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Abstract

The core of this thesis lies in the micropolar (Cosserats’) theory of elasticity, developed as

one of the possible generalisations of the classical (Cauchy’s) theory, in order to describe the

behaviour of heterogeneous materials with a pronounced internal structure (microstructure),

which the classical theory neglects. In addition to the standard displacement field, an addi-

tional independent microrotation field exists in the micropolar theory due to the consideration of

the microstructure of the material, and to completely describe the behaviour of a linear-elastic

isotropic and centrosymmetric micropolar material, the values of six micropolar material pa-

rameters must be known. However, due to the lack of a reliable and accepted methodology for

their determination, the theory is still not widely applied in practice. Therefore, this research is

conducted through two major phases in order to somehow contribute to the development of the

necessary methodology.

In the first part, a new family of finite elements of arbitrary order for the linear analysis of

the micropolar continuum is presented, where the displacement field is interpolated by enhanced

fixed-pole interpolation which arose from an investigated correlation between known interpola-

tion schemes, originating from the analysis of geometrically exact 3D beams, highlighting here

interpolations on Lie groups SE (3) – helicoidal interpolation and SR (6) – fixed-pole interpola-

tion, in their linearised form, with a linked interpolation. The enhanced fixed-pole interpolation

derived from this observed relationship represents a possible interpretation of the linked interpo-

lation, which is widely used in the linear analysis of the Timoshenko beam, but is not sufficiently

explored in the general micropolar continuum theory. Static and vibrational analyses of the mi-

cropolar continuum are conducted through several numerical examples, demonstrating improved

efficiency of the newly developed finite elements compared to conventional elements.

In the second part, the newly developed finite elements are used for the identification of

micropolar material parameters by inverse analysis based on two specific experiments. The first

experiment involved a four-point bending virtual experiment on perforated specimens, where

the value of the coupling number, as one of the two existing micropolar parameters in 2D, is

determined by inverse analysis. The second example investigates the discrepancy between the

theoretically predicted stress concentration factor around a circular hole in a plate subjected to

uniaxial tension and the experimental results. In pursuit of improved theoretical predictions, the

application of micropolar theory is explored and a detailed methodology based on parametric

and inverse analysis is presented for this purpose. However, it is demonstrated that there is



no unique combination of micropolar parameters that simulates the experimental results for all

tested specimens, and based on the conducted analysis, we indeed affirm that the micropolar

theory is not suitable for materials with a very low-scale internal structure and can not predict

the obtained experimental results.

Keywords: Cosserat theory of elasticity, micropolar continuum, finite element method, fixed-

pole concept, linked interpolation, interpolations on Lie groups, identification of micropolar

parameters, inverse analysis, stress concentration factor.



Sažetak

Srž istraživanja ovog doktorskog rada je mikropolarna (Cosseratova) teorija elastičnosti razvi-

jena kao jedna od mogućih generalizacija klasične (Cauchyjeve) teorije s glavnom namjenom da

opiše ponašanje heterogenih materijala s izraženom unutarnjom strukturom (mikrostrukturom)

koju klasična teorija zanemaruje. Uzimanjem u obzir mikrostrukture materijala, u mikropo-

larnoj teoriji uz standardno polje pomaka, postoji dodatno neovisno polje mikrorotacije te da

bismo mogli u potpunosti opisati ponašanje linearno-elastičnog izotropnog i centrosimetričnog

mikropolarnog materijala, moramo poznavati vrijednosti šest mikropolarnih materijalnih kon-

stanti. Ipak, zbog nedostatka pouzdane i usvojene metodologije za njihovo određivanje, teorija

se još uvijek ne primjenjuje široko u praksi. Stoga je ovo istraživanje provedeno kroz dvije glavne

etape kako bi se doprinijelo razvoju potrebne metodologije.

U prvom dijelu je predstavljena nova familija konačnih elemenata proizvoljnog reda za lin-

earnu analizu mikropolarnog kontinuuma kod kojih se polje pomaka interpolira poboljšanom

fixed-pole interpolacijom, a koja je proizašla na temelju međusobne usporedbe nekih već poz-

natih interpolacijskih shema čije je izvorište u analizi geometrijskih točnih 3D greda s dobro

poznatom interpolacijom. Ovdje su posebno istaknute interpolacije na Liejevim grupama SE(3)

– helikoidalna interpolacija i SR(6) – fixed-pole interpolacija, u svom lineariziranom obliku.

Ovako izvedena poboljšana fixed-pole interpolacija predstavlja varijantu vezane interpolacije

koja se već široko koristi u linearnoj teoriji Timošenkovih greda, no njena primjena nije dovoljno

istražena na mikropolarnom kontinuumu. Provedena je potom statička i vibracijska analiza

mikropolarnog kontinuuma kroz nekoliko numeričkih primjera, gdje je na temelju konvergenci-

jskih krivulja pokazano poboljšanje primjene novo razvijenih konačnih elemenata u usporedbi sa

konvencionalnim elementima.

U drugom dijelu rada se novo razvijeni konačni elementi koriste za identifikaciju mikropo-

larnih materijalnih parametara inverznom analizom na temelju dva specifična eksperimenta. U

prvom se provodi virtualni eksperiment na modelu perforiranih uzoraka za kojih se putem in-

verzne analize utvrđuje vrijednost jednog mikropolarnog parametra – faktora povezanosti. Drugi

primjer razmatra razliku između teorijskih rješenja faktora koncentracije naprezanja oko kružne

rupe u ploči podvrgnutoj jednoosnom rastezanju sa eksperimentalnim rezultatima. Kao moguću

bolju teorijsku predikciju ispitujemo primjenu mikropolarne teorije za čiju je svrhu predstavl-

jena detaljna metodologija temeljena na parametarskoj i inverznoj analizi. Međutim, pokazano

je da ne postoji jedinstvena kombinacija mikropolarnih parametara koja simulira eksperimen-



talne rezultate za sve ispitane uzorke te na temelju provedene analize doista potvrđujemo da

mikropolarna teorija nije prikladna za materijale s unutarnjom struktruom na maloj skali.

Ključne riječi: Cosseratova teorija elastičnosti, mikropolarni kontinuum, metoda konačnih

elemenata, koncept nepomičnog pola, vezana interpolacija, interpolacije na Lievim grupama,

identifikacija mikropolarnih parametara, inverzna analiza, faktor koncentracije naprezanja.
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Chapter 1

Introduction

1.1 Demand for generalised theories of elasticity

In nature, materials consist of discrete atoms connected by interatomic forces and surrounded

by empty space, forming a crystal structure. This structure, along with possible occurrences

of defects within it, determines the response of the material to external forces. In engineering,

however, based on the idea that the material is treated as a continuous medium instead of

considering the behaviour of individual atoms or molecules from which the material is made up,

the concept of the continuum has been adopted [1]. Therefore, the continuum theory assumes

that the material consists of an infinite number of points that completely fill a given volume, and

that its behaviour can be described by applying a mathematical model to each point within the

continuum. Such a simplified homogeneous model of a solid body averages out all microstructures

of the material which are thus neglected [2]. In reality, most materials are non-homogeneous to

varying degrees, where their influence at the macroscopic level depends on the scale of the

material sample under consideration. For some materials (e.g. metals), various constituent

phases that form their microstructures can only be observed at the microscopic level, while in

other materials, such as foams or cork, the (micro)structure is visible by the naked eye and it

cannot be neglected, since it significantly affects the material’s response to loading [3, 4].

One of the materials commonly used for building structures is steel, in which properly ar-

ranged crystals already lead to anisotropy at the level of the crystal lattice that forms the steel

structure. Additionally, various metal processing methods change the orientation of the crystals,

bringing impurity grains (remnants from other materials) and air bubbles into the metal blocks.

Metal rolling is one such process in which the introduced air bubbles and impurities are stretched

1



in the rolling direction. At the microscopic level, the deformation depends on the behaviour of

the individual microstructural phases and their interaction with the surrounding phases. On

the other hand, at the macroscopic level, steel is considered as a homogeneous and isotropic

material, whose macroscopic behaviour can be accurately described by the classical continuum

theory, which actually averages its microscopic response [5]. Therefore, the classical theory of

elasticity developed by the French mathematician and physicist Augustin Louis Cauchy in the

19th century as a branch of continuum mechanics, is commonly used to analyse the strain and

stress conditions of (macroscopically) homogeneous bodies under external loads. Hooke’s law,

which describes the linear-elastic relationship between the deformation of a body and the applied

external force, was one of the starting points in developing the theory of elasticity. Many scien-

tists such as Lamé, Poisson, Green, Airy, Kirchhoff, Lord Rayleigh, Saint-Venant, Timoshenko

and many others have also contributed to the development of the theory [2, 6–8].

In classical theory, the static interaction between two material particles of a body is described

only by a force vector. Of course, it is natural to conclude that in addition to the resultant of

interparticle forces, there is also a resultant moment of these forces, but according to the funda-

mental principle of continuum mechanics, which states that a body is considered as a continuum

containing infinitely many points, where the surface of each continuum element tends to zero, the

resultant moment disappears as a result. In other words, this means that no distributed moment

can be applied in classical linear theory and therefore, the response of a body under the action

of external forces is described by a stress and strain tensor, both of which are symmetric [9].

However, if we want to describe the behaviour of materials with a more pronounced mi-

crostructure in relation to the observed sample scale, the classical theory of elasticity does not

provide the best solution compared to the results obtained from experiments on specimens made

for example, of bones, foams or lattice structures [10, 11]. Metal foam is also an example of a

significantly heterogeneous and anisotropic material consisting of metal particles and gaseous

substances. Due to their good properties, which include low density, fire resistance, low ther-

mal conductivity and high sound absorption, metal foams are increasingly used for sandwich

panels, facade cladding for buildings, aircraft wings, various parts in the automotive industry,

etc. [12]. Precisely because of the development of new material types and the increasing use

of heterogeneous materials in structural elements, the quest for a more convenient model that

better describes their behaviour is an active research topic.

Due to the absence of microstructure of the material in the classical idealised and homoge-
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neous model, regardless of its observed scale, the classical theory cannot describe the so-called

size-effect, an experimentally observed phenomenon in which the smaller specimens seem to be

stiffer than the larger ones made of the same material [13]. Additional deviations between the

experimental results and theory appear in dynamic problems, specifically in the cases of elas-

tic vibrations characterised by high frequencies and small wavelengths (i.e. ultrasonic waves),

where the microstructure of the body also becomes a significant factor [10]. Furthermore, many

published papers bring to light that the classical theory overestimates stress concentration factor

values near geometric discontinuities, where one such example is a homogeneous plate with a

circular hole in the centre under symmetric uniaxial loading [10, 11]. Hence, in order to more

realistically describe the behaviour of materials with a pronounced microstructure and to capture

the above-mentioned effects that the classical theory cannot, various alternative theories have

been developed that generalise the classical theory and incorporate heterogeneity and scale size,

which contributes to the understanding of the complex behaviour of both natural and artificially

produced materials under different conditions and allows better prediction of their behaviour in

practice.

The step up from the classical (local) theory begins with the development of non-local the-

ories, in which the stress state at the considered point depends not only on the deformation at

that point, but also on the deformations of surrounding points. These include gradient theories,

polar theories and peridynamics among others. Polar theories assume that material points pos-

sess additional information about the orientation and structure of the material, and the crucial

difference between these types of theories is the way in which microstructural effects are incorpo-

rated into the modelling of strain and stress in the material. Compared to the classical theory, a

material point in the micromorphic continuum theory has three additional deformable directions,

including nine degrees of freedom, consisting of microrotation, microstretch, and microshear [3].

The microstretch theory [3] can then be derived from the micromorphic theory by eliminating

the microshears of the material particles. As a result, in the microstretch theory, a material

particle is considered as a volume element with three microrotation and one dilatational stretch

(microstretch) degree of freedom. Eliminating the dilatational microstretch, we arrive at the

micropolar theory [3], in which a material particle has microrotational degrees of freedom that

give it an orientation which is independent of displacements. If the microrotations are equal to

the macrorotation, this theory reduces to the couple-stress theory, which belongs to the gradient

theories (for more details see e.g [3, 7, 14]).

3



1.2 Micropolar continuum theory and its historical development

The main interest of this thesis lies in the exploration of the micropolar (Cosserats’) theory of

elasticity, in which the static interaction between two material particles is described using both

a stress vector and a couple-stress vector. It follows that there are now two stress tensors, both

of which are non-symmetric [15]. Given that there is an additional couple-stress tensor, there is

also an additional angular strain tensor (curvature) that represents the gradient of the additional

kinematic field - the microrotation [3]. Microrotation represents the orientation of each material

point and it is completely independent of the skew-symmetric part of the displacement gradient

at the observed point (macrorotation). If we consider a linear-elastic isotropic centrosymmet-

ric material according to the micropolar theory, the connection of two independent stress and

couple-stress tensors with strain and curvature tensors is described by two fourth-order consti-

tutive tensors consisting of six independent material parameters in total: Young’s modulus and

Possion’s ratio, which are already known from the classical theory; the coupling number which

gives us the ratio between the microrotation and the macrorotation, the polar ratio which has a

similar effect in torsion as the Possion’s ratio has in axial deformation, and the last two are the

characteristic lengths for torsion and for bending [10].

