the value of those material parameters should
not affect the deformed configuration as they are not present in the analytical solution [2].

(a) Analytical solution [2] (b) Numerical solution using
Hex8NLIM elements

(c) Numerical solution using
Hex8NL elements

Figure 1: Cantilever beam subject to pure bending - high curvature deformation

4. Conclusions

Within this work an enhanced geometrically nonlinear finite element is tested against the Lagrangian finite
elements of first and second order derived in [1] on a pure-bending problem. It can be concluded that the
displacement enhancement is significant since the element derived in [3] is more efficient and robust than the
elements derived in [1]. More details about the formulation, together with additional numerical examples, can
be found in [3].

Acknowledgments

This work has been financially supported by the Croatian Science Foundation research project "Fixed-Pole Con-
cept in Numerical Modelling of Cosserat Continuum" (HRZZ-IP-2018-01-1732) and the University of Rijeka
Young Researchers grant "Analysis of the pure bending problem in the geometrically non-linear micropolar
continuum theory" (uniri-mladi-tehnic-22-482835).

References
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1. Introduction

In industrial applications where large spatial deformations of cables have to be simulated interactively [3],
typical boundary conditions lead to deformed configurations showing a considerable amount of bending of the
centerline, accompanied by a moderate amount of approximately uniform twisting of the cross sections along
the configuration. Geometrically exact rod models [1] occur in three different variants w.r.t. the kinematical
properties of their configuration variables [2]: (i) inextensible Kirchhoff rods, (ii) extensible Kirchhoff rods,
and (iii) Cosserat rods. In the cases mentioned above, configurations computed by either of the three model
variants turn out to be practically the same, as illustrated by Fig. 1:

Figure 1: Analytical centerline curves of an inextensible Kirchhoff rod (solid lines) in plane bending (left:
cantilever type, middle: both ends clamped) and helical (right) configurations. The red dots show the vertex
positions computed with a discrete Cosserat rod model by minimization of the elastic energy (see [4] for details).

In our contribution, we investigate the influence of the effective stiffness parameters [EA] and [GA] of a Cosserat
rod model that govern extension (or compression) of the centerline as well as transverse shearing of the cross
sections on its equilibrium configurations in such cases. Our results open up the possibility to set the stiffness
parameters [EA] and [GA] to proper values by modeling rather than measurements.

2. Modelling details and methodical approach

As explained in [2], the moving frames R(s) = a(k)(s)⊗ ek remain adapted to the centerline also in deformed
configurations for model variants (i) and (ii), such that the unit tangent vector t(s) = r′(s)/‖r′(s)‖ stays always
orthogonal to the frame directors a(1,2)(s) spanning the local cross section plane, and transverse shearing of
the cross sections is kinematically inhibited. Variant (i) additionally postulates an inexensible centerline by
requiring that ‖r′(s)‖ = 1 holds for all deformed configurations. Differently, for variant (iii) neither adapted
frames nor an inextensible centerline are assumed for deformed configurations.

Bending and twisting are affected by the related effective stiffness parameters [EI] and [GJ], respectively. For
composite cables, one needs to treat these stiffness parameters as independent quantitites. Often the mass per
length ρL of a cable is sufficiently low, such that the influence of gravity can be considered as weak, and the
shape of deformed configurations in static equilibrium mainly depends on the ratio [GJ]/[EI]. Therefore it is
important to measure these stiffness parameters properly [3, 5].
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While for homogeneous elastic specimens the measurement of extensional stiffness [EA] is an elementary ex-
perimental task, obtaining reproducible results from measurements of composite cables turns out to be far more
difficult [5], and a measurement of the shear stiffness [GA] is practically impossible. Therefore it is important
to understand the influence of the effective stiffness parameters [EA] and [GA] on the rod configurations in equi-
librium both qualitatively and quantitatively. Apart from the overall shape, estimates of the extensional strain
εt(s) := ‖r′(s)‖−1 and shear angle ϑs(s) := arccos(〈a(3)(s), t(s)〉) are of interest.

Assuming for simplicity zero gravity, equilibrium configurations of a straight inextensible Kirchhoff rod are
local minima of its elastic bending and torsional energy, which in the case of transversally isotropic bending
stiffness [EI], torsional stiffness [GJ] and cross sections with coinciding shear and area centers is given by
Wbt =

1
2
∫ L

0 ds [EI]κ2 + [GJ]τ2, where κ(s) is the Frenet curvature of the centerline, and τ(s) is the twist of
the adapted frame. For extensible Kirchhoff rods, the total elastic energy consists of the sum Wel = Wbt +Wext

with the extensional energy Wext =
1
2
∫ L

0 ds [EA]ε2
t . For Cosserat rods, the latter is replaced by the more complex

energy term Wes =
1
2
∫ L

0 ds [EA](Γ(3)−1)2+[GA](Γ(1)2+Γ(2)2) measuring the elastic energy stored in extension
and transverse shearing, where

√
Γ(1)2 +Γ(2)2 = (1+ εt)sin(|ϑs|)≈ |ϑs| and Γ(3) = (1+ εt)cos(ϑs)≈ 1+ εt .

Introducing L as the characteristic unit to measure length induces 1/L as characteristic unit for curvature.
The elastic energy terms can be scaled to dimensionless form as W̄bt = Wbt/W 0

bt and W̄es = Wes/W 0
es, with

charateristic energy values W 0
bt := [EI]/L and W 0

es := [EA]L. For boundary value problems leading to deformed
configurations dominated by bending and torsion, one needs to find local minima of the scaled elastic energy
W̄el = Wel/W 0

bt = W̄bt + W̄es/λ 2
0 , where λ 2

0 := [EI]/([EA]L2) is a small dimensionsless parameter that can be
estimated as λ0 'O(rIA/L)� 1 for the effective cross section radius rIA = 2

√
I/A.

The energy minimization problem can be treated by Berdichevsky’s approach of variational asymptotic analysis
[7] to find approximate solutions for the Cosserat rod model, which to leading order coincide with those of the
inextensible Kirchhoff model. For equilibrium values of both the extensional strains and shear angles one finds
the rough order of magnitude estimates εt , |ϑs| ∼ O(λ 2

0 ). The same estimates can be obtained by applying
similar arguments as brought forward by Audoly and Pomeau [6] (see section 3.7).

By considering the first integral m+ r× f of the equilibrium equations f′ = 0, m′+ r′× f = 0, which hold for
all rod model variants independent of the kinematical constraints, we derive sharp estimates of the extensional
and transverse shear strains in equilibrium [8], and we illustrate our findings by numerical experiments.
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1. Introduction 

Influence of fire on mechanical behaviour of beam structural elements has been extensively addressed by 

researchers from Chair of mechanics at the University of Ljubljana, Faculty of civil and geodetic engineering 

(UL FGG) over the period of last 30 years. Our first software for calculation of nonlinear and non-stationary 

planar heat transfer over cross-section has been presented in 1987 [1] and the first numerical model for 2D 

mechanical analysis of steel frames in fire has been presented in 1991 [2]. The framework for development of 

numerical models for fire analysis of beam structural elements and frame structures have been various beam 

finite elements (FE) [3, 4, 5], which were also developed by members of Chair of mechanics at UL FGG. 

These are presented at HFSS 2023 conference in complementary contribution. Hereinafter, the two main steps 

in upgrading a numerical model for mechanical analysis of beam elements in normal temperature conditions 

into a numerical model for mechanical analysis of beam elements in fire are outlined, together with a brief 

overview of the developed numerical models. 

