

Sveučilište u Rijeci **Građevinski** fakultet

G

MINOR IN:

APPLIED MECHANICS IN MODERN ENGINEERING PRACTICE

Can be enrolled as part of the Graduate study programme in Civil Engineering module Structures

4 optional courses in the 2. semester

G

Sveučilište u Rijeci Građevinski fakultet Can be enrolled as a **life-long education programme** (available to nonstudents) Carried out in English language Improved knowledge, skills and competences + new employment opportunities

Certificate of an acquired minor degree in Applied mechanics in modern engineering practice

Academic graduate programme in CIVIL ENGINEERING

Assoc. Prof. **Dragan Ribarić** dragan.ribaric@uniri.hr G-328

Stability of Structures

There is practical need to analyse safety against the instabilities caused by structural geometry and internal forces combined.

The new technical discipline arises for that purpose – stability of structures.

Theory

The problem of the geometrical instability is expressed by unified differential equations as a result of combined kinematic and material expressions as well as equilibrium relations.

$$\frac{d^4w}{dx^4} + \frac{P}{EI}\frac{d^2w}{dx^2} = \frac{q}{EI}$$

Leonhard Euler (1707 – 1783) mathematician

Experiments

Experimental setup models the practical problem and confirms the theoretical results.

[14]

Figure 2. Vertical web buckling.

Numerical solutions

Complex practical problems can be solved with numerical methods. The most often used is Finite Element Method.

[23]

N	ODAL DISP
T	OTAL, m
h	+1.02982e+000
	3.8% +9.44000e-001
	4.3%
F	+8.58182e-001
	4.6% +7.72364e-001
	4.6%
	+6.86546e-001
	+6.00727e-001
	5.6%
Ľ	+5.14909e-001
	+4.29091e-001
	8.6%
F	+3.43273e-001
L	+2.57455e-001
	7.4%
	+1.71636e-001
	+8.58182e-002
ſ	31.1%
	+0.00000e+000

Asst. Prof. Edita Papa Dukić edita.papa@uniri.hr G-329

Asst. Prof. Nina Čeh nina.ceh@uniri.hr G-332

Different types of plate and shell structures in Civil Engineering: **walls**, **membranes**, **plates and shells**.

What is the difference between **beams** and **plates**?

Beam structures

Plate structures

$$w_{B} = w_{A}$$
$$u_{B} = -z \left(\frac{dw}{dx}\right)_{A}$$

Displacements of all points are determined by the neutral axis displacement

Displacements of all points are determined by the neutral **plane** displacement

What is the difference between thin and thick plates?

Bernouli I + II: Kirchhoff

$$\varphi_{x} = \frac{\partial W}{\partial x} \quad \varphi_{y} = \frac{\partial W}{\partial y}$$

Shear strain is neglected

Bernouli I: Reissner-Mindlin

$$\varphi_{\mathbf{x}} = \frac{\partial \mathbf{W}}{\partial \mathbf{x}} + \gamma_{\mathbf{xz}} \quad \varphi_{\mathbf{y}} = \frac{\partial \mathbf{W}}{\partial \mathbf{y}} + \gamma_{\mathbf{yz}}$$

Shear strain is **NOT** neglected

How are **forces**, **displacements**, **strains** and **stresses** related?

Introduction to numerical methods for static and dynamic analysis of plate structures – **finite difference method, Rayleigh-Ritz method** and **the finite element method.**

Introduction to numerical methods for static and dynamic analysis of plate structures – **finite difference method, Rayleigh-Ritz method** and **the finite element method.**

Asst. Prof. **Teo Mudrić** <u>teo.mudric2@uniri.hr</u> G-333

Energy Methods in Applied Mechanics

Energy Methods in Applied Mechanics

Procedures for approximate solutions satisfying the weak form will be described, with emphasis on the Finite element method

Energy Methods in Applied Mechanics

A wide variety of complex mechanical problems can be analysed with software implementing the Finite element method

Energy Methods in Applied Mechanics

A wide variety of complex mechanical problems can be analysed with software implementing the Finite element method

Assoc. Prof. **Leo Škec** <u>leo.skec@uniri.hr</u> G-330

Introduction to plasticity and damage modelling

n.a.

UNIAXIAL STRESS STATE

• Plastic deformations

ELASTO-PLASTIC BENDING

 cross-section gradual plastification and plastic joint development

4 Strain

[48]

MULTI-AXIAL STRESS STATE – when does yielding/plastification occur?

Application in computer simulations

FRACTURE MECHANICS – when and why does a crack develop in a material?

Linear elastic fracture mechanics – brittle material fracture

Ductile fracture of the material – a plastic zone (damage) forms behind the crack

DAMAGE MECHANICS

• Models of progressive damage (softening) leading to material failure

Experimental determination of parameters that describe the fracture resistance of materials

APPLIED MECHANICS IN MODERN ENGINEERING PRACTICE

Detailed description of the courses can be found on *www.gradri.hr*. <u>https://gradri.uniri.hr/en/lifelong-education/</u>

Contacts for additional information about the courses:

Asst. Prof. Edita Papa Dukić edita.papa@uniri.hr G-329

Asst. Prof. **Nina Čeh** nina.ceh@uniri.hr G-332

Asst. Prof. **Teo Mudrić** <u>teo.mudric2@uniri.hr</u> G-333

Assoc. Prof. **Leo Škec** <u>leo.skec@uniri.hr</u> G-330

Assoc. Prof. **Dragan Ribarić** <u>dragan.ribaric@uniri.hr</u> G-328

REMARK: As part of the graduate study program it is possible to choose only part of the Minor courses, but then the Minor cannot be acquired.