The first generalisation of Cauchy’s theory of elasticity goes back to the work of German

physicist Woldemar Voigt, who in 1887. proposed a mathematical model that describes the

interparticle static interaction of a body not only by a force vector but also by a moment vector

[16]. He also gave both differential equilibrium equations from which he obtained non-symmetric

stress and couple-stress tensors. Twenty-two years later, as an extension of Voigt’s work, a

complete non-symmetric theory of elasticity was developed by the Cosserat brothers (Eugene,

who was a mathematician and Francois, who was an engineer) throughout their thirteen years of

work. In their theory, the Cosserat brothers assumed that each material point in a deformable

body has an attached rigid triad, also known as a "trièdre", which consists of three mutually

orthogonal vectors denoted as e1, e2 and e3. The Cosserat brothers proposed that the triad can

translate and rotate independently during the deformation process, allowing for the description

of small-scale translations and rotations of material elements. By introducing a new degree of

rotational freedom, we can give each particle an orientation. Moreover, the brothers obtained

equations for the equilibrium of momentum for the dynamic case [15], but they did not give

a specific microinertia nor a conservation law for the microinertia tensor, which are crucial to
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solve dynamic problems in solids and flowing media [3]. This material model was later called the

Cosserat (or micropolar) continuum. Unfortunately, the elder brother Francois died prematurely

five years after the publication of their theory. The other brother was no longer answerable to

the theory of elasticity because he was unwilling to confront the anguish of recalling their years

of fruitful collaboration [17]. Despite its novelty, the theory remained untouched for almost half

a century until several independent authors reopened it: Grad [18] derived constitutive equations

for a linear polar fluid, Günther [19] and Schafër [17] recapitulated linear Cosserat elasticity and

showed that the continuum used in dislocation theory is an incompatible Cosserat continuum.

A few years later, Mindlin, Tiersten [20], and Toupin [21] introduced the so-called Cosserat

pseudo-continuum (couple-stress theory), in which the non-symmetric stress tensor is retained

but the microrotation coincides with the macrorotation. In 1964. A. C. Eringen [3] extended

the linear Cosserat theory by including the missing microinertia effects of the body, the law of

conservation of microinertia and he renamed it the micropolar theory of elasticity. Since the

"reopening" of the theory, it has been further developed in detail, e.g., [22,23], but it is still not

widely considered in the numerical analysis of structures in practical applications. The key to a

broader application of the micropolar theory lies in the knowledge of the material parameters,

for which a reliable methodology for detection has not yet been determined.

1.3 Numerical investigations of micropolar continuum

In the 80’s of the last century, numerical methods began to be used in the analysis of the

micropolar continuum, in particular the finite element method, since it is additionally difficult

and often impossible to obtain analytical solutions in closed form for many problems with complex

geometry or dynamic problems of micropolar elasticity. There are a large number of papers about

linear static analysis of the micropolar continuum using the finite element method. The first

researchers who implemented the micropolar theory into finite elements were Baluch, Goldberg,

and Koh in [24] where they formulated a simple triangular finite element using linear interpolation

to interpolate both unknown fields. However, up to that point, they did not present any numerical

example. Two years later, Goldberg and his colleagues [25] formulated a triangular micropolar

plate element with three nodes and five degrees of freedom per node (vertical displacement, two

rotations, and two microrotations) to model the bending problem of micropolar plates. Numerical

results for classical and micropolar elasticity were compared, and their difference is a consequence
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of the influence of micropolar material parameters.

Another attempt to formulate displacement-type finite elements based on micropolar elas-

ticity was given by Nakamura et. al. [26], where 1st order triangular elements with Lagrangian

interpolation were used. The developed finite elements were verified on the numerical example of

an "infinite" plate with a circular hole for an isotropic micropolar material for which an analytical

solution is known [27]. The authors have made a comparison between isotropic and orthotropic

micropolar material cases and have generally concluded that there is a dependence between the

stress concentration factor and micropolar material parameters. Ghosh and Liu [28] presented

a new Voronoi cell finite element model for the analysis of steady-state heat conduction and

micropolar thermoelastic stress problems for heterogeneous materials. The finite elements for

isotropic and orthotropic axisymmetric micropolar continua based on the variational principle

(principle of virtual work) presented in [26], were developed in Huang’s doctoral thesis under

the supervision of Dr. Sachio Nakamura [29]. To solve a 3D micropolar elasticity problem,

Huang used isoparametric Lagrangian elements with eight nodes and twenty nodes, while for a

2D problem, he used elements with four and eight nodes. The numerical procedure was coded

in Fortran programming language, and to verify the developed planar finite elements, the patch

test of a simple uniform tension was conducted. The second numerical example was a U-shaped

circumferential groove in a bar of circular cross-section discretised by hexahedral elements with

20 nodes. Huang compared the numerical results for an arbitrary ratio between the radius of

the groove r and the thickness of the bar d for the case where the coupling number fades away

(which turns out to be the classical theory as a special case) with the known Peterson’s stress

concentration factor curves obtained by a combination of experimental measurements and the-

oretical analyses of the stress distribution [30]. The numerical results were found to agree well

with the empirical solutions, with only minor deviations in the case of a smaller r
d ratio, and it

was also shown that increasing the value of the coupling number resulted in an increase in the

value of stress concentration [29]. However, the micropolar elements were not fully verified at

that time. Later, Huang et al. [31] formulated a 3D brick element with Wilson’s incompatible

modes to solve the micropolar elastic beam problems.

In 1995, Nakamura and Lakes developed a finite element analysis program named MIRACS

(MIcroRotation And Couple-Stress) [32], in which micropolar CST and quadrilateral finite el-

ements with four or eight nodes were implemented. In their work, they primarily investigated

the Saint-Venant principle for the case of a micropolar continuum, specifically on the example
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of a strip loaded with a concentrated force at one end. This showed a slower rate of decay of

stress as we move away from the considered position from the point of applied force, compared to

the classical continuum where a faster stress diffusion is expected with increasing distance from

the applied load. The micropolar continuum may exhibit slower homogenization of the stress

distribution due to microstructural effects, i.e., the distribution is slower as the characteristic

length increases. Yang and Huang [33] analysed the relationship between Poisson’s ratio and mi-

cropolar parameters for the rectangular plate subjected to uniform tension and discretised by a

linear triangular finite element with three degrees of freedom per node. Providas and Kattis [34]

introduced a set of three patch tests to completely validate the micropolar finite elements (tests

that reproduce the condition of constant symmetric stress and strain, constant non-symmetric

shear, or constant curvature). They derived three displacement/rotation-type triangular finite

elements using the principle of minimum potential energy: the bi-linear element MLINT with

three nodes, the six-node element with quadratic interpolation for the displacement field and lin-

ear interpolation for the rotation MQLT, and the bi-quadratic finite element MQUAT with six

nodes. All three elements were tested through the presented set of patch tests and, in addition,

their solutions were compared on a numerical example of the stress concentration around the

circular hole in an "infinite" plate with the known analytical solution according to Neuber [35].

It was shown that the MQLT elements clearly give the best results.

Li et al. [36] performed a linear analysis of a 2D micropolar continuum using quadrilateral

elements Q4 with Lagrangian interpolation and Q8 with bubble mode, which were found to be

resistant to mesh distortions. Korepanov et al. [37] performed 2D and 3D finite element analyses

on several problems with stress concentration and compared the results with analytical ones. As

an alternative to the finite element method, M. A. Wheel and co-workers [4,38,39] used a control

volume-based finite element method to model micropolar elasticity, where their elements pass

the required patch tests and also have an accuracy that is at least equal to their standard FE

counterparts. Grbčić et al. [40] developed a 1st order hexahedral finite element enhanced with

incompatible modes, concluding that this element highly reduces the computational cost for the

cylindrical bending problem and correctly predicts the size-effect phenomenon in bending and

torsion. Moreover, Grbčić et al. [41, 42] developed triangular and quadrilateral finite elements

of different order for linear micropolar continuum theory using the linked interpolation for dis-

placement field. In order to assure the convergence, they applied Petrov-Galerkin method to the

proposed element formulations. Xie et al. [43] proposed a hybrid FE formulation to improve the
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bending response of four-node quadrilateral and eight-node hexahedral for Cosserat elasticity

problems without compromising the constant couple-stress patch test.

The literature on the linear dynamic numerical analysis of the micropolar continuum is some-

what sparser. Among the first who considered the application of the finite element method to

static and dynamic problems in micropolar elasticity was Padovan [44], who developed a 3D

formulation based on a semi-analytical finite element procedure. A development of displace-

ment and rotation-based dynamic finite element formulation for Cosserat plates was presented

by Godio et al. [45]. Ansari et. al. [46] investigated the influence of micro-structures on the

free vibration behaviour of 3D micropolar beams and plates with various boundary conditions

using 27-node micropolar finite elements. They observed a decent difference among numerical

results for non-dimensional frequencies of micropolar structures and their classical counterparts

for a small ratio between the thickness of the structure and the characteristic length for the

bending, showing the necessity of considering microstructure effects on the size-dependent prob-

lems. Kohansal-Vajargah et. al. [47] studied the free vibration response of micropolar planar

structures using linear isoparametric micropolar finite elements with 4 nodes. Furthermore,

Kohansal-Vajargah and Ansari [48] studied the effect of length scale parameters on the dimen-

sionless natural frequencies of 3D micropolar structures of various geometries using isoparametric

quadratic tetrahedral micropolar finite elements with 10 nodes.

In recent publications, the application of the micropolar theory appears as a natural choice

in advanced numerical simulations of auxetic materials [49], sands [50], granular media [51],

dilatation effect in layered rocks with rough surfaces [52], crack propagation [53], cortical bones

[54], blood flow through a stenosed artery [55], bio-ceramic materials for bone reconstruction

[56], etc. However, the problem of the value of the material parameters is constantly present,

which prevents a wider application of the theory in practice. Further development of high-

quality micropolar finite elements is of great importance for future progress and a comprehensive

understanding of Cosserat’s continuum theory, both as a simulation tool directly applicable to

engineering problems and as a reliable modelling tool in virtual experimental setups to determine

material parameters by inverse analysis.
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1.4 Experimental procedures in micropolar elasticity

Based on a standardised tensile test on a solid specimen, classical parameters such as Poisson’s

ratio and Young’s modulus can be determined very easily. However, when it comes to determining

additional micropolar parameters, the simplicity is lost. Determination of micropolar material

parameters is a significant and demanding task that requires, above all, suitable and precise

experimental equipment, as emphasized by Eringen’s quote [3]:

"... experiments with micropolar constants require much precision and elaborate in-

strumentation, since we are faced with the measurements of microscopic-level quan-

tities ... At this range, many other physical phenomena begin to interfere with obser-

vation, introducing distortions and errors."

Schijve [57] was the first who attempted to obtain the value of the characteristic length of sheet

specimens made of aluminium alloy subjected to bending. He studied the effect of the sheet

thickness on the flexural rigidity, but the size effect was not recorded. Furthermore, Ellis and

Smith [58] studied the thin plates of steel and aluminium under cylindrical bending and found

that the characteristic length of homogeneous metals is of the order of atomic particle distances

and that this influence was negligible. Because of the immeasurability of this length scale (mi-

croscopic effects are insignificant compared to macroscopic material behaviour, so the micropolar

theory is not required to describe such materials), the studies did not yield specific values for the

characteristic length. Although these investigations were unsuccessful, they pointed scientists in

the direction of studies on materials with a more pronounced microstructure compared to metals

(e.g., [59]).

The analytical and experimental procedure for the determination of the micropolar material

parameters was given by Gauthier and Jahsman in [60] as well as in comprehensive Gauthier’s

doctoral thesis [61], but apparently without particular success in the experimental part, since an

opposite trend to the expected one has been observed (anti-micropolar behaviour). They derived

analytical solutions based on the micropolar theory for a rectangular plate under cylindrical

bending and for a cylinder under axial tension or torsion. In order to validate the analytical

solutions with experiments, composite specimens were artificially created using an epoxy matrix

with uniformly distributed aluminium shots that have elastic modulus 20 times higher than the

epoxy resin. The Poisson’s ratio and Young’s modulus were obtained by measuring the axial

and radial displacement of a cylinder subjected to tensile loading. Three cylinders of different
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sizes were subjected to torque moment, where the occurrence of a size-effect was expected.