 

2. Including influence of fire in numerical model for mechanical analysis of beam elements  

 

2.1 Temperature dependent material properties 

 

In general, material characteristics are included in a beam numerical model through constitutive equations, 

which connect equilibrium internal forces with constitutive internal forces and, consequently, with deformation 

quantities. The dependance of constitutive internal forces on deformation quantities follows the constitutive 

law, appropriately selected for the considered material, which is often presented in form of a stress-strain 

relationship. A shape of the stress-strain diagram is determined by a function, which describes the behaviour 

of material as linear, bi-linear, non-linear, elastic, elasto-plastic, visco-elastic, etc., and by values of mechanical 

properties of the material such as for example strengths, Young’s modulus or limit strains. In fire, temperatures 

and therefore temperature dependent material properties change with time, they vary over cross-section and 

possibly also along the length of the structural element, depending on boundary conditions. At each time step 

and for each point, where stresses need to be evaluated, corresponding stress-strain relationship must be applied 

in the calculation. Temperature dependency of the material properties thus introduces non-linear behaviour 

even for the simplest linear-elastic material model. 

 

2.2 Thermally induced strains 

In the numerical models for mechanical analysis of beam elements, developed by Chair of mechanics at UL 

FGG, an additive decomposition of increment of geometrical strain has been assumed. An increment of 

geometrical strain, ΔD, at certain point of the beam is thus defined as the sum of different increments of strains:  

- mechanical strain, ΔDm, which is directly related to stresses through stress-strain relationship and can 

be further additively decomposed into elastic and plastic strain,  

- thermal strain, ΔDth, caused by expansion of material at elevated temperatures,  

- creep strain, ΔDcr, which also depends on temperature (besides time and stresses), and  

- other strains inherent to certain materials, such as mechano-sorptive strain, ΔDms, related to the change  

of moisture content in timber, or transient strain in concrete, ΔDtr, which occurs as a result of fast 

increase of temperatures in previously not loaded material.  
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Table 1. Numerical models for mechanical analysis of beam elements in fire, by Chair of mechanics at UL FGG. 

Material Numerical models and corresponding research focus Components of ΔD 

Steel 

• Srpčič, 1991 [2], viscous creep, 2D, FE by [3] 

• Ogrin, 2017 [6], temperature gradient in transverse 

direction, 3D, FE by [5] 

ΔDm, ΔDth, ΔDcr 

Reinforced 

concrete 

(RC) 

• Bratina, 2003 [7], material softening, 2D, FE by [4] 

• Krauberger, 2008 [8], prestressed concrete, 2D, FE by [4] 

• Bajc, 2015 [9], buckling and spalling, 2D, FE by [4] 

• Ružić, 2015 [10], partially delaminated curved beams, 

2D, FE by [4] 

Concrete : 

ΔDm, ΔDth, ΔDcr, ΔDtr 

Reinforcing and prestressing 

steel : 

ΔDm, ΔDth, ΔDcr 

Composite 

steel – RC 

• Hozjan, 2009 [11], longitudinal slip, 2D, FE by [4] 

• Kolšek, 2013 [12], longitudinal and perpendicular slip, 

2D, FE by [4] 

Concrete : 

ΔDm, ΔDth, ΔDcr, ΔDtr 

Reinforcing and structural steel : 

ΔDm, ΔDth, ΔDcr 

Timber 

• Schnabl, 2007 [13], composite timber beams with 

longitudinal slip, 2D, FE by [4] 

• Pečenko, 2016 [14], variable beam height, 2D, FE by [4] 

[13]: ΔDm (elastic part), ΔDth 

[14]: ΔDm, ΔDth, ΔDcr 

 

3. Conclusions 

Each numerical model for mechanical analysis of beams in fire has been accompanied by extensive research 

on heat transfer through considered structural material. Among others, this research included thermal 

insulation of structural elements [6], spalling [9], charring [13, 14] and coupled moisture-heat transfer [8–14]. 

Development of an accurate and effective numerical model for coupled thermo-mechanical analysis of beams 

in fire remains one of our future goals. 
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1. Introduction 

Layered columns made of different or similar materials are often used in a variety of applications. Due to their 
high strength to weight ratio and stiffness to weight ratio, slender composite columns are commonly used in 
aerospace, building construction, shipbuilding and other industries. Typical examples of the above layered 
structures in construction are steel-concrete and wood-concrete composite columns, layered wood columns, 
sandwich columns, concrete columns reinforced externally with laminates and many more. The behaviour of 
these structures depends largely on the type of connection between the layers and the quality of the materials 
used. Since an absolutely rigid connection between the layers cannot be achieved in practise, slip and also 
uplift may occur between the layers, which can significantly affect the mechanical behaviour of the layered 
structure. Accordingly, slip and sometimes uplift between layers must be taken into account in the so-called 
partial interaction analysis of composite structures. Therefore, there are many publications in the literature that 
consider sliding and uplift between layers analytically or numerically. The strength of columns with straight 
layers depends to a large extent on their stability and the cohesion between the layers. It is therefore of practical 
importance to derive exact solutions to such problems. So far, few exact slip and buckling models for 
composite columns have been developed in the literature and no attempt is made to discuss them here. In this 
paper, we briefly review our various approaches to modelling layered composite columns with incomplete 
interaction between layers. In all these attempts the critical buckling loads of geometrically perfect, materially 
linear and nonlinear two-layer composite columns with linear and nonlinear compliant interfaces are analysed 
using the linearised stability theory. Therefore, the exact critical buckling forces are determined from the 
solution of a linear eigenvalue problem, i.e. det K=0. 

  

2. Review 

In the following, a brief overview of some papers dealing with the buckling behaviour of layered composite 
columns with partial interaction between layers is given. First, the inelastic buckling of a two-layer composite 
column with nonlinear interfacial compliance is analysed and illustrated in Figure 1, see [1]. 

Figure 1. Non-dimensional column elastic and inelastic buckling curves for solid and two-layer composite column. 
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Pcr in Figure 1 is the critical buckling load, and λ is the slenderness. Furthermore, the work of Schnabl and 
Planinc [2] deals with the exact buckling loads of two-layer Reissner composite columns with interlayer slip 
and uplift. Figure 2 shows the buckling forces and modes for different uplift contact stiffnesses C. 

Figure 2. First buckling modes of layers a and b, and critical buckling loads Pcr of pinned-pinned composite column for 
K=1 kN/cm2 and various values of C. 

 

Similarly, Schnabl et al. [3] was analyzing analytically the buckling of slender circular concrete-filled steel  

Figure 3. Effect of diameter-to-thickness ratio on critical buckling loads of circular pinned-pinned CFST composite 
columns for various interfacial stiffnesses K and C. 

 

tubular columns (CFST) with compliant interfaces. Figure 3 shows a critical buckling load Pcr versus diameter-
to-thickness ratio of the CFST column for various interfacial stiffnesses K and C. 
 

3. Conclusions 

It is shown that incomplete interaction between layers can have a significant effect on the buckling behaviour 
of layered composite columns.  
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1. Introduction

Cables are extraordinarily slender and eminently flexible structures on their own nature. Often, these elements 

need to be tensioned to enable the construction of systems formed by them. The use of a tensile force modifies 
the frequencies of lateral vibrations because it alters the portion of geometric stiffness [1]. In determining these 

frequencies, low-order analytical models are particularly desired due to the ease they provide for analysis. In 

this work, a low-order analytical solution is compared with results that come from the finite element method 

(FEM) obtained by computational modelling. 

2. Low-order analytical solution

The adopted low-order analytical solution was based on Rayleigh’s method assuming a sinusoidal function 

(x) = sin(nx/L) [2] as a shape function to describe the lateral vibration modes, n, from 1 up to 3. The method 

reduces the system into another one with just a single degree-of-freedom. The solution is obtained directly in 

the continuum, and the adopted shape function is admitted valid in the entire domain of the problem. Thus, it 

is possible to obtain a closed-form equation for the present problem, Eq. (1). 