APPLIED MECHANICS IN MODERN ENGINEERING PRACTICE

Sveučilište u Rijeci Građevinski fakultet

G

References:

- http://brookreport.com/best-colleges-for-civil-engineering-majors-2022/ 1.
- 2. https://veryrealandrew.com/site-visits/2019/12/16
- 3. https://www.utilitydesign.co.uk/blog/celebration-modern-architecture-styles/
- 4. https://edition.cnn.com/style/article/famous-buildings-dubai/index.html
- https://www.grandtouringautos.com/model/rimac-nevera/ 5.
- https://en.wikipedia.org/wiki/Differential_%28mechanical_device%29 6.
- https://mlrit.ac.in/wp-content/uploads/2022/03/istock-541144900_0.jpeg 7.
- 8. https://www.automotiveplastics.com/automotive-plastics-today/chassis/
- https://images.unsplash.com/photo-1559023234-1e773470544f?ixlib=rb-9.

4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8Mnx8cGxhbmUIMjB0YWtlb2ZmfGVufDB8fDB8fHww&w= 1000&q=80

- https://www.skyfilabs.com/blog/list-of-major-design-projects-for-mechanical-engineering-students 10.
- 11. https://csb-scb.com/
- 12. https://centralgaheart.com/need-know-heart-stent/
- https://www.perfectbracesacademy.com/uploads/products/t/l-p-91-p-24-4tnhw.png 13.
- https://www.pinterest.com/ 14.
- https://www.pinterest.com/ 15.
- 16. https://www.pinterest.com/
- 17. https://www.pinterest.com/
- 18. https://www.pinterest.com/
- 19. https://www.pinterest.com/
- 20. https://www.pinterest.com/
- https://www.pinterest.com/ 21.
- 22. https://www.pinterest.com/
- 23. https://www.pinterest.com/
- 24. https://www.pinterest.com/
- 25. https://seele.com/references/strasbourg-railway-station
- https://www.civilprojectsonline.com/tag/lotus-temple-as-a-shell-structure/ 26.
- 27. https://www.novilist.hr/rijeka-regija/rijeka/oporavak-stizu-prve-naznake-boljih-vremena-luka-rijekau-sedam-mjeseci-povecala-promet/
- https://pdh-pro.com/course/materials-for-embankment-dams/ 28.
- https://www.sintef.no/projectweb/isogeometric-analysis/collaborators/projects/icada/results/ 29.
- Linear elastic buckling of ring-stiffened cylindrical shell 30. (https://www.finglowconsultants.co.uk/2023-fcl-busy-week)
- https://www.en.didaktik.physik.uni-muenchen.de/multimedia/waves/animations/index.html 31.
- 32. https://www.stressebook.com/finite-element-analysis-in-a-nut-shell/
- https://www.imeche.org/news/news-article/modern-finite-element-analysis-achieves-accurate-33. results-with-little-effort
- https://aecmag.com/simulation/msc-software-partners-with-ingeciber-to-boost-simulation/ 34.
- 35. https://www.midasbridge.com/en/project-application/three-sisters-bridges
- https://www.researchgate.net/figure/The-FE-model-of-the-studied-wind-turbine fig5 277009482 36.
- 37. https://www.h-conner.co.th/Article/Detail/151373
- 38. https://www.linkedin.com/pulse/shells-vs-solids-finite-element-analysis-guick-review-kuusisto-p-e-
- https://commons.wikimedia.org/wiki/File:Bending_Analysis_of_an_Aluminium_Pipe.gif 39.
- 40. https://i.ytimg.com/vi/lol15USYnDw/maxresdefault.jpg
- https://www.cies.unsw.edu.au/scaled-boundary-finite-element-method-2a 41.
- https://www.foxnews.com/us/north-carolina-official-says-completely-severed-crack-roller-coaster-42. was-visible-days-closing

- 43. https://en.wikipedia.org/wiki/Plasticity (physics)
- 44. https://www.bu.edu/moss/mechanics-of-materials-strain/
- 45. https://yasincapar.com/
- 46. https://benjdd.com/courses/cs110/spring-2019/pas/bridge deflection/index.html
- https://www.doitpoms.ac.uk/tlplib/beam_bending/plastic.php 47.
- 48. https://jonochshorn.com/structuralelements/book/1.08-strength.html
- 49. https://www.efunda.com/formulae/solid mechanics/mat mechanics/stress.cfm
- 50. https://en.wikipedia.org/wiki/Von Mises yield criterion
- https://www.reddit.com/r/fea/comments/smm5x3/is this still a trend/ 51.
- 52. https://skill-lync.com/student-projects/assignment-6-frontal-crash-simulationchallenge-51
- 53. Ted L. Anderson, Fracture Mechanics: Fundamentals and Applications, Fourth Edition, CRC Press, 2017
- 54. https://pdfs.semanticscholar.org/42f2/b3e97ce3f8bcaffacd808c8209dfe6e7e0f7.pdf
- https://www.metallurgyfordummies.com/tag/fracture-mechanics-concepts.html 55.
- 56. https://mechanicalc.com/reference/fracture-mechanics
- https://www.researchgate.net/publication/352136601 Monitoring of Crack Initiati 57. on at CoatingSubstrate Interface by Residual Magnetic Field Measurement/figu res?lo=1
- 58. https://www.researchgate.net/publication/334303096 Adaptive Discrete-Smeared Crack A-DiSC Model for Multi-Scale Progressive Damage in Composites/figures?lo=1
 - https://www.youtube.com/watch?v=ssy9ReoC46Y
- 59. https://www.birdair.com/technology/tensile-architecture/aesthetics-design/ 60.