Through this test, by calculating the torsional rigidity for several different samples, the value of

the characteristic length for torsion and the polar ratio could be obtained. However, an inverse

trend in behaviour was observed, i.e., the thinner specimens exhibited less rigidity than the thick

ones. The third experiment, which we shall call Gauthier’s pure-bending test, is still of interest

to scientists and will be discussed in more detail in Chapter 5. Bigoni and Drugan [62] shed a

light on the reason why Gauthier’s specimens exhibited behaviour contrary to expectations; a

composite material will behave as micropolar if the inclusions of the material is less stiff than its

matrix. Later, the anti-micropolar behaviour of the material has also been frequently reported

(e.g. [63]).

Further significant contributions in experimental procedures for determining micropolar ma-

terial constants are provided by Lakes and his co-workers, who investigated size-effect phenom-

ena (e.g. [11, 64, 65]) and conducted experiments on specimens of various materials [13, 65, 66].

Nowadays, his main focus is on the study of auxetic materials and experimental investigation of

material parameters on 3D printed samples [67–70]. Unfortunately, the experimental validation

is still insufficient, and the way to understand and develop accurate experimental procedures

can be sought in reliable and robust numerical algorithms, which should broaden the range of

solvable problems and open new opportunities for numerical simulation of experimental schemes.

1.5 Research aims

The research aims of this thesis are:

1. To conduct a study on the manifestation of interpolations on Lie groups SE (3) - helicoidal

interpolation and SR (6) - fixed-pole approach in linear analysis and their relationship with

the linked interpolation.

2. Development of a new enhanced fixed-pole interpolation and investigation of its application

in the static and dynamic analysis of the Timoshenko beam.

3. Development of new 2D and 3D finite elements for linear static and dynamic analysis

of the micropolar continuum using the enhanced fixed-pole (EFP ) interpolation for the

displacement field.

4. Establishment of the value of the coupling number for perforated high mass density (HMD)
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aluminium specimens through the numerical simulation of the pure bending test.

5. To determine whether the classical theory can accurately describe the strain field and the

value of stress concentration of aluminium strips with a hole under tension, based on the

presented precise methodology that compares numerical and experimental results obtained.

6. To investigate whether the micropolar theory can provide a more suitable model for de-

scribing the problem discussed in point 5 and to propose a methodology for identifying

additional micropolar parameters.

1.6 Thesis scope

The research carried out in the framework of this dissertation consists of two main parts:

(i) Static and dynamic numerical analysis of a micropolar continuum using newly developed

micropolar finite elements with the enhanced fixed-pole interpolation

(ii) Experimental investigation on the problems in which some effects are expected to be de-

scribed by the micropolar theory and where we aim to determine the micropolar material

parameters using the newly developed finite elements.

1.6.1 Numerical analysis

As a starting point, we present in Chapter 2 a linear elastic micropolar model, where the equa-

tions of motion, kinematic and constitutive equations for the 3D micropolar continuum are given.

Problems in the numerical implementation of the micropolar continuum may arise due to the

existence of an additional kinematic field (microrotation). Depending on the choice of interpo-

lation functions for interpolating the unknown fields, the shear-locking effect (in linear analysis)

and the problem of non-objectivity (additionally in the case of non-linear analysis) may occur.

Hence, in order to develop high-quality micropolar finite elements, we investigate in Chapter 3

how two different approaches (helicoidal interpolation and fixed-pole approach) emerged from

an analysis of geometrically exact beams and manifest themselves in the linear analysis. Then

for the purpose of improvement, we investigate their relationship with the linked interpolation

which is known to provide an exact solution for the Timoshenko beam for arbitrary polynomial

loading of order p and a sufficient finite number of nodal points m (m ≥ p+ 4,m ≥ 3 for point

loading). Based on this study, the enhanced fixed-pole interpolation (EFP) is derived.
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Motivated by the good properties of EFP interpolation in the numerical analysis of the 1D

micropolar continuum (Timoshenko beam), we derive a formulation for a 3D micropolar finite

element in Chapter 4, where EFP interpolation is used to interpolate the displacement field,

while the microrotation field is interpolated by Lagrangian polynomials. After ensuring the

convergence of the newly developed finite elements through a set of patch tests, two additional

static benchmark problems are analysed, followed by a vibration analysis of 3D plates with

different geometries and boundary conditions, comparing the numerical solutions with those

obtained using Lagrangian elements. Moreover, we also present the membrane micropolar finite

elements by reducing the newly developed formulation which are then applied in the vibrational

analysis of the 2D micropolar continuum.

1.6.2 Experimental analysis

Two specific tests that are expected to be better described by the micropolar theory have been

experimentally analysed here:

(a) In Chapter 5, a four-point bending test on aluminium HMD specimens with artificially

drilled holes in a regular pattern has been carried out based on Gauthier’s problem. Fol-

lowing [71] where the characteristic length for bending was determined based on Gau-

thier’s analytical solution and experimentally obtained strains measured by strain gauges,

we present approach for identifying the second micropolar material parameter – the cou-

pling number. An inverse numerical analysis has been conducted on homogenised models of

specimens (modelled without voids), discretised by the developed micropolar finite elements

where the coupling number is determined based on the obtained numerical displacement

values.

(b) In Chapter 6, the laboratory uniaxial tensile tests on three types of aluminium strips (PH

specimens) with central circular hole have been performed to analyse stress concentration

at the edge of the hole and the strain profile across the cross-section cut through the middle

of the hole. Strain gauges and the 3D contactless optical measuring GOM system have

been used for measuring strains and displacements, respectively. For the purpose of seeking

an answer to our fundamental question which states: “Can the classical theory of elasticity

sufficiently well describe the considered problem? ”, we compare the obtained experimental

results with analytical and numerical solutions. Furthermore, we examine whether the
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micropolar theory can provide a more suitable model and we suggest a methodology based

on parametric and inverse numerical analysis for the identification of the micropolar pa-

rameters present in the problem (coupling number and characteristic length for bending).

13



14



Chapter 2

Micropolar theory of elasticity

”Men pass away, but their deeds abide.”

The last words of Augustin-Louis Cauchy (1857.)

In this Chapter, the fundamental laws and theorems of a three-dimensional linear elastic microp-

olar continuum are presented, leading to the stress and couple-stress tensor fields. Equations

of motion, kinematic and constitutive equations are then derived in a form applicable to lin-

ear analysis. The three-dimensional formulation is then reduced to two special cases of the

two-dimensional formulation: plane stress and plane strain, which will be the focus of the exper-

imental investigation in this thesis.

2.1 Generalised Cauchy’s stress theorem

It is generally considered [9,72] that a solid body consists of small material particles (molecules)

between which exists a balanced system of intermolecular (internal) forces that prevent the body

from being deformed when no external force acts upon it. As a result of the action of external

loading, the body will deform, causing the repositions of molecules which lead to a change in the

distances between the particles, and the internal forces. The process of deformation of the body

will persist until the establishment of the equilibrium between external and internal forces [72].

In other words, if the body is in equilibrium, the internal and external forces will have the

same magnitude but different directions. In continuum mechanics, forces can be divided into

two fundamental categories: volume and surface forces. Volume (body) forces are distributed to

each material particle within the entire volume of the body (e.g., internal intermolecular forces,
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gravitational force or electromagnetic force). On the other hand, forces acting on the surface

of the body are e.g., contact forces between two bodies, atmospheric pressure or other types of

external forces distributed over the body surface. If we observe a part of a body with a surface

on which forces occur due to the interaction between this part of the body and its remainder,

these forces are also surface forces.

Let us now consider a body B composed of continuous matter occupying the volume V,

which is bounded by the surface S in 3D Euclidean space with an orthonormal unit basis ei for

i = 1, 2, 3. Let us focus on an arbitrarily chosen material particle within the body B, denoted as

X. The position of particle X is defined by the initial position vector ro with respect to the origin

O of the Cartesian coordinate system (x1, x2, x3) at the initial time t0 when no external force is

acting on the body. If the body is subjected to a system of external forces consisting of specific

body (volume) force pv and moment mv, as well as a specific surface force ps and moment ms,

the body deforms. The current position of the material point X is then defined by the position

vector r at time t, representing the current (deformed) configuration (see Fig. 2.1).

O e1e3

e2

I
.

II

Deformed 
configuration:

x2

x1

x3

r

X

ps

ps

ms

ms

s

v

Δv

mv

pv

P

Undeformed 
configuration:

X
V

Sro

Figure 2.1: Initial (undeformed) and deformed configuration of the continuous body.

Let us imagine now that the deformed body, under equilibrium, is cut into two parts (I and
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II) by an arbitrary flat plane P passing through the point X. If we remove part II, the remaining

part I must remain in equilibrium. To achieve this, an appropriate system of internal forces

must appear on the plane. The resultant of the internal forces and the moment of part I, caused

by part II for the observed plane, is denoted by F and M, respectively. Only a portion of the

internal forces acts on an arbitrarily small part of the surface ∆s defined by a unit normal vector

n, resulting in a force vector ∆F and an additional couple vector ∆M as shown in Fig. 2.2.

P
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e2

x2

x1

x3

ps

ms
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pv Δs
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ΔF

I

r

Figure 2.2: Internal forces and moments acting on a small surface of part I of the observed body
under the action of an external load.

The ratio between the force vector ∆F, and the couple vector ∆M and the surface ∆s

represents a mean stress vector t̃ and a mean couple-stress vector m̃, respectively, as

t̃ =
∆F
∆s

, m̃ =
∆M
∆s

. (2.1)

In order to describe the state of stress in the material particle X, according to Cauchy’s principle

we can imagine that a surface around the considering point ∆s is converging to a an infinitesimally

small surface ds (limiting process) [73] defining the stress vector at X as

t(r, t,n) = lim
∆s→0

t̃ =
dF
ds
. (2.2)

The stress vector field t(r, t,n) depends on the position vector r in time t, and the unit normal

vector n (directed outward) of the small surface element ds.

According to Cauchy’s (or classical) theory of elasticity, the interaction between two material

particles is described only by force vector. In other words, this means that no distributed
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volume mv or surface moments ms can be applied in classical theory, that is, a moment can

only be defined as the product of force and moment arm around a certain point. Therefore, the

response of a body under the action of external forces is described by a stress and strain tensor,

both of which symmetric as a consequence of moment equilibrium and stored elastic energy.

Consequently, at the surface defined by the plane dividing the body into two arbitrary parts,

there is a surface force loading caused by a removed part of the body, which results in a stress

vector t (with normal and tangential components). This surface load on an arbitrarily small part

of the surface ∆s has a resultant force vector ∆F, and a moment vector ∆M around the material

point X. However, if we consider an infinitesimally small surface ∆s→ 0, then the moment arm

also tends to zero, which defines the couple-stress vector at point X as

lim
∆s→0

m̃ = 0. (2.3)

In the micropolar continuum theory, that takes into account the microstructural effects, the

interaction between neighbouring particles additionally depends on their rotations, which can

lead to additional surface moments. Thus, on the considered surface ∆s, there exist both, a

surface force load and a surface moment load. If we now consider an infinitesimal surface ds

around the material point X after the limiting process, there also exists a couple-stress vector

field at X as

m(r, t,n) = lim
∆s→0

m̃ =
dM
ds

. (2.4)

For different orientation of the surface element ∆s with the corresponding normal vector, the

associated stress and couple-stress vectors at a point under consideration also vary. In order to

prove the existence of stress tensor and couple-stress tensor, we start here from the fundamental

laws and axioms of continuum mechanics.

Law of Conservation of Mass

The mass within the system remains constant and it cannot be created or "wiped out" as time

progresses, regardless of the shape or configuration of the body.

The total mass of the body B, which fills the volume v in space at the time t, is obtained as
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follows

mB =

∫
v
ρ(r, t)dv, (2.5)

where the scalar field ρ(r, t) represents the mass density over the body in the deformed state.

Considering that the mass is independent of the configuration of the body, we have

∫
v
ρ(r, t)dv =

∫
V
ρ0(ro)dV, (2.6)

where ρ0 is the mass density of the body in the reference configuration. Since the mass of the

body, as well as the mass of an arbitrary part of the body, is conserved during motion, the change

in mass over time must be equal to zero [9]

d

dt
(ρdv) = 0, (2.7)

Balance of Linear Momentum

The change in linear momentum L of a body or any part of that body during the time t is equal

to the vectorial sum of all external forces F acting on that body, or on the considered part of the

body including the internal forces resulting from the interactions between the particles within the

body.