    

  

 − + + +
 =

 − +   

1/2
2 2 2 3 3 2

2

4

1 cos( )sin( )(( ) )

2 ( cos( ))sin( )

n n n EI PL n EI PL n
f n Hz

L m n n n
. (1) 

3. FEM solution

The analytical results were assessed through a modal analysis of non-linear geometric characteristics using 

FEM [3]. The individual elements in modelling were beam elements with 6 degrees of freedom [4]. The FEM 

solution was obtained by solving the secular Eq. (2) where  are the eigenvalues and  the eigenvectors. In 

FEM, the shape functions are polynomial equations valid for the given subdomain, i. e., the individual 

elements. In Eq. (2), [M] is the mass matrix, and [K] is the total stiffness matrix, which includes the flexural 

and geometric parcels [5]. The frequencies, in Hz, are found by doing f =  

     − =   
2 0K M . (2) 

4. Cable description

A system AB consisting of a steel cable with Young’s modulus E = 2010.82 N/mm2, diameter d = 18.30 mm 

(area A = d2/4, inertia I = d4/64), span length L = 13385 mm, and density  = 30301.13 kg/m3, was used in 

the simulations. The cable was tensioned by a force P = 15.86 kN as shown in Figure 1, where f indicates 

frequencies and m̅ = A is mass per unity length. 
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Figure 1. Cable description and static model. 

 

5. Results and discussions 

The natural frequencies and mode shapes can be found in Table 1 and Figure 2. In FEM, the domain of the 

problem was divided into 50 beam elements. 

 

Table 1. Natural frequency values (in Hz). 

Vibration mode – n  Analytical – Eq. (1) FEM – Eq. (2) Difference (%) 

1 5.218509 5.218502 0.000134 

2 10.437620 10.437546 0.000709 

3 15.657935 15.657782 0.000977 

 

Mode Analytical FEM 

1 
  

2 

  

3 

  

Figure 2. Mode shapes of lateral vibration. 

 

6. Conclusions 

It is verified that the results obtained by the adopted low-order solution match well with those produced by 

computational modelling via FEM of geometric non-linear characteristics, for both frequencies and vibration 

modes from 1 up to 3. 
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1. Introduction

Geometry of a three-dimensional beam is described by the line of centroids of cross-sections and by the fam-
ily of the cross-sections not necessarily normal to the line of centroids at the deformed state; therefore, the
configuration space of the beam consists of (i) the linear space of position vector of the line of centroids, and
(ii) the non-linear space of rotations of cross-sections. Thus, the configuration space of a beam is a non-linear
manifold, which makes their treatment so challenging. Although the configurational quantities are important
for the description of the current state of the structure, their derivatives with respect to axis coordinate and their
derivatives with respect to time are the natural quantities for the description of the total mechanical energy of
the system. This suggests alternative, in many perspectives more natural, choices for the primary interpolated
variables in finite-element formulations.

We will here focus on formulations where the strains and/or the velocities and angular velocities are the pri-
mary interpolated quantities of the beam-like structure. The fundamental problem of such approaches is the
integration of configurational quantities, i.e. displacements and rotations, from the given or assumed field at
the level of derivatives. In general, the exact solution of the kinematic equations of a three-dimensional beam is
not known which was a motivation for several numerical and approximative solution strategies discussed here.

2. Kinematic equations

In Cosserat beam model, the resultant strains of the cross section are directly introduced. They will be presented
here with respect to the local frame. The translational strain vector, ΓΓΓ, consists of an extensional strain and two
shear strain components. It is defined by the following equation

ΓΓΓ = RT r′+ΓΓΓ0, (1)

where r is the position vector, R denotes the rotation matrix, and ΓΓΓ0 a constant that is determined from known
initial configuration of the beam. The prime (′) denotes the derivative with respect to x – the arc-length parame-
ter of the axis of the beam. The rotational strain, K, consists of a torsional and two bending strain components.
It is determined by

S(K) = RT R′, (2)

where the skew-symmetric matrix S(K) composed from the components of vector K describes the rate of
change of the local basis with respect to the local basis.

In dynamics, the measures for the rate of change of configuration variables with respect to time are also needed.
For the reference curve, we simply have

v =
·
r, (3)

describing its velocity with respect to the fixed basis, while the angular velocity of cross sections is defined as

S(ΩΩΩ) = RT
···
R. (4)

The dot above a symbol (·) denotes the time derivative.

3. Solution procedures

To preserve the properties of configuration space, equations (2) and (4) need to be solved in such way that the
orthogonality of rotational matrices is conserved, which in matrix notation introduces six scalar constraints. To
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reduce the complexity of the problem we propose two approaches: i) the rotational vector-based approach and
ii) the quaternion-based approach.

When rotations are parametrised with rotational vector, ϑϑϑ , the rotational strain can be expressed as:

K = TT
ϑϑϑ

′, ΩΩΩ = TT
ϑ̇ϑϑ , (5)

where T denotes a transformation matrix dependent solely on ϑϑϑ . For solving (5) standard numerical methods
for ordinary differencial equations can be efficiently used as reported by Zupan and Saje [1]. However, with the
introduction of rotational vector we cannot avoid the need to evaluate rotational matrices since the rotational
vectors cannot be treated as elements of Euclidean space – they are not additive.

A promising alternative are the four-parameter rotational quaternions. In quaternion notation equations (2) and
(4) read

K = 2q̂∗ ◦ q̂′
ΩΩΩ = 2q̂∗ ◦

·
q̂ (6)

where q̂ is a four-dimensional vector that has a unit norm, |q̂| = 1, called rotational quaternion, while ” ◦ ”
denotes the quaternion multiplication. The introduction of rotational quaternions elegantly avoids the need to
use both rotational matrices and rotational vectors in numerical procedures while introducing only one algebraic
constraint. The numerical integration of rotational quaternions from angular velocities was studied by Saje and
Zupan [2] which resulted in successful implementation of quaternion approach to beam formulations. Latter,
Zupan and Zupan [3] proposed the exact and approximate closed-form results for the integration of angular
velocities.

We need to stress that these approaches study the problem in only one dimension, i.e. only in space or only in
time, and do not treat the problem as coupled.

4. Coupled systems

Despite complete analogy between the kinematic equations in space and time the coupled treatment of both
equations brings additional complexity. Let us focus on the coupling between the strains and the velocities. By
comparing mixed partial derivatives of (1)–(4), we get

Γ̇ΓΓ = q̂∗ ◦v′ ◦ q̂+(ΓΓΓ−ΓΓΓ0)×ΩΩΩ, K̇ = ΩΩΩ
′+KKK ×ΩΩΩ. (7)

The significance of equation (7) was pointed out by Ogrin and Saje [4] and used for proposing approximate
solution for the angular velocity in case of known rotational strain, while Zupan and Zupan [5] employed
the mid-time discretization of these equations to propose a novel energy-preserving numerical formulation for
velocity-based geometrically exact three-dimensional beams.
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1. Introduction

Since the pioneering works by Simo and his coworkers [1] many innovative numerical formulations for the
dynamic analysis of geometrically non-linear beams have been proposed, where displacements and rotations
are taken as primary variables for the spatial and time discretization. However, from the implementation per-
spective, other aspects like accuracy, stability and robustness count more. We focus here on two interesting
aspects of dynamic formulations: i) the use of strain measures for spatial discretization and ii) the long-term
stability achieved by algorithmic preservation of total mechanical energy for conservative systems.

2. Governing equations

The balance equations of a three-dimensional beam read

n′+ ñ− d
dt

(ρAv) = 0, m′+ r′×n+ m̃− d
dt

(
RJρΩΩΩ

)
= 0. (1)

Here, n and m represent the stress-resultant force and moment vectors of the cross-section , while ñ and m̃
are the external distributed force and moment vectors, all expressed with respect to the fixed basis; ρ is mass
per unit of the initial volume; A is the area of the cross-section; Jρ is the mass-inertia matrix of the cross-
section.The prime (′) denotes the derivative with respect to the parameter of the axis of the beam and the dot
above a symbol (·) denotes the time derivative.