According to the Newton’s second law it follows

dL
dt

= F, (2.8)

which can be applied for the body B of a volume v bounded by a surface s, and subjected to

the external specific surface force ps and volume force pv as follows

d

dt

∫
v
(ρṙ)dv =

∫
v
[pv(r, t)]dv +

∫
s
[ps(r, t,n)]ds. (2.9)

Similarly, we can write the equation of momentum balance for an arbitrary part i of the body B

of a volume vi surrounded by a surface si where we have the additional surface forces that occur
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due to the interaction between this part of the body and its remainder, and thus, we can write

d

dt

∫
vi

(ρṙ)dv =

∫
vi

[pv(r, t)]dv +

∫
si

[t(r, t,n)]ds, (2.10)

Taking into account the law of conservation of mass, that is, d
dt(ρdv) = 0, we can write

∫
vi

(ρr̈)dv =

∫
vi

[pv(r, t)]dv +

∫
si

[t(r, t,n)]ds, (2.11)

where superimposed dot (•̇) and double dot (•̈) represent differentiations over the time, i.e., the

velocity and acceleration.

Balance of Angular Momentum

The change in the angular momentum (moment of momentum) of a body or any part of that

body with respect to the reference point O during the time t is equal to the vectorial sum of all the

moments acting on the body, or on the observed part of the body including the surface moments

which arise within the body due to the interaction between the part of the body and its rest.

Here, we can note that the formulation of the balance of linear momentum is the same as in

the Cauchy’s continuum theory. However, the formulation for the balance of angular momentum

in the micropolar continuum differs from the classical one because it contains additional term

associated with the microinertia of a material particle, as well as the distributed body mv and

surface couples ms. The balance of angular momentum for the whole body follows as

d

dt

∫
v
(r× ṙρ+ Jφ̇)dv =

∫
v
[r× pv(r, t) +mv(r, t)]dv +

∫
s
[r× ps(r, t,n) +ms(r, t,n)]ds, (2.12)

while for an arbitrary part of the body is [23]

d

dt

∫
vi

(r× ṙρ+ Jφ̇)dv =

∫
vi

[r× pv(r, t) + mv(r, t)]dv +

∫
si

[r× t(r, t,n) + m(r, t,n)]ds,

(2.13)∫
vi

(r× r̈ρ+ Jφ̈)dv =

∫
vi

[r× pv(r, t) + mv(r, t)]dv +

∫
si

[r× t(r, t,n) + m(r, t,n)]ds.

(2.14)

where φ is a microrotation vector that arises as a consequence of considering the microstructure of

the material in micropolar theory. This additional degree of freedom gives each material particle

an orientation and it is completely independent of the skew-symmetric part of the displacement
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gradient at the observed point (macrorotation) [3]. Since there is a microrotation vector, a

second-order tensor of a material microinertia density J also occurs which refers to the resistance

of the particles inside the material to changes in its rotational motion. It was first introduced by

Eringen in [74], where he also derived the conservation law for the microinertia density tensor.

Generally speaking, the microinertia density is a tensor, but if we consider a special case of a

linear micropolar elasticity where particles have a spherical shape (as we do in this thesis for

simplicity), tensor J becomes a diagonal tensor with components ρj, that is, J = ρjI, where I

stands for a diagonal identity matrix, and j represents a microinertia coefficient that depends on

the internal structure of a material and it is necessary to determine it experimentally for each

material. In other words, the microinertia density tensor becomes the identity tensor multiplied

by a scalar.

Cauchy’s Fundamental Lemma

The stress vectors acting on both opposite sides of a material area through any particle in the

body have equal magnitude but opposite direction [73]

t(r,n) = −t(r,−n). (2.15)

To generalise this Lemma to the micropolar continuum, we start from its proof.

Let us consider now an arbitrary part of the deformed body B, defined by the surface s′

enclosing the volume v′. The volume v′ contains a material particle X through which passes an

arbitrary plane P that divides the body (and the observed part of the body) into two volumes

v1 and v2 bounded by the surfaces s1 and s2 respectively, where both parts share a common

surface ∆s (see Fig. 2.3). The surfaces s1 and s2 are defined by unit normal vectors n1 and n2,

respectively. The balance of the linear momentum of the entire volume v′ = v1 + v2 is

∫
v′

(ρr̈)dv =

∫
v′

[pv(r, t)]dv +

∫
s′

[t(r, t,n)]ds, (2.16)

while applying this first law of motion to v1, we have

∫
v1

(ρr̈)dv =

∫
v1

[pv(r, t)]dv +

∫
s1

[t(r, t,n)]ds+

∫
∆s

[t(r, t,n1)]ds. (2.17)
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Similarly, for part v2 we get

∫
v2

(ρr̈)dv =

∫
v2

[pv(r, t)]dv +

∫
s2

[t(r, t,n)]ds+

∫
∆s

[t(r, t,n2)]ds. (2.18)

and subtracting equations (2.17), (2.18) from (2.16) for whole observed part of the body v′ we

obtain

0 =

∫
∆s

[t(r, t,n1) + t(r, t,n2)]ds. (2.19)

For lim
∆s→0

we get

t(r, t,n1) + t(r, t,n2) = 0, (2.20)

and considering that n1 = −n2, there follows equality (2.15), which proves Cauchy’s Fundamental

Lemma [7].
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Figure 2.3: Arbitrary part of the body.

In a similar way, the lemma can be generalised for the couple-stress vector, where the balance

of angular momentum can be applied to the arbitrary part of the body of volume v′

∫
v′

(r× ρr̈ + Jφ̈)dv =

∫
v′

[r× pv(r, t) + mv(r, t)]dv +

∫
s′

[r× t(r, t,n) + m(r, t,n)]ds, (2.21)
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and its two parts v1 and v2, whose expressions are subtracted from (2.21) from to get

0 =

∫
∆s
{r× [t(r, t,n1) + t(r, t,n2)] + m(r, t,n1) + m(r, t,n2)}ds, (2.22)

and using (2.15), as well as n2 = −n1 we can eventually prove that for the couple-stress vector

there follows

m(r,n) = −m(r,−n). (2.23)

Cauchy’s Theorem

If a continuous stress vector field exists within the continuum, that describes the stress distribution

acting at each point on a surface and depends linearly on a unit vector normal n of a surface,

there also exists a second-order stress tensor that is independent of n, such that [75]

t(r, t,n) = σ(r, t)n. (2.24)

In order to prove the existence of a stress tensor σ(r, t) that completely defines the state of

stresses at a certain point, we can begin by considering a tetrahedral element in a continuum.
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Figure 2.4: Tetrahedral element in continuum media with the mean stress and couple stress
vectors on a slanted surface (left) and on surfaces with the normals parallel to the coordinate
axes (right).

This tetrahedron surrounds the particle X with local orthogonal unit base vectors ei, and has

three edges which are parallel with both, te base vectors ei and the Cartesian coordinate axes xi

for i = 1, 2, 3. The slanted face (the base) of the tetrahedron has a surface ∆s with an outward
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normal vector n = [n1 n2 n3]T , while the surfaces of the remaining sides are denoted by ∆si

with the corresponding normals ni, respectively for each side (see Fig. 2.4). The tetrahedron is

subjected to the volume loads pv andmv, and on each surface there are the mean stress vectors t̃,

t̃i and the mean couple-stress vectors m̃, m̃i. The linear momentum balance of the tetrahedron

of volume ∆v = 1
3h∆s, where h represents the height of the tetrahedron, can be written as

∫
∆v

[ρr̈− pv(r, t)]dv = t̃∆s+ t̃1∆s1 + t̃2∆s2 + t̃3∆s3, (2.25)

and if we take into consideration that the areas of the sideward surfaces can be expressed as

∆si = (nTei)∆s = ni∆s, (2.26)

we obtain ∫
∆v

[ρr̈− pv(r, t)]dv = t̃∆s+

3∑
i=1

t̃ini∆s. (2.27)

As the tetrahedron shrinks to the considered particle X, its volume tends to zero as lim
∆v→0

,

and thus becomes a third-order differential, that is negligible in comparison when its surface

approaches zero as lim
∆s→0

(which is a second-order differential). Therefore, for lim
∆v→0

and lim
∆s→0

,

we can write

0 = t(r,n)∆s+
3∑
i=1

t(r,n)ni∆s. (2.28)

After dividing equation (2.28) by ∆s, taking into account Cauchy’s Lemma (2.15), and that the

surface normal vectors are ni = −ei, we get

t(r,n) = −
3∑
i=1

t(r,−ei)ni, (2.29)

t(r,n) =

3∑
i=1

t(r, ei)ni, (2.30)
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where ni can be substituted as in (2.26)

t(r,n) =
3∑
i=1

t(r, ei)(eTi n), (2.31)

t(r,n) =
3∑
i=1

t(r, ei)eTi︸ ︷︷ ︸
σ(r)

n, (2.32)

which finally leads us to the Cauchy’s theorem

t(r, t,n) = σ(r, t)n (2.33)

proving existence of the stress tensor field σ(r, t), which is independent of the normal n and

reads

σ = σijeie
T
j (2.34)

where σij represents the component of the second-order stress tensor. Its matrix representation

is

[σij ] =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (2.35)

where the first index indicates the direction of the stress components, while the second index

represents their surface normal, with respect to the coordinate base. The stress components σij

for i = j represent normal stresses, while those with i 6= j are shear stresses.

Note: To simplify notations in this thesis, the scalar (dot) product between two vectors (a,

b) or two second-order tensors (A, B) or between a vector and a tensor, is represented as a

matrix multiplication, as follows: a · b = aTb, A ·B = AB, a ·B = aTB and A · b = Ab.

Since the interaction between two neighbouring points in a micropolar continuum is described

not only by the stress vector but also by the additional couple-stress vector, we introduce an

additional couple-stress tensor by generalising the Cauchy’s theorem. Let us therefore apply

the balance of angular momentum (2.14) to the observed tetrahedral element, where now on

each surface ∆s, ∆si, along with the mean stress vectors t̃, t̃i, there are also mean couple-stress
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vectors m̃, m̃i (see Fig. 2.4) as

∫
∆v

(r× r̈ρ+ Jφ̈)dv =

∫
∆v

[r× pv(r, t) + mv(r, t)]dv +

∫
∆s

[r× t(r, t,n)]ds

+ m̃∆s+ m̃1∆s1 + m̃2∆s2 + m̃3∆s3. (2.36)

According to the Cauchy’s stress theorem, we can replace the stress vector field with t(r, t,n) =

σ(r, t)n and rewrite the equation (2.36) as

∫
∆v

(r̂r̈ρ+ Jφ̈)dv =

∫
∆v

[r̂pv(r, t) + mv(r, t)]dv

+

∫
∆s

[r̂σ(r, t)n]ds+ m̃∆s+

3∑
i=1

m̃i∆si. (2.37)

where r̂ is the skew-symmetric matrix

r̂ =


0 −rx3 rx2

rx3 0 −rx1

−rx2 rx1 0

 (2.38)

which replaces the cross product ” × ” in general way a × b = âb, ∀ a,b ∈ R3. For further

manipulation of equation (2.37), we need to introduce the divergence theorem for 3D space,

which states that the flux of a 3D vector field f through a closed surface S with an outward

normal n is equal to the divergence of this vector field over the volume V bounded by the surface

S [76]

∫
V

(div f)dV =

∮
S

(fn)dS. (2.39)

The divergence of the vector field is computed as div f = ∇f, where ∇ is a vector of partial

derivatives with respect to all coordinate axes [77]. This theorem can be generalised to the

second-order tensor T as follows

∫
V

(div T)dV =

∮
S

(Tn)dS. (2.40)

In [42], it has been established that the divergence of a tensor is not a uniquely defined operator;

that is, it can be expressed as ∇TT =
∂Tpj
∂xp

ej or T∇ =
∂Tip
∂xp

ei, therefore, special attention should
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be paid to this. The equation (2.37) can be written as

∫
∆v

(r̂r̈ρ+ Jφ̈− r̂pv(r, t)−mv(r, t)− div(r̂σ(r, t)))dv = m̃∆s+
3∑
i=1

m̃i∆si. (2.41)

after applying the divergence theorem. Similarly as before, we consider a situation when the

tetrahedral element shrinks to a material particle X, reducing the left-hand side of (2.41) to a

third-order differential and the right-hand side of (2.41) to a second-order differential, i.e.,

0 = m(r,n)∆s+
3∑
i=1

m(r,n)ni∆s. (2.42)

After dividing by ∆s, taking into account generalised Cauchy’s Lemma (2.23), and that the

surface normal vectors are ni = −ei, we obtain

m(r,n) = −
3∑
i=1

m(r,−ei)ni, (2.43)

m(r,n) =
3∑
i=1

m(r, ei)eTi︸ ︷︷ ︸
µ(r)

ni. (2.44)

This bring us to the generalised Cauchy’s theorem [7]

m(r, t,n) = µ(r, t)n, (2.45)

proving existence of the couple-stress tensor field µ(r, t), which is independent of the normal n

and reads

µ = µijeie
T
j (2.46)

where µij represents the components of the second-order couple-stress tensor. Its matrix form is

[µij ] =


µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 , (2.47)

where the first index indicates the direction of action (axis around which a couple-stress acts),

while the second index represents the normal of the plane of action, with respect to the coordinate
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base. The couple-stress components µij for i = j are the torsion couple-stresses, while for i 6= j

they are the bending couple-stresses.

In classical theory, the stress tensor σ is always symmetric, but in micropolar theory both

the stress tensor σ and the couple-stress tensor µ are generally non-symmetric, due to the action

of the moment loads mv and ms, and the existence of the divergence of the couple-stress tensor

divµ. In a situation where µij = 0, mvi = 0 and msi = 0, the micropolar theory reduces to the

classical theory.

2.2 Equations of motion in linear analysis

In this thesis, we limit ourselves to the linear analysis, where small displacements and rotations

are considered. The first set of equation of motions for micropolar continuum can be derived from

the law of conservation of linear momentum, where the divergence theorem is also applied, while

the second set can be analogously derived from the law of conversation of angular momentum.

Using the Einstein convention on repetitive indices, the equations of motion of a micropolar

(Cosserats’) continuum in linear analysis with density ρ and material microinertia density Jik =

ρjδik in a rectangular spatial system with co-ordinates x1, x2 and x3 can be therefore written

as [3]

σij,j + pvi = ρüi, µij,j − εijkσjk +mvi = ρjφ̈i, (2.48)

where εijk is the permutation tensor (Levi-Civita symbol) with ε123 = ε231 = ε312 = 1, ε132 =

ε321 = ε213 = −1 with all other components equal to zero. The Kronecker delta symbol δij is

defined as

δij =


1, if i = j,

0, otherwise.
(2.49)

The comma in σij,j and µij,j denotes differentiation with respect to the spatial co-ordinate xj .

The displacement and microrotation are labelled as ui and φi, respectively, while pvi and mvi are

the distributed volume force and moment. Since the surface is massless, the natural boundary

condition remains the same as in static analysis (derived in detail in [42]), and they are valid at

any point of the surface with prescribed loading as

σijnj = psi and µijnj = msi (2.50)
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where ni are components of the outward unit normal to the considered surface loaded by force

loading psi or moment loading msi. On the remaining part of the boundary, we assign the

kinematic boundary conditions.

2.3 Kinematic equations in linear analysis

When the influence of the microstructure of the material is taken into account, the number

of degrees of freedom increases. Therefore, in the micropolar continuum theory, the difference

between the initial and deformed state of the body is described by displacement field u(x1, x2, x3),

and now, with additional microrotation filed φ(x1, x2, x3). The microrotation attributes an

orientation to each material particle and it is completely independent of the displacement field

as well as its derivatives [15]. Due to the existence of an independent microrotation field φ there

also exists a corresponding change of microrotation, i.e. a curvature (angular strain) tensor

κ. The equations that establish the relationship between the strain/curvature fields and the

displacement/microrotation fields are known as kinematic equations.

The kinematic equations are obtained by comparing the geometry of the initial state of a planar

body on a differential level (parallelepiped) with its deformed state (geometric approach). The

strain and angular strain (curvature) functions are then expanded into Taylor series, where

higher-order terms are neglected. By generalising to the 3D micropolar continuum, the strain

ε and curvature κ tensor are obtained (see [42] for a step-by-step derivation). The micropolar

strain tensor ε is derived as
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


∂u1
∂x1

∂u1
∂x2

+ φ3
∂u1
∂x3
− φ2

∂u2
∂x1
− φ3

∂u2
∂x2

∂u2
∂x3

+ φ1

∂u3
∂x1

+ φ2
∂u3
∂x2
− φ1

∂u3
∂x3

 , (2.51)

which can be written in component form as

εij = ui,j + εijkφk. (2.52)

We can observe that the normal micropolar strains are equal to those in the classical con-

tinuum theory, while the influence of the microrotation is present only in shear strains εij , i, j =

1, 2, 3, i 6= j. The curvature (angular strain) tensor represents the gradient of the microrotation
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field 
κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

 =


∂φ1
∂x1

∂φ1
∂x2

∂φ1
∂x3

∂φ2
∂x1

∂φ2
∂x2

∂φ2
∂x3

∂φ3
∂x1

∂φ3
∂x2

∂φ3
∂x3

 (2.53)

that is

κij = φi,j , (2.54)

where the first index of curvature denotes the axis around which the rotation occurs, while the

second index indicates the direction of differentiation of the microrotation. The diagonal terms

in curvature tensor represent torsional strains that exist only in 3D.

2.4 Constitutive equations in homogeneous and isotropic linear

elasticity

In order to be able to fully determine the states of stress and strain, it is necessary to attribute

certain physical properties to the deformable continuum. In other words, we should determine

the relation between stresses and strains or couple-stresses and curvatures, that is achieved by

constitutive equations. This set of equations describes the macroscopic behaviour of certain

materials, which results from the internal constitution of the material.

If we consider an ideally elastic material in the case of small deformations, there exists a linear

function between stress and strain independent of time and loading history (Hooke’s law), i.e.

the stress changes proportionally to the strain, and when σij = 0, then is also εij = 0. A general

relationship between two second-order tensors, i.e., stress σ and strain ε tensors, is described by

the fourth-order tensor C1, also known as the constitutive tensor or elasticity matrix [72]. This

relationship can be expressed in the Cartesian component form (generalised Hooke’s law) as [78]

σij = C1ijklεkl (2.55)

for i, j, k, l = 1, 2, 3, where the total number of components C1ijkl is generally 81, but in special

cases (as for a homogeneous isotropic material considered here) this number of independent coef-

ficients decreases. The components of the constitutive tensor in linear analysis remain constant,

and when a material isotropy is assumed (for a material having the same physical properties in
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each direction), it leads to a reduction in the number of independent elasticity constants in the

constitutive tensor (in classical theory, there are only two constants) [78].

In the context of this thesis we only investigate linear-elastic isotropic centro-symmetric mi-

cropolar material, where we have two independent fourth-order constitutive tensors C1 and C2

that relate pair of independent, generally non-symmetric stress tenors σ and µ with a pair of

independent, also generally non-symmetric, strain tensors ε and κ such that

σij = Cijklεkl, (2.56)

µij = Dijklκkl. (2.57)

The stress and strain tensors are symmetric according to the classical theory, and therefore, their

constitutive law has only two independent elastic constants λ and µ [78], named after French

mathematician Gabriel Lamé (Lamé constants). However, due to the asymmetry of stress and

strain tensors in the micropolar theory, the constitutive tensor C1 is symmetric with three

independent parameters as follows [3, 42,79]

C1ijkl = λδijδkl + µ (δikδjl + δilδjk) + ν (δikδjl − δilδjk) , (2.58)

with a new micropolar parameter ν, in addition to the classical constants. The Kronecker symbol

is denoted as δij and defined in (2.49), and substituting the expression of the constitutive tensor

C1 (2.58) into (2.56), we can write a first set of constitutive equations as

σ11 = (λ+ 2µ)ε11 + λ(ε22 + ε33), (2.59)

σ12 = (µ+ ν)ε12 + (µ− ν)ε21, (2.60)

σ13 = (µ+ ν)ε13 + (µ− ν)ε31, (2.61)

σ21 = (µ− ν)ε12 + (µ+ ν)ε21, (2.62)

σ22 = λ(ε11 + ε33) + (λ+ 2µ)ε22, (2.63)

σ23 = (µ+ ν)ε23 + (µ− ν)ε32, (2.64)

σ31 = (µ− ν)ε13 + (µ+ ν)ε31, (2.65)

σ32 = (µ− ν)ε23 + (µ+ ν)ε32, (2.66)

σ33 = λ(ε11 + ε22) + (λ+ 2µ)ε33, (2.67)
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or consolidated as

σij = λεkkδij + (µ+ ν)εij + (µ− ν)εji. (2.68)

It can be observed that the normal stress components remain the same as in the classical theory,

while the shear stresses are non-symmetric and differ for the micropolar theory. This constitutive

relationship may be written in a matrix form like



σ11

σ12

σ13

σ21

σ22

σ23

σ31

σ32

σ33



=



(λ+ 2µ) 0 0 0 λ 0 0 0 λ

0 (µ+ ν) 0 (µ− ν) 0 0 0 0 0

0 0 (µ+ ν) 0 0 0 (µ− ν) 0 0

0 (µ− ν) 0 (µ+ ν) 0 0 0 0 0

λ 0 0 0 (λ+ 2µ) 0 0 0 λ

0 0 0 0 0 (µ+ ν) 0 (µ− ν) 0

0 0 (µ− ν) 0 0 0 (µ+ ν) 0 0

0 0 0 0 0 (µ− ν) 0 (µ+ ν) 0

λ 0 0 0 λ 0 0 0 (λ+ 2µ)


︸ ︷︷ ︸

C1



ε11

ε12

ε13

ε21

ε22

ε23

ε31

ε32

ε33



. (2.69)

The second symmetric constitutive tensor C2, which relates the couple-stress tensor and the

curvature tensor (2.57), has additional three micropolar constants α, β and γ, and it is derived

as [3, 42,79]

C2ijkl = αδijδkl + β (δikδjl + δilδjk) + γ (δikδjl − δilδjk) . (2.70)
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By substituting (2.70) into (2.57) we obtain the second set of constitutive equations as

µ11 = (α+ 2β)κ11 + α(κ22 + κ33), (2.71)

µ12 = (β + γ)κ12 + (β − γ)κ21, (2.72)

µ13 = (β + γ)κ13 + (β − γ)κ31, (2.73)

µ21 = (β − γ)κ12 + (β + γ)κ21, (2.74)

µ22 = α(κ11 + κ33) + (α+ 2β)κ22, (2.75)

µ23 = (β + γ)κ23 + (β − γ)κ32, (2.76)

µ31 = (β − γ)κ13 + (β + γ)κ31, (2.77)

µ32 = (β − γ)κ23 + (β + γ)κ32, (2.78)

µ33 = α(κ11 + κ22) + (α+ 2β)κ33, (2.79)

that is

µij = ακkkδij + (β + γ)κij + (β − γ)κji, (2.80)

which can be written in a matrix form as



µ11

µ12

µ13

µ21

µ22

µ23

µ31

µ32

µ33



=



(α+ 2β) 0 0 0 α 0 0 0 α

0 (β + γ) 0 (β − γ) 0 0 0 0 0

0 0 (β + γ) 0 0 0 (β − γ) 0 0

0 (β − γ) 0 (β + γ) 0 0 0 0 0

α 0 0 0 (α+ 2β) 0 0 0 α

0 0 0 0 0 (β + γ) 0 (β − γ) 0

0 0 (β − γ) 0 0 0 (β + γ) 0 0

0 0 0 0 0 (β − γ) 0 (β + γ) 0

α 0 0 0 α 0 0 0 (α+ 2β)


︸ ︷︷ ︸

C2



κ11

κ12

κ13

κ21

κ22

κ23

κ31

κ32

κ33



. (2.81)

2.4.1 Micropolar material parameters

Lamé elastic constants are commonly used in the theory of elasticity, while for engineering

calculations an alternative set of engineering (measurable) parameters is often more suitable

as they can be easily interpreted in terms of material behaviour under different conditions. To

ensure the physical meaning and stability of the material model, the limits on the values of Lamé
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elastic constants are computed as [80]

3λ+ 2µ > 0, µ > 0 (2.82)

by satisfying the positive definiteness of the constitutive tensor C. In the classical theory, these

two elastic constants are related to two well-known engineering parameters [73]

λ =
2nG

1− 2n
, µ = G, (2.83)

where G = E
2(1+n) is the shear modulus, n is Poisson’s ratio n ∈ 〈−1, 0.5〉, while E is Young’s

modulus. In the micropolar theory for a linear-elastic and isotropic material, we have additional

four elastic constants α, β, γ and ν, whose limits are also defined by satisfying positive definiteness

of C1 and C2, and follow as [60]

ν > 0, 3α+ 2β > 0, β > 0, γ > 0. (2.84)

These elastic constants are related to a new set of engineering parameters in the following way

[42,81]

ν =
GN2

1−N2
, α =

2Gl2t (1−Ψ)

Ψ
, β = Gl2t , γ = G(4l2b − l2t ). (2.85)

where N ∈ 〈0, 1〉 is a dimensionless coupling number that is a measure of the degree of coupling

between the microrotation and the macrorotation vector (skew-symmetric components of the

displacement gradient). When N = 1, the parameter ν tends to infinity, which is a case of the

so-called couple-stress elasticity [21] while, for N = 0, ν tends to zero, as in the classical elas-

ticity. The parameter Ψ ∈ 〈0, 3
2〉 is a dimensionless polar ratio of rotational sensitivity that has

a similar effect in torsion as the Poisson’s ratio in axial deformation. Characteristic lengths for

bending lb and for torsion lt are the parameters, which represent a measure of the respective stiff-

ening due to the microstructure of the material and they introduce the size-effect phenomenon

into consideration. The influence of the microstructure of the material on its macroscopic be-

haviour becomes relatively minor when the values of the characteristic lengths are significantly

smaller compared to the appropriate dimensions of the observed specimen (subjected to torsion

or bending). Consequently, the material could behave as predicted by classical theory (without

expecting the size-effect). For highly homogeneous metals, for example, the values of the char-

acteristic lengths could be of the order of the atomic spacing [79].
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It is very important to note that various authors have been using different notations for mi-

cropolar material parameters during the development of the micropolar theory. For example,

Nowacki [10], Eringen [82], Neff [83] and Cowin [84] have utilized distinct expressions for the

individual components of the constitutive tensor, and a comprehensive comparison of their nota-

tions can be found in [79]. In this thesis, the notation according to [40] has been adopted, which

is inspired by [10].