The velocity and angular velocity, v and ΩΩΩ, are directly related to configurational variables – the position vector,
r, and the rotation matrix, R, through kinematic equations

v =
·
r, S(ΩΩΩ) = RT

···
R. (2)

where the skew-symmetric matrix S(ΩΩΩ) composed from the components of vector ΩΩΩ describes the rate of
change of the local basis with respect to the local basis. In spatial dimension the same configurational variables
define the resultant strain measures through analogous differential equations:

ΓΓΓ = RT r′+ΓΓΓ0, S(K) = RT R′. (3)

Thus, translational strain vector, ΓΓΓ, describes the rate of change of the position vector along the length of the
beam, while the rotational strain, K, describes the rate of change of the local basis along the length. They are
both expressed with respect to the local basis.

The stress-resultants are here assumed to be depended directly on strain vectors through the constitutive rela-
tions

n = RCN (ΓΓΓ,K) , m = RCM (ΓΓΓ,K) , (4)

with operators CN and CM being invariant under superimposed rigid-body motions and at least once differen-
tiable, but otherwise arbitrary.

3. Strain-based approach

In static analysis of frame-like structures the strain-based beam formulations represent an interesting alternative
with several advantages and proven computational efficiency, see, e.g., the paper by Zupan and Saje [2]. To
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extend the strain-based formulations for dynamics several numerical models were proposed. Gams, Planinc
and Saje [3] proposed a strain-based formulation for the dynamic analysis of planar frames, which was later
extended by Češarek, Saje and Zupan [4] for spatial-frame dynamics. The crucial idea of these formulations is
to replace the strain vectors with discrete values at the given points xp, p = 1, . . . ,N and interpolate them by a
set of N interpolation functions Ip(x):

ΓΓΓ(x, t) =
N

∑
p=1

Ip (x)ΓΓΓ
p (t) , K(x, t) =

N

∑
p=1

Ip (x)Kp (t) . (5)

The proposed formulations are strain-objective, path independent, locking-free and convenient in describing
materially non-linear problems. Combining strain based approach with time integration scheme does not auto-
matically assure energy preservation, which was the motivation for further enhancements.

4. Energy conservation

Despite complete analogy between the kinematic equations in space and time the coupled treatment of both
equations brings additional complexity. Let us focus on the coupling between the strains and the velocities. By
comparing mixed partial derivatives of (2)–(3), we get

Γ̇ΓΓ = q̂∗ ◦v′ ◦ q̂+(ΓΓΓ−ΓΓΓ0)×ΩΩΩ, K̇ = ΩΩΩ
′+KKK ×ΩΩΩ. (6)

A finite-size incremental strain update based on the time discrete compatibility relations (6) is a distinctive
property of the unconventional energy preserving scheme by Gams, Planinc and Saje [5]. The kinematic com-
patibility (6) was also a motivation for the formulation based on the spatial derivatives of velocities and angular
velocities of Češarek and Zupan [6] and the formulation where velocities and angular velocities are interpolated
proposed by Zupan and Zupan [7]. The velocity-based approach shows improved robustness and stability but
does not automatically guarantee energy preservation. This was the motivation for energy-conserving method
by Zupan and Zupan [8] that is preserving the advantages of the velocity-based approach presented .
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1. Introduction

Textile cords reinforced rubber composites constitute the structural core of many industrial components such
as tyres, hoses and conveyor belts [1]. A textile cord can be described as a hierarchical structure, composed by
two twisted yarns, in turn, made up of many twisted polymer filaments (PET, Nylon, etc.). When the whole
assembly undergoes macroscopic loading, capturing its response at the scale of the filaments is crucial for
understanding the textile reinforcement damage mechanism. Compressive solicitation in the filament may lead
to the creation of kink bands: defects generated by localized buckling in the oriented fibre structure [2]. This
defect severely weakens the fibre, making it more prone to fracture under tensile loads, eventually reducing the
lifespan of the composite.

2. Methodology

In this work, the cord mechanics is simulated with Multifil, a finite element code dedicated to entangled struc-
tures. The initial configuration of the cord is obtained by simulating first the twisting of a bundle of filaments to
form a single ply, and then by simulating the twisting of two plies. The cord is then embedded within a matrix.
The solid element mesh for the matrix and the beam element mesh for the twisted yarn are overlapping, and
special connection elements are introduced at the periphery of the yarn to ensure the coupling between both
structures. Each filament is represented with a kinematically enriched beam model and the general problem
addressed is the mechanical equilibrium of beam assemblies undergoing large deformations and developing
contact-friction interactions [3]. The kinematic of the beam allows to express the position vector of a general
particle in the beam as a first Taylor expansion with respect to its transverse coordinates. This allows to compute
the axial Green-Lagrange strain over a beam cross-section as:

E33(ξ1,ξ2) = E0
33(ξ3)+ξ1E1

33(ξ3)+ξ2E2
33(ξ3), (1)

where ξ1 and ξ2 are the transverse coordinates,ξ3 is the curvilinear abscissa, E0
33 is the longitudinal strain at

the centre of the cross-section while E1
33 and E2

33 are the values at two points on the periphery of the section.
Therefore, it is possible to identify the filament local curvature with:

k =
√

E1
33(ξ3)+E2

33(ξ3). (2)

3. Findings

As global bending and compression are applied to the elastomer-cord specimen, the cord tends to open, meaning
that a gap is created between the two yarns. The filaments have the freedom to curve locally and some of
them are subjected to severe bending, leading to high compressive strains in specific filament sections. This
mechanism is highlighted in Figure 1, which also shows the axial strain along the cord filaments. Since a
textile cord is made up of a considerable number of components, the most effective way to look at the filaments
state is to plot the distribution of a quantity of interest along discretized cross-sections, rather than the absolute
minimum or maximum quantities. The local curvature provides direct evidence of the freedom that single
filaments have to curve locally while the minima cross-sectional strain directly allows to detect the amount
of filament zones that could potentially be affected by the creation of a defect. The methodology proposed
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Figure 1: Filament scale finite element simulation of a textile cord undergoing bending-compression deforma-
tions: axial strains.

allows to reveal the difference between different cord loading states. As an example, the difference between
free bending and bending with a transverse pressure (over a rigid body) is proposed. Figure 2 provides the
distributions of local curvatures and minima longitudinal strains under both conditions. In the case of free
bending, the local curvature distribution is significantly shifted towards higher values. Thus, indicating that,
under this condition, more freedom is given to the local movements of the single filaments. As a consequence of
the acute local bending, in the free bending case, the filaments can also reach significant values of longitudinal
compressive strain (up to -10%), which could be critical for kink band initiation. The outcome is that the
application of a transverse pressure is beneficial for the damage mechanism of filaments, as it reduces their
freedom to create sharp local bends, hence critical compressive strains.

(a) Local curvatures. (b) Minima longitudinal strains.

Figure 2: Cord after free bending (red) and bending over cylinder (green). Distribution of (a) local curvatures
and (b) minima longitudinal strains along the nodes of cords filaments.

4. Conclusions

The study of cord-elastomer composites at the scale of the filaments allows to better understand the complex
deformation behavior of entangled structures. The methodology proposed allows to quantify and compare the
filament state under different conditions. In the case of bending/compression macroscopic loadings, the opening
mechanism of the cord leaves freedom for the filaments to locally bend, achieving high compressive strains.
Finally, it is shown that a transverse pressure has the effect of limiting the movement of the filaments, reducing
the compressive strains, therefore slowing down the damage mechanism.
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1. Motivation

Polyamide-fiber parallel-laid-strand ropes are candidate for the shallow-water mooring lines of the future float-
ing offshore wind turbines [1]. Their mesoscopic scale follows a hierarchical architecture: subrope, strands,
rope-yarns, yarns, filaments. Their mechanical behavior is the result of friction between components and the
visco-elasto-plastic behavior of the filament material. Today, some varying hysteretic phenomena with cyclic
loadings are observed but we are not able to distinguish the material and fibres re-arrangement contributions.
Moreover, a pretension procedure called bedding-in is usually performed at installation stage to stabilize the
rope elongation. This stabilization is partly related to fibres re-arrangement driven by internal friction but also
due to material properties. A better understanding of these both contributions may ease the bedding-in proce-
dure specification. Also, under cyclic loading, a fatigue damage based on the component frictions occurs and
is a matter of concern for a 20-year service life. To distinguish the dissipated energy due to the friction from
viscoelasticity will help us to improve the fatigue life prediction by self-heating measurements, based on the
dissipated energy during cycling. Because friction phenomena and fibre re-arrangement at the different scales
are difficult to obtain experimentally, we adopted a modeling approach.

2. Method

Figure 1: LEFT – Finite element simulation of a tensioned synthetic subrope composed of three laid strands.
RIGHT – Finite element simulation of the contact between one strand and a rigid rod.

The studied subrope is composed of three laid or twisted strands (fig. 1-left). Each strand is composed of 10
twisted rope-yarns. We model the 3 strands by volumic finite elements. At each integration point of these
elements, a behavior law has then to be implemented. This law has to model the mechanical behavior of a
rope-yarn bundle, that is assumed to be the material of the strands. The challenge of this law is to model
the viscoelasticity of the rope-yarn in tension and also the friction sliding between the rope-yarns in a bundle.
Figure 2-a presents a rope-yarn bundle (blue, green and yellow rods) in the reference configuration, before any
loading. Two friction deformation modes are described at figure 2-b and -c.
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Figure 2: Two deformation modes (b,c) describing the transversal and longitundinal frictions within a rope-yarn
bundle. The strand is assumed to be composed of rope-yarn bundle.

We adopted Charmetant’s model [2] for describing the deformations of the rope-yarn bundle. Charmetant et al.
decomposed the deformation gradient of a fiber bundle into four modes : the elongation of the bundle along
the fiber direction, the compaction and the distortion (fig. 2-b) of the bundle transverse section and finally the
longitudinal shear of the bundle (fig. 2-c). For each of these strain modes, a dedicated and relevant behavior
law is proposed.

While Charmetant et al. considered one invariant scalar state variable as parameter of this longitudinal shear
mode, we proposed two scalar state variables because actually two shears in two orthogonal planes occurs in
this mode. Again, for the transversal friction mode (distortion of transverse section), Charmetant proposed
one scalar state variable as parameter of this mode, but this 2D strain has one independent eigenvalue and two
orthogonal eigenvectors within the transverse plane. So, we proposed two parameters as actually needed. These
improvements of the Charmetant’s model will allow us to include plasticity dedicated to the friction behaviors.

3. Results

The proposed method allowed us to model the contact between one strand and a rigid rod (fig.1-right). The
section, initially axi-symmetric, is highly compacted due to the contact. The identification of the model pa-
rameters at the strand and rope-yarn scales will be presented shortly. This will be applied to model the tension
of a subrope, predicting the cross-section shape of the strands, the friction sliding within the strands and the
dissipated energy due to friction.

4. Conclusions

A modeling approach, for the tension of a synthetic rope, at the two smaller scales is proposed. The expected
result is an understanding of the friction modes in the rope strands, the dissipated energy due to friction and due
to the viscoelasticity of rope-yarns. But this model should also offer a tool for predicting the impact of rope
construction parameters (lay-lengths) on the rope tensile behavior. The impacts of the rope-yarn behavior and
the frictions on the tensile behavior can be also analyzed with this model.
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1. Introduction

Air-jet weaving is nowadays one of the most popular weaving methods thanks to the high production rates com-
bined with low maintenance costs when compared to e.g. projectile or rapier weaving looms. However, the use
of compressed air to propel the yarn leads to a high energy demand. Attempts to reduce the energy use of these
air-jet weaving machines are often limited by the weaving stability. As a consequence, it is necessary to under-
stand the interaction between the weft yarns and the air jets since it is precisely this interaction that determines
whether or not the yarn insertion is successful. Unfortunately, numerical studies considering these interactions
are scarce. If Fluid-Structure Interaction (FSI) is considered at all, it mostly focuses on monofilament yarns
where the yarn is represented by a smooth cylinder, such as in Delcour et al. [1]. However, monofilament yarns
are generally not suited for air-jet weaving due to their smooth surface. In reality, multifilament yarns having
an irregular surface appearance are encountered more often.

Since the difference in scales between the weaving machine (order of meters) and the fibers (order of µm) is
large, it currently seems unfeasible to simulate the complete yarn insertion using a yarn geometry on the level
of the fibers. Therefore, the multi-physics nature of the FSI framework as in Delcour et al. [1] is extended with
a multi-scale approach. This work focuses on the mechanical yarn behaviour on microscale level, that is, on the
level of the fibers.

2. Methodology

In this research, a wool fiber yarn of fineness 28.8 tex is considered. A sample of 4.491 mm was subjected
to a microcomputed tomography (µCT) scan to obtain the geometrical details of the yarn. This µCT data is
subsequently used to trace the fiber centerlines from which a geometrical fiber model of the yarn is constructed.

The resulting geometrical model serves as input for the structural model, where the fibers are represented in the
Finite Element Analysis (FEA) software package Abaqus 2021 (Dassault Systèmes) as linear Timoshenko beam
(B31) elements with an element length of 20 µm which is similar to the fiber diameter. Contact between the
fibers is modelled using the penalty method and friction using Coulomb’s law with a fixed friction coefficient
of 0.25. The stress-strain behaviour of the fibers is extracted from tensile tests according to the EN ISO 5079
(2020) norm and is represented in the model by a bilinear approximation of the resulting curves. The mechanical
behaviour of the yarn is assessed by simulating a linear tensile test and the Peirce cantilever test [2].

Finally, the yarn’s mechanical behaviour is assessed in an experimental manner as well in order to validate the
simulations. The tensile tests are performed according to the EN ISO 2062 (2010) norm using the Textechno
Statimat M, while the Peirce cantilever test complies with the ASTM D1388-18 standard.

For a more detailed description of the methodology, the reader is referred to Bral et al. [3].

3. Results

The validity of the proposed microstructural yarn model is assessed by comparing the results of the tensile
test simulations to those of the experiments. Despite the simplifications in the model regarding to mechanical
fiber behaviour, both in terms of tensile and frictional models, the agreement is excellent, see Figure 1a. The
major advantage of the simulation strategy is illustrated in Figure 1b, where the axial stress distribution S11 of
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the fibers inside the yarn is shown. It is clear from this figure that for low strains, the fibers in the yarn core
take up the majority of the axial reaction force while the outer fibers still have the freedom to straighten before
contributing to the reaction force of the yarn.

(a) (b)

Figure 1: Results of the tensile simulations: (a) comparison of stress-strain behaviour of yarn model compared
with experiments; (b) cross-section halfway the yarn during the tensile test at 2.5 % elongation. (Coloured
figures in [3].)