2.4.2 Plane stress and plane strain formulation

The governing equations of the three-dimensional micropolar continuum can be reduced to the

two dimensional formulation for its two special cases - the plane strain and the plane stress

conditions. In the two dimensional case there are only three degrees of freedom, i.e. two dis-

placements (u1, u2) and one in-plane (drilling) microrotation φ3. Hence, the kinematic equations

are reduced to 

ε11

ε12

ε21

ε22


=



∂
∂x1

0

∂
∂x2

0

0 ∂
∂x1

0 ∂
∂x2


u1

u2

+



0

1

−1

0


φ3 (2.86)

and κ31

κ32

 =


∂
∂x1

∂
∂x2

φ3. (2.87)

2.4.2.1 Plane strain

In the plane strain state it is assumed that the strain components involving the x3 direction are

equal to zero, that is ε33 = ε13 = ε23 = ε31 = ε32 = 0. That gives the reduced constitutive

equations as


σ11

σ12

σ21

σ22

 =


(λ+ 2µ) 0 0 λ

0 (µ+ ν) (µ− ν) 0

0 (µ− ν) (µ+ ν) 0

λ 0 0 (λ+ 2µ)



ε11

ε12

ε21

ε22

 =
E

1 + n


1−n
1−2n

0 0 n
1−2n

0 1
2(1−N2)

1−2N2

2(1−N2)
0

0 1−2N2

2(1−N2)
1

2(1−N2)
0

n
1−2n

0 0 1−n
1−2n



ε11

ε12

ε21

ε22

.
(2.88)
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It is also assumed that all microrotations around x1 and x2 axis are equal to zero, and therefore

all curvature components around these axis are zero, as well as the derivative in the out-of-plane

direction, e.i., κ11 = κ12 = κ21 = κ22 = κ23 = κ13 = κ33 = 0. This neglects certain micropolar

effects in the x3 direction, which leads to

µ31

µ32

 =

(β + γ) 0

0 (β + γ)


κ31

κ32

 =
2El2b
1 + n

1 0

0 1


κ31

κ32

 (2.89)

where elastic constant α, as well as the engineering parameters Ψ and lt do not manifest them-

selves in 2D formulation because they are related to torsional deformations.

2.4.2.2 Plane stress

For the plane stress condition it is assumed that all stresses related to the x3 direction are equal

to zero, that is σ33 = σ13 = σ23 = ε31 = σ32 = 0. Hence, the first set of constitutive equations is

reduced as



σ11

σ12

σ21

σ22


=



4µ(λ+µ)
λ+2µ

0 0 2µλ
λ+2µ

0 (µ+ ν) (µ− ν) 0

0 (µ− ν) (µ+ ν) 0

2µλ
λ+2µ

0 0
4µ(λ+µ)
λ+2µ





ε11

ε12

ε21

ε22


=

E

1 + n



1
1−n 0 0 n

1−n

0 1
2(1−N2)

1−2N2

2(1−N2)
0

0 1−2N2

2(1−N2)
1

2(1−N2)
0

n
1−n 0 0 1

1−n





ε11

ε12

ε21

ε22


,

(2.90)

while the constitutive relationship involving curvatures and couple-stresses remains the same as

for the plane strain condition.

36



Chapter 3

Manifestations of helicoidal

interpolation and fixed-pole approach

in linear elasticity

A part of the investigated relationship between linearised forms of some interpolation schemes

originated from the non-linear analysis of a 3D beam with a linked interpolation presented in this

Chapter is also shown in: [85] Grbac, L., Jelenić, G., Ribarić D., Grbčić Erdelj, S., "Hexahedral

finite elements with enhanced fixed-pole interpolation for linear static and vibration analysis of

3D micropolar continuum" International Journal for Numerical Methods in Engineering. 2024;

125(8):e7440; as well as the newly developed enhanced fixed-pole interpolation that emerged from

this study.

Analytical solutions can be obtained for a limited number of problems by solving differential

equations provided by theories of elasticity (that is, equilibrium equations/equations of motion,

kinematic and constitutive equations and additionally the compatibility equations that have not

been explicitly derived for the micropolar continuum in Chapter 2, but whose detailed derivation

can be found in [86] for the planar micropolar continuum), where the appropriate boundary con-

ditions must be also considered alongside these equations. Therefore, many practical problems

in structural analysis cannot be solved using the analytical approach, while in the micropolar

theory solving differential equations becomes even more complex, and closed-form solutions are

achievable only for a small number of very simple problems. For this reason, approximative
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methods based on the physical discretisation of a continuous system are used in structural anal-

ysis, where these differential equations are replaced by a system of algebraic equations [87]. The

finite element method (FEM) is the most commonly used numerical method in engineering anal-

ysis. Its roots are often associated with R. Courant, who provided a solution to the torsional

problem for a discretised domain using a polynomial approximation in his work [88] from 1943.

The practical application of FEM began in the aircraft industry during the 1950s, and significant

contributions to the early development of FEM have been attributed to O. C. Zienkiewicz [89]

and Y. K. Cheung [90]. Since its initial use in structural analysis, FEM has spread to other

areas of solid mechanics, fluid mechanics, etc. [87]. The first commercial computer programmes

based on FEM appeared in the 1970s, and since then a large number of FEM-based computer

software has been developed and widely used. Some of the best-known programmes for structural

analysis are Autodesk Robot, Tower Radimpex and STAAD.Pro, while software such as Ansys

and Abaqus are recognised for even broader applications (e.g. application in biomechanics or for

thermal, electromagnetic and acoustic analyses).

The main idea of FEM lies in a discretisation of a continuum model into smaller parts (finite

elements) which are interconnected by nodes, forming a finite element mesh through which the

load and kinematic quantities are transmitted. Each node contains the unknown parameters

of the system, whose solutions are approximated using the chosen shape function (e.g. a poly-

nomial) within the domain of the element. A set of algebraic equations of an individual finite

element is obtained in this way, and the system of finite element equilibrium equations for the

whole model is also obtained by assembling all finite element equations of the discretised model.

The solutions for the nodal unknowns, and then for the finite element fields, can be computed

by solving the system of algebraic equations for the entire model. Finite element solutions are

often obtained by variational principles [87, 89, 91]. The accuracy of numerical solutions based

on FEM is certainly influenced by the finite element mesh (number of elements, possible distor-

tion of elements in the mesh, etc.). The numerical solution of unknown fields approaches the

correct solution as the mesh of properly designed finite elements becomes denser. However, this

also increases the number of algebraic equations in the entire system that needs to be solved,

which extends the process of numerical calculation. Many authors have used various improved

interpolation functions and different approaches to formulate more efficient finite elements (see,

for example [92–95]).
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As mentioned in Chapter 1, further development of high-quality micropolar finite elements is

of great importance for the future progress of Cosserat theory and its application, both as a

simulation tool directly applicable to engineering problems and as a reliable modelling tool in

virtual experimental setups to determine unknown additional micropolar material parameters by

inverse analysis. Accordingly, one of the main objectives of this thesis is to develop new reliable

and high-quality finite elements for the linear static and dynamic analysis of the micropolar

continuum, which will then be used for the identification of micropolar material parameters by

inverse numerical analysis. In this work, a displacement-based approach is used, that is, the

nodal displacements as well as the nodal rotations are interpolated. Considering that the Timo-

shenko beam (in linear analysis) and Simo-Reissner beam [96,97] (in non-linear analysis) actually

represent a 1D micropolar continuum (due to the existence of independent rotational degrees of

freedom), they will be our starting point for formulating appropriate interpolation functions.

In the following, we provide a brief introduction to the Timoshenko beam theory as well as

the Simo-Reissner beam theory, specifically addressing how some potential problems may appear

during the implementation of those beam theories in the framework of FEM. We give a brief

overview of some known interpolation schemes and after that, we specifically analyse how the

standard and some more innovative interpolation schemes used in non-linear mechanics involving

large 3D rotations transform when the analysis becomes linear. Among these we specifically

address helicoidal interpolation [98], fixed-pole interpolation [99] and linked interpolation [100],

in addition to ordinary Lagrangian interpolation, pin-point the similarities in these interpolations

and numerically assess them. The knowledge of this interdependence is crucial for identifying

paths for possible enhancement and extension from the Timoshenko beam of arbitrary order to

a new finite element of arbitrary order for linear analysis of the 3D micropolar continuum.

3.1 Problems arising from FEM implementation of beam theories

with rotational degrees of freedom

A prismatic solid whose cross-sectional dimensions (height h and width w) are significantly

smaller than a longitudinal dimension (length L) can be considered as a beam. We can use beam

models to describe many engineering problems, which is the reason why the beam theory has

been studied and significantly developed for more than three centuries. The most well-known

and commonly used theories in linear analysis are the Euler-Bernoulli beam theory and the Tim-
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oshenko beam theory. Euler and Bernoulli derived the differential equation of the elastic line,

and their beam theory of bending is considered as the first comprehensive beam theory. This

theory does not take into account the shear strains of the beam cross-section, and thus makes

the displacement and the rotation mutually dependent quantities, that is, Euler-Bernoulli beams

have displacements u and dependent rotations, represented as derivatives of displacements du
dx ,

as their degrees of freedom. It is also assumed that the cross-section of the beam remains planar

and orthogonal to the centreline (reference axis) of the beam during deformation. However, the

shear strains cannot be neglected in some cases. Hence, the Timoshenko theory was developed

as an extension of the Bernoulli beam theory, where the effect of shear deformation is no longer

neglected. As Timoshenko theory additionally includes the angular deformation caused by the

shear deformation, the cross sections are no longer perpendicular to the neutral axis of the beam

after deformation. So, the total rotation of the cross-section of the beam is given by the rotation

of the tangent to the centreline and the shear deformation (see for example [6,8], for more detail

about these theories). In this thesis we will only consider the Timoshenko beam theory.

In the numerical analysis of the Timoshenko beam under the influence of transverse forces, the

problem of shear-locking arises due to the assumption of displacement and rotation independence.

If this problem is not properly treated, we obtain an artificial stiffness of the observed element,

which leads to extremely small values of displacements. This problem can be eliminated by ap-

plying reduced numerical integration or mitigated by increasing the degree of interpolation of the

Lagrangian polynomials [101]. One of the ways to improve the solution given by finite element

procedures is enhancing the displacement field with the rotations, i.e. by applying the so-called

linked interpolation which is already widely used and thoroughly investigated in finite element

applications of the Timoshenko beam [89, 102–104] and the Reissner-Mindlin plate theory [93].

An important feature of the linked interpolation is that the displacement is interpolated with a

polynomial of one-degree higher than the polynomial that interpolates the rotational unknowns.

To formulate the expression of the linked interpolation for the 3D Timoshenko beam finite ele-

ments, Jelenić and Papa [100] start from the analytical solution of the differential equilibrium

of the spatial beam. In this way, the linked interpolation yields exact solutions for an arbitrary

polynomial loading and a sufficient finite number of nodal points, thus eliminating the shear-

locking problem. The beam finite element with the linked interpolation gives the exact solution

of the entire unknown field and the exact strain and stress resultant distributions according to
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the Timoshenko beam theory. Jelenić and Papa have presented the linked interpolation in two

different ways. The first formulation represents an interpolation that depends on the material

and geometrical characteristics of the beam (a problem-dependent interpolation) by introducing

a full set of boundary conditions [105]. On the other hand, there is a formulation independent of

the material and geometrical properties of the beam (a problem-independent interpolation) [100].

Both interpolations give us the exact stiffness matrix [103].

The Timoshenko beam theory is based on small deformations and small rotations (first-order

deformation theory). The first who made a significant step in the development of beam theory in

the non-linear analysis is Reissner in [96] where the plane beam theory is based on large (finite)

deformations, i.e. on geometrically exact kinematic equations. The mathematical formulation of

the geometrically exact beam is very suitable for describing structures that can be subjected to

arbitrarily large rotations such as robotic arms, helicopter rotor blades, wind farms, cable ropes,

etc. Simo and Vu-Quoc extend geometrically exact beam theory to dynamic problems [106] and

additionally, Simo generalized the theory for 3D beams [97].

The implementation of Simo-Reissner’s theory within the framework of the finite element

method becomes non-trivial due to the property of spatial rotations. These rotations are defined

by orientation matrices belonging to the special orthogonal group SO(3) [107], which is also a Lie

group named after Norwegian mathematician Sophus Lie. Lie group G is both: a differentiable

(smooth) manifold and a continuous group [108]. Saying it is a manifold means that it looks

locally like n-dimensional space Rn [109]. For each Lie group there exists a corresponding Lie

algebra and the exponential map for mapping the algebra into the group. It is necessary to

direct a special attention to the process of interpolating the non-linear degree of freedom of the

configuration space (i.e. rotations), so that the property of objectivity of the solution with the

respect of the observed reference frame is not lost during the numerical procedure [110].

Borri and Bottasso [98, 111] were faced with the problem of defining the reference axis of

the beam during modelling curved mechanical elements (e.g., a helicopter propeller), so they

needed a formulation that would provide a solution independent of the chosen reference axis. As

a possible solution, they assumed that the reference axis of the deformed beam takes the shape

of a spatial helicoid resulting from the constant distribution of the translational and rotational

strain components along the beam. As a result, the position vector and the rotation tensor are

described by a helicoidal interpolation restricted to two-node beam elements only. The finite
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element obtained in this way is resistant to the shear-locking problem, and such a formulation

represents a possible solution to the problem of non-objectivity, although this was not the author’s

original intention.

Jelenić and Crisfield [112] proposed a path-independent geometrically exact isoparametric

spatial beam element of arbitrary order, in which the current local rotations are interpolated by

a strain-invariant interpolation, while the position vector is interpolated in a Lagrangian manner.

This formulation shows the property of strain invariance with respect to the displacement and

rotation of a rigid body and the problem of shear-locking is solved by reduced integration. It is

interesting to note that in the case of a beam finite element with two nodes, the strain-invariant

interpolation gives exactly the same formulation of the rotational field as the helicoidal interpo-

lation. In the linear analysis, the formulation takes the form of the Lagrangian interpolation for

both fields.

Papa Dukić et al. [113] presented a configuration-dependent interpolation for 2D beam finite

elements as an extension of the helicoidal interpolation to higher-order elements using a strain-

invariant methodology, and showed that such interpolation leads to solutions that are not subject

to shear-locking. Two variants were proposed of which, the first provided the solution that is

independent of the choice of reference axis, but not exact in linear analysis, except for the two-

node elements. The second variant is complementary and gives the exact solution in the linear

analysis, but only for the case when the reference axis is also the centreline of the considered

beam. Both variants give the same results for two-node beams.

Subsequently, Bottasso and Borri [99] introduced the so-called fixed-pole concept, which has

proved to be useful in the non-linear dynamic analysis of 3D beams. Their main idea consists in

replacing the resultant of the stress-couple and the specific angular momentum, defined according

to the Reissner approach with respect to the beam reference axis, with new ones, now defined

with respect to the unique point as the origin of the whole observed system (fixed-pole). They

have also managed to connect the displacement field to the rotation field by a configuration

tensor, which belongs to the special group of rigid motion SR(6) which is also a Lie group. The

implementation of this concept shows the ability of simultaneous conservation of both energy

and momentum vectors. However, the elements suffer from the lack of objectivity with respect

to the chosen position of the observer, even in planar analysis, and consequently from the strain

non-invariance due to the rigid-body motion [107]. This concept can be applied to finite element

beams of arbitrary order. The authors also showed that there is a 4D matrix representation of
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the configuration tensor in terms of a special Euclidean group SE(3), which is also a Lie group,

and for which there is also an exponential mapping in closed form.

Sonneville et al. [114] developed a geometrically exact beam finite element formulated on the

SE(3) group, applying a helicoidal interpolation, which led to a very robust formulation resistant

to shear-locking, but also limited to two-node beams. In the linear analysis of two-node beams,

this formulation takes the form of the linked interpolation.

Gaćeša and Jelenić [107] proposed a new family of geometrically exact spatial beam elements

based on the fixed-pole approach, but with standard nodal degrees of freedom (displacements

and rotations) called the modified fixed-pole approach. The family consists of three different

interpolation formulations that are shown to be non-invariant and path-dependent. For two of

these interpolation formulations, this issue can be solved easily by interpolating the total local

rotations, which also makes the procedure more robust in dealing with large load increments [107].
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3.2 Standard and innovative interpolations in non-linear prob-

lems with large 3D rotations and their linearised forms

In view of the fact that the mentioned interpolation schemes possess certain good properties

and also some disadvantages, it is very important to understand their relationship for their

further manipulation for the purpose of improvement. In particular, we will highlight here

the helicoidal interpolation (which has no problems with the shear-locking and non-objectivity,

but is limited only to two-node beam finite elements) and the original fixed-pole interpolation

(which is characterised by a unique description of the unknown fields, has favourable properties

in non-linear dynamics and is applicable to beam elements with an arbitrary number of nodes,

but these elements suffer from non-objectivity), both of which originate from the non-linear

analysis of beams. It has already been shown [115] that in the linear analysis, the helicoidal

interpolation reduces to the linked interpolation (which is in this case limited to only two-

node beam elements) and that is known to provide an exact solution for the Timoshenko beam

subject to pure bending and constant shear. To the best of our knowledge, there are no known

studies of the fixed-pole concept in the linear analysis, where certain advantages can still be

expected, while the complexities and disadvantages that occur in non-linear analysis disappear

(the configuration tensor becomes linear and the problem of non-objectivity of the solution

disappears). Therefore, in the following, we provide an overview and analysis of standard and

some innovative interpolation forms used for the geometrically exact beams [96, 116] and their

linearised forms. In the process of the linearisation of the geometrically exact beam theory, all

non-linearities in the field variables (displacements and rotations) are neglected, from which we

derive the Timoshenko beam, which is, in fact, a 1D linear micropolar continuum. Some parts

of the conducted research presented in the following are also shown in [85].

3.2.1 Configuration of 3D geometrically non-linear beam

Let us consider a spatial straight beam (Figure 3.1) of a length L and uniform cross-sectional area

A in 3D Euclidean space defined by the orthonormal unit vectors e1, e2 and e3 (inertial frame).

For a given real scalar parameter 0 ≤ x1 ≤ L which represents the position of the material point

along the reference axis of the beam, we define an initial position of the beam reference axis in

a 3D ambient space by a 3D real vector function r0(x1) ∈ R3 concerning a spatially fixed right-

handed Cartesian frame (x1, x2, x3). The orientations of the beam cross-sections are defined by
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another set of right-handed orthonormal unit basis vectors of the moving frame t01(x1), t02(x1),

t03(x1) for the initial state and t1(x1), t2(x1), t3(x1) for the deformed state. The first members

of these two triads t01(x1), t1(x1) are perpendicular to the plane of a beam cross-section, while

the other two vectors of the triads are directed along the remaining two principal axes of the

cross-section.

for the straight beam

L

O

t03(x1) 𝑥1
2𝑥1

1

x1

Initial
configuration

t01(x1)

t02(x1)

t3(x1)
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Figure 3.1: Initial and deformed state of a straight beam.

The relationship between inertial and moving frames is described by a transformation function

Λ(x1), where Λ is the rotation matrix or the orientation matrix which belongs to a special

orthogonal group SO(3) which is also Lie group and satisfies the conditions of orthogonality

(ΛT = Λ−1) and unimodularity (det Λ = +1). Therefore, the initial orientation of the cross-

section of the beam at x1 is [97]

t0i = Λ0ei, for i = 1, 2, 3. (3.1)

In the initial state, the cross-sections are orthogonal to the reference axis (r′0 = t01). Analogously,

for the deformed state,

ti = Λei. (3.2)

The current configuration is completely determined by a position vector r(x1) ∈ R3 of a point

along the beam reference axis with respect to the origin of a spatial coordinate system

r(x1) = r0(x1) + u(x1), (3.3)

where r0(x1) is an initial position vector and u(x1) is the displacement of a point on the axis of
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the observed cross section, and with the orientation tensor function

Λ(x1) = Q(x1)Λ0(x1). (3.4)

The linear transformation function Q(x1) is related to a rotation vector function φ(x1) which

spins the initial orthogonal triad t0i(x1) into the current triad ti(x1) given by the Rodrigues

rotation formula [117]

Q(x1) = I +
sinφ

φ
φ̂+

1− cosφ

φ2
(φ̂)2 ≡ expφ̂, (3.5)

where the hat operator •̂ above a 3D vector represents a skew-symmetric matrix which replaces

a vector product such that for any two vectors a,b we have âb = a×b = −b×a = −b̂a, and φ

represents the Euclidean norm φ =
√
φ2

1 + φ2
2 + φ2

3, where φ1, φ2 and φ3 are the components of

φ in the spatial basis. In order to linearise Simo-Reissner beam theory we linearise the rotation

vector such that sinφ → φ, cosφ → 1 and all the higher-order terms in φ vanish, so that (3.5)

reduces to

Q(x1) = I + φ̂(x1). (3.6)

Substituting equation (3.6) into equation (3.4) we can express the rotation matrix Λ(x1) for the

current configuration of the initial straight beam for the linear case as

Λ = (I + φ̂)Λ0. (3.7)

The relationship between the variation of the rotation vector δφ and the spin vector δϑ

(related to the variation of the orientation matrix via δΛ = δϑΛ) is given by δϑ = H(φ)δφ,

where H(φ) is the tangent map defined as [118]

H (φ) = I +
1− cosφ

φ2
φ̂+

φ− sinφ

φ3
φ̂2. (3.8)

3.2.2 Standard (Lagrangian) interpolation of displacements and rotations

To interpolate the displacement field u and rotation field φ, we start first with a simple Lagrange

interpolation in its well-known form [89,119]
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uh(x1) =
m∑
i=1

Ni(x1)ui ⇐⇒ rh(x1) =
m∑
i=1

Ni(x1)ri, (3.9)

φh(x1) =
m∑
i=1

Ni(x1)φi, (3.10)

where superscript h denotes a discretization, m is the number of nodes of an element and Ni(xi)

are the Lagrangian polynomials of order m− 1 defined as Ni(x1) =
∏m
j=1
j 6=i

x−xj
xi−xj , where xi repre-

sents the position of the ith node, while xj is the position of the jth node. It is clear that this

interpolation is configuration-independent, i.e. linear in the nodal parameters. It comes with

certain challenges, such as shear-locking issues, which can be eliminated by reduced numerical

integration, as demonstrated in [120], where the Lagrangian interpolation is applied to a geomet-

rically non-linear 3D beam with two nodes. There are other variants involving interpolation of

rotations within the load step or within the Newton-Raphson iterative process (e.g. [116, 121]),

but for linear problems they all reduce to the same form given above, as do many other alternative

interpolations, which will not be discussed here.

3.2.3 Helicoidal interpolation of displacements

In [98], Borri and Bottasso presented helicoidal interpolation which arises from the requirement

that the finite element solution of a beam problem should be independent of the choice of the

reference axis and consistent with the configuration space. This requirement is satisfied when the

position vector and the rotation tensor are interpolated using the same interpolation. It appears

natural to apply the standard Lagrangian interpolation for both fields, but the Lagrangian inter-

polation of the rotation tensor is inconsistent with the rotation group character. As a solution,

Borri and Bottasso assume that the reference axis of the deformed beam takes the shape of a

spatial helicoid resulting from the constant distribution of the translational and rotational strain

components along the beam. Therefore, the position vector and the rotation tensor along the

beam are described by the helicoidal interpolation functions in the following way

rh(x1) =
2∑
i=1

Ñiri, (3.11)

Λh(x1) =

2∑
i=1

ÑiΛi, (3.12)
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with Ñ1 = I−Ñ2, Ñ2 = H(φl)N2H
−1(φl2), φl = N2φ

l
2 and φl2 coming from Λ2 = expφ̂l2Λ1 [98].