The bending rigidity EI of the yarn model is estimated by fitting the deformations according to the Euler-
Bernoulli beam theory to the displacement of the yarn, similar to Cornelissen and Akkerman [4]. As a result,
a bending rigidity of 1.908 ·10−9 Nm2 is observed, which is 14.4 % lower than the experimental mean, albeit
within one standard deviation from this average value. The underestimation of the bending rigidity is mainly
believed to be caused by the relative absence of inter-fiber contact in the yarn model when subjected to low
loadings. At the end of the bending simulation, only 10 nodes (0.075 % of the total number of nodes in the
model) were in slipping contact. In contrast, for the tensile test, 28 % of the nodes are in contact when the yarn
reaction force equals 0.5 cN/tex.

4. Conclusion

A simulation strategy is proposed in this work to characterize the mechanical behaviour of a multifilament yarn
using a high-fidelity geometrical fiber model originating from µCT scan data. The simulation results of a yarn
tensile and Peirce cantilever test are compared to their experimenal counterparts and show excellent agreement.
An inherent advantage of the numerical nature of this strategy is that it allows to gain insight in the stress
distributions inside real yarns without relying on geometrical simplifications.
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1. Introduction 

Textile yarns are the building structural element of the woven and knitted textile structures, used for clothing, 

home textiles, technical and many other applications. Each yarn in the real product consists of at least 60 short 

or continuous fibers in each cross section, which determine its properties. In analogous way as the 

multifilament fibers, the yarns are building the twisted and braided ropes. The modelling of the textile yarns 

as fiber level and the ropes at yarn level is connected with several challenges which are demonstrated in this 

work, based on original developed algorithms and software. 

 

2. Modelling and technological aspects  

The mathematical fundamentals theory about the orientation of single element of fibers in yarns are described 

in several works, as for instance the teams of Ron Postle [1] and Bohuslav Neckar [2]. These models remain 

mainly analytical considerations, based on geometrical, statistical or mechanical relations for specific types of 

yarn structures. Intensive development of methods for computational simulations at the yarn level is performed 

by D. Durville, in which works the fibers are modelled as beams and the contact between these is considered 

[3]. Technologically, there are different types of textile yarns and ropes, with (completely) different structure. 

The stable fiber yarns consists of fibers with length between 30 and 120 mm (again subdivided in “short” and 

“long” stable for cotton and wool fiber production), where the proper modelling have to consider the fiber 

length distribution and the spinning method. The most simple for modelling are the DREF yarns, which are 

similar to twisted ropes (Fig.1a and Fig 2b and c), but these have very limited practical use. The ring and rotor 

spinning yarns have different, but already similar distribution of the fibers in the cross section, while air-jet 

yarns are again completely different with more parallel yarns in the middle and highly twisted layer outside. 

For all these types of yarns there is no known method or software for proper parametric modelling the structure 

at fiber level until know.  

 

     

a b c d e 
Figure 1. Modelled yarns with multiple filaments a) one layer twisted, b) and c) with randomized filament position at 

𝜎 = 2𝑑 and at 𝜎 = 4𝑑, respectively, d) and e) intersection problems by random position generation for parallel and 

twisted yarns respectively 
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Some initial trials for representation of such structures are reported in [4]. For twisted ropes, the situation 

remains similar to the yarns, and for braided ropes, from other side the structure is well defined and reported 

in [5] and [6] and implemented in commercial software of company TexMind. 

 

3. Modelling problems 

Creating list of coordinates for the axis of multiple fibers or filaments with well defined regular orientation is 

not a problem. Fig. 1a and Fig.2a represents generated such yarns with C++ implementation within the 

software TexMind Braider, as described in [5]. Randomization of the fiber axis following any statistical 

distribution is as well connected with three lines of code and results are visualized in Fig. 1b and 1c. Figure 1d 

and 1e represents one of the main problem in such method – the generated coordinates for one point of the 

fiber axis based on some statistic distribution can be in a position, where already another fiber piece is located. 

The interlacement problem occurs additionally for the case of twisting of the yarns. During the twisting, the 

fibers change their orientation, this is a process, which can be simulated with active contact detection, but can 

not be included as common analytical or parametric solution for any type of multilayer yarn  structure and 

simple rotation of the yarn cross section leads to interlacement between the fibers too, as visualized in Fig. 2b 

and Fig. 2c.  

 

   
a b c 

Figure 2 Four layer rope structure a) without twist b) with S Twist and slight intersection c) with Z twist and high 

intersection 

 

4. Conclusions 

The generation of textile yarns at fiber level requires separated algorithms for different type of structures. 

Applying randomization of the coordinated of the single fibers in parametric models allows creating models, 

which are closer to the reality, but without additional contact detection steps leads to interlacement between 

the fibers. One future effective textile yarn generator should contain at least contact solver and should include 

different types of yarn or braiding types, in order to be able to create geometries, usable as starting point for 

FEM or other simulations.  
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1. Abstract

3D interlock fabrics made from carbon tows, which contain a large number of interweaving layers, are used
as preforms for manufaturing composite parts. They are produced on Jacquard looms which incorporate a
large number of components (heddles and yarns) within the small space of the harness. During 3D weaving,
the movement of warp yarns and heddles within a Jacquard harness generates frictional contact interactions
that may lead to congestion mechanisms. This may result in damage to yarns, blockage of heddle movement,
and ultimately leading to errors in the weaving process. Previous numerical simulations of the weaving pro-
cess, among others [1] [2] [3] [4], have not focused the congestion phenomena within the harness. This study
proposes a simulation model, based on an implicit resolution scheme [5], to account for contact-friction in-
teractions that occur in Jacquard harnesses of looms. The model uses finite strain beam elements to represent
all components of the harness [6]. Frictional contact elements are automatically created between the different
components, see Figure 1. The heddles are modeled by associating ten beam sections representing their dif-
ferent parts (the rope, the rods, the eyelet and the spring) while the reed is modeled using beam elements with
steel properties. The warp yarns are modeled as beam elements with adjusted bending and torsional stiffness
coefficients. The simulation model’s accuracy is verified by comparing the heddles’ force simulation results
with experimental data from a real loom using an appropriate deformation sensors.

Figure 1: Simulation model demonstrating frictional contact interactions during shed opening
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The aim of the study is to investigate how contact-friction interactions within the harness affect heddles move-
ment ( heddles forces are shown in Figure 2). The results analysis revealed the presence of multiple friction
zones in the harness, especially at the beginning and at the end of the shed opening cycle, and also during the
crossing of yarns in the middle of the cycle. The force curves provide a way to identify possible blocking events
caused by high friction interactions, when a heddle remains stuck while moving. Simulating the movements
of a 5-layer interlock fabric with 20 warp yarns over 20 shed openings, including the reed beating phase and
tack-up phase, can be carried out within 24 hours.

Figure 2: Heddles effort variation during successive shedding openings
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1. Introduction

Automated braiding machines are used to fabricate near-net-shaped preforms for composite manufacturing.
Typically, slender textile yarns are driven by bobbin carriers with synchronized horn gear motions and de-
posited on the surface of a rigid body (the mandrel). The combined framework of nonlinear finite elements
with multibody dynamics is used for the transient modelling of such mechanical systems with rigid and flexible
bodies undergoing contact-friction interactions. For representing systems with finite transformations, a differ-
ential geometric framework is helpful. Therefore, the equations of motion are defined on a Lie group together
with bilateral and unilateral constraints. In nonsmooth mechanics, the non-penetration condition is expressed
as a unilateral constraint in the form of a Signorini condition with a Coulomb friction law. The bilateral and
unilateral constraints can be simultaneously imposed at position and velocity levels to avoid constraint drift, and
to capture instantaneous jumps at velocity level. Standard time integration schemes fail to model the nonsmooth
contributions, which demands the need of a specialized time integrator capable of handling discontinuities. In
this work, the carrier kinematics is formulated as switching bilateral constraints, which represent nonsmooth
boundary conditions for the yarns. The yarn-to-mandrel frictional interactions are further introduced.

2. Method

The yarns are modelled as geometrically exact beams [5] on the Lie group SE(3) and driven by the imposed
carrier motion. The yarn-to-mandrel frictional interactions are introduced as contacts between beams and rigid
bodies and solved using a collocation approach by representing the neutral axis of the beam with proxy col-
lision geometries [6]. The time discrete equations are solved using the decoupled version of the nonsmooth
generalized-α time integration scheme [3] with the Gauß-Seidel solver So-bogus [4]. Three decoupled sub-
problems are solved using the splitting strategy as ∆qn+1 = ∆q̃n+1 +Un+1 and vn+1 = ṽn+1 +Wn+1, where,
∆q̃n+1 and ṽn+1 are smooth displacements and velocities, and Un+1 and Wn+1 are position corrections and
velocity jumps. For instance, the velocity jump Wn+1 is computed at time step tn+1 as in [2]:

M(qn+1)Wn+1 −hf∗n+1 −gT
q,n+1ΛΛΛn+1 = 0 (1a)

−gUq,n+1vn+1 = 0 (1b)

−(gj
Nq,n+1vj

n+1 + ej
Ngj

Nq,n+1vj
n) ∈ ∂ψR+(Λj

N,n+1) if gj
N(q)≤ 0, (1c)

−(gj
T q,n+1vj

n+1 + ej
T gj

T q,nvj
n) ∈ ∂ψC(Λj

N,n+1)
if gj

N(q)≤ 0, (1d)

where, f∗n+1 = f(qn+1,vn+1, tn+1)− f(q̃n+1, ṽn+1, tn+1)+ (gT
q,n+1 − gT

q̃,n+1)λ̃n+1 − (M(qn+1)−M(q̃n+1)) ˙̃vn+1. q
is the configuration variable, v is the velocity, M is the mass matrix, h is the time step size, ΛΛΛ is the Lagrange
multiplier representing the impulse with Λ

j
N and ΛΛΛ

j
T as the normal and tangential components respectively, U

is the set of indices for bilateral constraints and j is the contact point with the gap (relative position) split into
normal component g j

N and tangential component g j
T . A Newton impact law is defined with e j

N and e j
T as the

normal and tangential restitution coefficients (e j
T = 0 for contact involving flexible bodies). ψR+ is the indicator

function of the real half line R+ and ψC for the section of the Coulomb’s friction cone.
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3. Preliminary results

The simulation of biaxial braiding process involving 30 yarns subjected to carrier motion and deposited on the
surface of a cylindrical shaped mandrel has been performed using Odin [1]. The radius of beam is r = 0.001
m with l = 3 m and the material properties are E = 89 GPa, ν = 0.21 and ρ = 2750 kg/m3. Each yarn is
discretized using 50 beam finite elements with spherical collision elements (radius = r) attached to the nodes.
The simulation time is 30 seconds with time step size h = 0.001 seconds. The coefficient of friction µ = 0.1.

Figure 1: Transient simulation of 30 beams driven by the carrier motions and interacting by frictional contact
with a cylindrical mandrel

4. Conclusions

The carrier kinematics is formulated as switching constraints and applied as nonsmooth boundary conditions to
beams. The yarn-mandrel frictional interactions are further modelled based on a collocation approach. In the
future, a beam-to-beam contact formulation shall be further introduced for the modelling of yarn-yarn contact.
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1. Introduction 

Multi-layer and wound fiber reinforced composite materials feature an outstanding potential for energy savings 

in the transport sector. However, the classical shredding-based recycling methods for composites lead 

systematically to a strong downcycling. In this context, the peeling-based disassembly of composite structures 

is a very promising strategy [1]. Peeling-based disassembly enables to recover unitary layers of the original 

material with preserved continuous and aligned fibers and therefore preserved mechanical properties. 

Nevertheless, the peeled layer is susceptible to be damaged by an excessive curvature resulting in fiber kinking, 

or by excessive tensile peeling force resulting in fiber breaking. Thus, being able to model properly and 

efficiently the peeling of composite single-layers is of interest to provide information on the quality of the 

recovered material. However, the current analytical and numerical strategies to model peeling, rely on 

analytical models [2] or the use of Finite Element methods [3] with a cohesive zone model and consist of 

assuming material properties and imposing force or displacement boundary conditions to determine the 

position of the crack tip and the deformation of the peeled layer (direct approach). In so far as the mechanical 

and geometrical properties of the layer to be recovered are not exactly known a priori, using the available direct 

methods to determine the local material properties requires time consuming optimization approaches. In this 

context an innovative numerical model is proposed, which can be used in both a direct way (computation of 

displacements from known material properties and peeling force) as well as inverse way (computation of 

material properties from prescribed displacement field and peeling force).  

2. Mathematical model  

The peeled single-layer is considered as a 1D beam which might be subjected to various types of loads. In 

peeling conditions, cohesive forces given by an analytical cohesive zone model compensate the peeling forces 

at the end of the layer. The numerical model is inspired from [4]. It is not a finite element model in the classical 

sense, but obtained by 𝑊 cuts through the cantilever beam in the deformed configuration (Figure 1).  

 

 

Figure 1. Discretization and a cut through the system for the example of a cantilever beam. 

To each element are associated eight unknowns (length of the element, angle of the element to the horizontal 

axis, local bending stiffness, internal forces in the longitudinal and transverse directions, the local bending 

moment in the element and the external forces in the X and Z-directions). In order to determine these 

unknowns, the principle of the model consists in defining eight corresponding equations (local force and 

moment equilibriums, elastic longitudinal deformation of the element, definition of the external forces applied 

on the beam, definition of the local bending stiffness and relationship between the local curvature and the 

bending moment) for each element. The set of equations is then solved using the SymPy-library in Python and 

the Newton Raphson method [1]. Depending on the used equations, the values of certain unknowns can be 

prescribed to be fixed values or defined indirectly by using equations giving the conditions to be satisfied. 

Regarding the material bending stiffness, in the direct configuration, the value of the bending stiffness is 
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prescribed. In the inverse configuration, the local element angle is prescribed. In so far as the bending stiffness 

of the elements are defined as unknowns and are appearing in the equation relating the local curvature to the 

bending moment, the values of the local bending stiffness (Eq. (1)), which are required to satisfy the local 

element angles, will be determined automatically through the resolution of the set of equations. Therefore, it 

enables to extract directly the local bending properties along the layer using the local angles recorded during 

the peeling process. This inverse strategy enables to treat bending stiffness distributions, which might only be 

obtained by complex and difficult to characterize material models. Furthermore, it avoids the use of 

optimization tools and is seen as advantageous towards a future in-line determination of the residual material 

properties. The mathematical model, which defines the overall tape bending behavior, must be able to consider 

large rotations of the beam. It is given in Eq. (1) by the relationship between internal bending moment �̂�𝑖 at 

cut 𝑖 and the curvature 𝜅𝑖 for an exact expression of the curvature using Euler-Bernoulli beam theory. 

 �̂�𝑖 = �̂�𝑖  𝐼𝑦  𝜅𝑖 = �̂�𝑖  𝐼𝑦  
�̂�𝑖

′′

(1+(�̂�𝑖
′)

2
)

3
2

  (1) 

The longitudinal force �̂�𝑖 in node 𝑖 is determined using Green – Lagrange strain and the deformed- and 

undeformed length of element (Eq. (2)): 

 �̂�𝑖 = �̂�𝑖𝐴
1

2
 
(𝑙𝑖)

2
−(�̂�𝑖)2

(�̂�𝑖)2   (2) 

The second derivative of the vertical displacement �̂�𝑖 is obtained using the difference quotient (Eq. (3)) 

 �̂�𝑖
′′ =

�̂�𝑖 −�̂�𝑖−1 

𝑙𝑖
     ,       �̂�𝑖

′  =  �̂�𝑖  (3) 

and the angle of rotation φ̂𝑖 is related to the unknown displacement fields �̂�𝑖 and �̂�𝑖 by Eq. (4): 

 tan �̂�𝑖   =  
�̂�𝑖

�̂�𝑖 + �̂�𝑖
  (4) 

Variables �̂�𝑖 and �̂�𝑖 denote external vertical and horizontal forces in node 𝑖, which can be prescribed, or given 

by a cohesive zone model. �̂�𝑖 and 𝑙𝑖 denote the undeformed and deformed length of the element 𝑖. �̂�𝑖 denotes 

the internal shear force. �̂�𝑖 and Iy denote the Youngs Modulus and the area moment of inertia. 

3. Validation and Results 

The model has been validated using a commercial finite element software and the results were compared to 

three-point-bending experiments on steel and on unidirectional fiber reinforced PA6-Carbon specimens loaded 

up to large deflections.  Additional nonlinear material behavior due to bending-induced damage was introduced 

to the model by assuming a reduction of the local bending stiffness. 
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1. Introduction

The article presents an efficient computational model for the study of delaminations in three-dimensional com-
posite beams. The model is based on the Reissner beam theory and includes virtual springs between two layers.
The stiffness of the springs is defined by a general function of the relative displacement vector in middle frame.
The model is validated using experimental data from the literature and is shown to be superior in efficiency
compared to solid finite element models.

2. Theoretical formulation

For a comprehensive theoretical formulation of beams, we refer the reader to the articles [1, 2, 3]. In this
contribution, we extend the three-dimensional beam model to simulate all three modes of delaminations in
composite beams. For brevity, we give only a brief overview of the basic concepts.

The position vector r̂g(s) represents the beam axis in the global frame, while the local frame G defines the
orientation of a cross section, as shown in Fig. 1. Spatial rotations are parameterized using quaternion algebra.
Hence, Ĝi(s) = q̂(s)◦ ĝi ◦ q̂∗(s) = Q(q̂(s))ĝi, where q̂(s) is a rotational quaternion at location s along the beam
axis and Q(q̂(s)) is a four-dimensional rotational matrix constructed from the quaternion q̂(s).

In composite beams, each layer is interpreted separately and satisfies the equilibrium, kinematic, and constitu-
tive equations. These equations form a system of nonlinear equations that is later solved iteratively using the
Newton-Raphson algorithm.

Layered beams are modeled by connecting individual beams with nonlinear springs that can have arbitrary
stiffness laws to simulate contact, friction, or cohesive forces between layers. The adjacent layers are referred
to as the primary element and secondary element, which are connected at a node by springs. To avoid unwanted
forces, a middle triad, denoted GP, is introduced between the local frames GI and GII to define relative displace-
ments and forces between the layers in normal and tangential directions. A quaternion x̂ is used to describe the
transformation from the primary or secondary frame to GP, where the transformation between the two frames
is expressed as ŵ = x̂◦ x̂ = q̂II ◦ q̂I∗.

The effective opening displacement vector considers normal and shear delamination components as ∆r̂GP =

r̂I
GP − r̂II

GP = [∆rt ∆rn]
T , where ∆rt =

√
∆r2

t1 +∆r2
t2 is resultant of tangential relative displacements, since shear

delamination modes have same properties in both tangential directions.

Finally, we can write exponential cohesive zone stress functions for opening and sliding fracture modes using
relative displacement vector in middle frame. For more information on cohesive zones, see [3].

FGP
n
(∆rn) = σCn

∆rn

δn
e(1−

∆rn
δn

) and FGP
t
(∆rt) = σCt

∆rt

δt
e
(1/2− ∆r2

t
2δ2

t
)
. (1)

3. Results and discussion

We demonstrate the performance of our computational model with an L-shaped DCB test. This modification
requires the use of 3D finite elements, which makes it a suitable test for our model. The L-shaped cantilever
beams are connected by an adhesive layer modeled with nonlinear springs according to an exponential cohesive
zone model. By varying the parameters of the model, their influence on the response of the structure is analyzed.
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Figure 1: Schematic representation of the elements sharing a node via springs with specific properties. The
middle triad GP

i is represented with red color.

Increasing the critical normal stress σC leads to a higher force required to break the bond and a more severe
response, while increasing the cohesive energy release rate GIC shifts the force-displacement curve upward, as
shown in Fig. 2.

Figure 2: The force-displacement curves of the free end of the upper beam for different values of the strain
energy release rate. The black line shows the result of unconnected beams. In all cases, σC = 13 MPa.

4. Conclusions

The beam model used in this study is designed to be both simple and effective, making it an excellent start-
ing point for the study of delamination when interlayer relationships are included. Through validation with
examples from the literature, we have demonstrated the ability of the model to effectively investigate three-
dimensional delamination. As such, this model offers a valuable tool for delamination analysis.
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1. Introduction

Adhesive joints are nowadays used in a very wide ranging variety of structural engineering applications, because
of the associated reduction of stress concentrations and their suitability for joining lightweight components.
Although a number of procedures are available to characterise the interface fracture resistance in such structures
for quasi-static problems, the increasing use of adhesive bonding in the automotive and aerospace sectors makes
it particularly important to evaluate the rate dependence of the fracture resistance, because of the importance
of modelling these structures under dynamic loading, and in particular during impact loading. In this work,
we present a numerical and experimental study of the rate dependence of the mode-I failure of adhesive joints
based on DCB tests.

2. Experimental part

For the experimental part, we tested 24 aluminium joints with a prescribed cross-head displacement rate ranging
between 0.1 to 5000 mm/min. It has been shown that the fracture resistance of the adhesive (and therefore the
overall bearing capacity of the adhesive joint) increases with the load-line displacement speed (see Figure 1).
Because results for the two lowest speeds (namely 0.1 and 1 mm/min) essentially overlap, we concluded that the
slow limit (i.e. the limit below which the rate dependence of the adhesive is negligible) has been reached. On the
other hand, because of the limitations of the equipment (maximum speed was 5000 mm/min), the high-speed
plateau or peak (maximum) could not be determined (for additional details see [1]).

Figure 1: Fracture energy of the adhesive at different load-line displacement speeds: (a) the average R-curves
(average is computed from four tests at each spped), (b) the mean value of the fracture energy for each speed
(each point represents the mean value of the average R-curves).
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3. Numerical part

The numerical simulations use a previously proposed cohesive-zone model (CZM) based on fractional vis-
coelasticity [2] and a novel computationally efficient finite element (FE) combining a Timoshenko beam and
an interface element. A simple procedure for identification of 7 material parameters of the model is proposed
based on the previously proposed algorithm [3] implemented in software DCB PAR.

The comparison between experimental and numerical results shown in Figure 2 confirms the capability of the
CZM of capturing the experimental response over a wide range of speeds with the same set of 7 parameters,
only two of which are related to the model rate dependence. This is unlike models based on experimental
kernels, which require a much larger number of parameters. In [1] we also present an effective procedure to
determine the ‘fracture resistance-crack growth’ curve without the need for measuring the crack length and the
crack speed, but only by post-processing of the measurements of the load and the cross-head displacement,
immediately available at the end of the tests.

Figure 2: Fit between the experimental load-displacement data and the model prediction with the identified
CZM parameters for load-line displacement speed of: (a) 1 mm/min, (b) 1000 mm/min.

4. Conclusions and future work

We presented an experimental–numerical study to characterise the rate dependence of fracture energy of adhe-
sive joints under mode-I crack propaga-tion and to validate a previously formulated rate-dependent cohesive-
zone model based on fractional viscoelasticity [2]. The model is currently being extended to take into account
the presence of defects at the interface (voids and interfacial failure) in order to determine the ’true’ fracture
resistance of the adhesive.
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