The specificity of the helicoidal interpolation is that it is limited to finite element beams with

only two nodes (m = 2). The tangent map H(φl) defined in (3.8), while its inverse is

H−1(φl) = I− 1

2
φ̂l − 1

2

φl sinφl + 2 cosφl − 2

(φl)2(1− cosφl)
(φ̂l)2. (3.13)

In the linearised case the displacement and rotation interpolations have been shown in [115,122]

to turn into

uh(x1) =
2∑
i=1

Ni(x1)
(
ui +

1

2
φ̂h − φiro,i

)
, φh(x1) =

2∑
i=1

Ni(x1)φi. (3.14)

Borri and his co-workers [123] showed that there is also a 4D matrix representation of the

configuration tensor in terms of a special Euclidean group SE(3)

C4D =

Λ r

0T 1

 , (3.15)

which also belongs to the Lie group, and for which there exists an exponential mapping in closed

form. Sonneville et al. [114] have developed a geometrically exact beam finite element formulated

on SE(3), applying a helicoidal interpolation, which has led to a very robust formulation for two-

node beam elements. It is also interesting to note that in the case of two-node beam elements,

the strain-invariant interpolation presented in [112] gives exactly the same interpolation of the

rotational field as that provided by the helicoidal interpolation.

3.2.4 Original fixed-pole interpolation

The fixed-pole concept was introduced by Bottasso and Borri in [99], where they applied the

concept in the geometrically non-linear analysis of a 3D beam. The idea has its origin in the

approach whereby the stress resultant at a cross-section remains as it is, but the moment resultant

is not referred anymore to the intersection of the cross-section with the beam reference axis, but

to a fixed pole, usually taken to be the origin of the spatial coordinate system. This approach

naturally leads to fixed-pole strains, fixed-pole velocities and fixed-pole angular moments.

The authors in [99] also presented the idea of unifying the position vector r ∈ R3 and the
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rotation vector Λ ∈ SO(3) using the six-dimensional configuration tensor C6D as

C6D =

I r̂

0 I


Λ 0

0 Λ

 , (3.16)

i.e.

C6D =

Λ r̂Λ

0 Λ

 , (3.17)

where the left tensor in (3.16), called the transport operator stems out from the relationship

between two definitions of a translational velocity: the velocity of the moving orthonormal frame

(the spatial velocity) and the velocity with respect to a fixed point in space (the fixed pole

velocity), while the spatial angular velocity is equal to the fixed-pole angular velocity. The

second tensor in (3.16) arises from the connection between spatial translational and rotational

velocities and their material counterparts [99]. The configuration tensor C6D belongs to the

special group of rigid motions SR(6), also a Lie group for which there exists a corresponding Lie

algebra sr(6) with a closed-form exponential mapping between them [99]. The vector element ν

of the Lie algebra sr(6) which corresponds to the Lie group SR(6), has 6 independent parameters

and is defined as [99]

ν =

 ρ

φ

 (3.18)

where φ is the rotation vector and ρ is a quantity determined from exponential mapping in closed

form. The corresponding element ν of sr(6) is completely defined after vectorial parametrisation,

as  ρ

φ

 =

 H−1(φ)r−H−T (φ)ro

φ

 (3.19)

with the function H(φ)−T = H−1(φ) exp φ̂ (for more details see [99, 118]). In this way, instead

of the standard unknown displacement field u, the fixed-pole concept naturally introduces a new,

non-standard kinematic ρ, interpolated as ρh(x1) =
∑m

i=1Ni(x1)ρi.

So far, there are no known investigations of the fixed-pole concept in linear analysis where a
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unique description of all unknown fields can still be expected as an advantage of the concept.

Thus, under the assumptions that the rotational vector is small, the trigonometric functions for

small angles are approximated as sinφ = φ, cosφ = 1 − φ2

2 , and all higher order terms in φ

vanish. Therefore, the inverse of the tangent map H−1 takes the form

H−1 (φ) = I− 1

2
φ̂. (3.20)

and the unknown kinematic field ρ in the linear analysis is approximated as

ρ = (I− 1

2
φ̂)r− (I +

1

2
φ̂)ro. (3.21)

Substituting the position vector r = ro + u, the field

ρ = u + r̂oφ (3.22)

is obtained leading to the displacement interpolation uh(x1) = ρh − r̂hoφh =
∑m

i=1Ni(x1)(ui +

r̂o,iφi) − r̂ho
∑m

i=1Ni(x1)φi. With the assumption that the initial geometry can be interpolated

as rho (x1) =
∑m

i=1Ni(x1)ro,i (a straight beam), this gives

uh(x1) =
m∑
i=1

Ni(x1)
(
ρi − r̂hoφ

)
, (3.23)

or

uh(x1) =
m∑
i=1

Ni(x1)
(
ui + φ̂h − φiro,i

)
, (3.24)

while the rotation field is interpolated by the standard Lagrangian interpolation φh(x1) =∑m
i=1Ni(x1)φi.

3.2.5 Linked interpolation

In the so-called linked interpolation, the displacement field is interpolated using a one-degree

higher polynomial than the polynomial that interpolates the rotational unknowns, and it has

been widely used and thoroughly investigated in finite-element applications of the Timoshenko

beams [89, 102, 104, 124, 125] and the Reissner-Mindlin plates [93, 126]. The linked interpolation

considered here is in its general, problem-independent, form for a beam with m nodes presented
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in [100] as

uh(x1) =
m∑
i=1

Ni(x1)
(
ui +

1

m
φ̂− φiro,i

)
, (3.25)

derived from the analytical solution of the differential equation of the spatial Timoshenko beam

for given kinematic boundary conditions. In this way, the linked interpolation provides exact

solutions for arbitrary polynomial loading of order p and a sufficient finite number of nodal points

(m ≥ p + 4,m ≥ 3 for point loading), eliminating the shear-locking problem. For the case of

m = 2, the linked interpolation is equal to the linearised helicoidal interpolation.

3.2.6 Relationships between the presented interpolations

All the interpolation functions presented in Subsections 3.2.2 - 3.2.5 in their linear form can be

unified in a simple manner as

uh(x1) =
m∑
i=1

Ni(x1)
(
ui +

1

k
φ̂− φiro,i

)
, (3.26)

φh(x1) =
m∑
i=1

Ni(x1)φi, (3.27)

where m and k are given in Table 3.1.

Table 3.1: Coefficients m and k in the interpolations presented in Sections 3.2.2 - 3.2.5.

Interpolation Section m k

Lagrangian 3.2.2 ≥ 2 ∞

Helicoidal 3.2.3 2 2

Fixed-pole 3.2.4 ≥ 2 1

Linked 3.2.5 ≥ 2 m

Remark 1 Although they do not describe the exact distributions of displacements, the Lagrangian

and the fixed-pole interpolation still provide the correct stiffness matrix [101] if the reduced nu-

merical integration is used. Interestingly, both yield the same stiffness matrix also when the full

integration is applied; however, this leads to shear-locking.

Obviously, to provide the exact solution for a static problem subject to polynomial loading,

the interpolations presented in Sections 3.2.2 - 3.2.4 need to be adjusted to coincide with linked

interpolation (k changed to m and, in the case of helicoidal interpolation, m allowed to be ≥ 2).
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Clearly, the terms "Lagrangian", "helicoidal" and "fixed-pole" do not then retain the original

meaning, but we still keep them for the sake of clarity. In particular, to achieve this, the fixed-pole

interpolation (3.23) needs to be enhanced to read

uh(x1) =
m∑
i=1

Ni(x1)
(
ρi −

1

m
r̂hoφ

)
. (3.28)
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3.3 Conclusion

In this Chapter, we have started from some well-known interpolation schemes originating from

the analysis of geometrically non-linear beams. These in particular include the helicoidal inter-

polation (interpolation on the SE (3) Lie group) and the fixed-pole approach (interpolation on

the SR (6) group), which demonstrate certain advantages, but also some weaknesses in their

application in numerical analysis. We focus here on the fixed-pole interpolation, which has not

yet been investigated in a linear analysis. However, it has been shown that the linearisation

of the original fixed-pole interpolation ultimately leads to a stiffness matrix equivalent to that

provided by simple Lagrangian interpolation, for which we know that leads to the shear-locking

problem and requires application of reduced numerical integration. On the other hand, it is

already known that the helicoidal interpolation in the linear analysis takes the form of the linked

interpolation for two-node beams.

From the investigation of the relationship between the Lagrangian, the helicoidal and the

fixed-pole interpolation in their linear form with the well-known linked interpolation, the new

enhanced fixed-pole interpolation has emerged as a possible interpretation of the linked inter-

polation. By introducing an additional coefficient into the enriched part of the interpolated

displacement field, the same formulation is obtained as in the application of the linked interpo-

lation for the standard degrees of freedom, which is known to provide an exact solution for the

3D Timoshenko beam of arbitrary order.
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Chapter 4

Numerical analysis of micropolar

continuum

The derived formulation of the hexahedral micropolar finite element of arbitrary order presented

in this Chapter is also shown in: [85] Grbac, L., Jelenić, G., Ribarić D., Grbčić Erdelj, S.,

"Hexahedral finite elements with enhanced fixed-pole interpolation for linear static and vibration

analysis of 3D micropolar continuum" International Journal for Numerical Methods in Engineer-

ing. 2024; 125(8):e7440; as well as a few selected numerical results.

In the static linear analysis of Timoshenko beams, the linked interpolation is widely used,

but it is not sufficiently explored in the general micropolar continuum theory. It has only been

applied to the static linear analysis of a 2D micropolar continuum in [41], where its enhanced

accuracy compared to the standard Lagrangian interpolation has been observed. In Chapter

1, it has been shown that many authors have proposed diverse approaches for the numerical

analysis of a micropolar continuum, but there is definitely a room for improvement, especially

in the dynamic analysis. The research and the conclusions obtained in Chapter 3 motivate us

to further investigate the application of the enhanced fixed-pole interpolation in the linear static

analysis of the 3D micropolar continuum, while the application of both the original and the

enhanced fixed-pole formulation will be also considered in the vibrational analysis.

Hence, in the first part of this Chapter, a new hexahedral finite element of arbitrary order is

proposed for the linear analysis of the 3D micropolar continuum, where the enhanced fixed-pole

interpolation is used to interpolate the displacement field, while the rotation field is interpolated

using Lagrangian polynomials. After ensuring the convergence of the newly developed micropolar
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element through a set of patch tests, two numerical examples of a 3D micropolar continuum in

static equilibrium and free vibration of 3D micropolar plates with several different geometric

properties are analysed. Based on these results, the newly proposed finite elements are critically

assessed against the conventional elements.

In the second part, the proposed formulation is reduced for the analysis of a 2D micropo-

lar continuum. The application of the enhanced fixed-pole interpolation leads to the identical

formulation as provided by the linked interpolation, which was already applied in the static

analysis of a planar micropolar continuum in [41]. However, it is noteworthy to emphasise that

the fixed-pole formulation can be generalised to higher order elements in a very elegant way. It

should be also noted that the Petrov-Galerkin approach is not used here, unlike in [41]. The

new application of the 2D micropolar finite elements with this type of interpolation function is

particularly emphasised here for the vibrational analysis.

4.1 Analysis of 3D micropolar continuum

4.1.1 Integral form of equations of motion

An integral (weak) formulation of the equations of motions in a 3D micropolar continuum follows

from D’Alembert’s principle (that is extension of the virtual work principle for dynamic problems)

as

∫
V

(εTC1ε+ κTC2κ)dV−
∫
V

(uT (pv − ρü) + φ
T

(mv − Jφ̈))dV

−
∫
S

(uTps + φ
T
ms)dS = 0, (4.1)

based on which a set of algebraic equations of motion will be obtained according to the finite

element method after the introduction of interpolation functions for the real (•) and virtual (•)

kinematic fields. The external actions are the distributed volume force pv, volume moment mv,

distributed surface force ps and surface moment ms. The constitutive matrices C1 and C2 are

defined in (2.69) and (2.81), respectively, for a linear-elastic, isotropic centrosymmetric microp-

olar continuum. Introducing kinematic equations (2.52), (2.54) with the strain and curvature

components expressed in the vector form, we obtain
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∫
V

[〈
uT φ

T

〉DT

ITφ

C1

[
D Iφ

]u

φ

+

〈
uT φ

T

〉0T
DT

C2

[
0 D

]u

φ


]
dV

+

∫
V

(〈
uT φ

T

〉ρI 0

0 J


ü

φ̈


)
dV −

∫
V

(〈
uT φ

T

〉pv

mv


)
dV (4.2)

−
∫
S

(〈
uT φ

T

〉ps

ms


)
dS = 0, (4.3)

where 0 and I are the 3×3 zero and identity sub-matrices, the matrix of differential operators is

DT =


∂
∂x1

∂
∂x2

∂
∂x3

0 0 0 0 0 0

0 0 0 ∂
∂x1

∂
∂x2

∂
∂x3

0 0 0

0 0 0 0 0 0 ∂
∂x1

∂
∂x2

∂
∂x3

 , (4.4)

and

ITφ =


0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0

0 1 0 −1 0 0 0 0 0

 (4.5)

represents a permutation matrix, while J is tensor of a diagonal material microinertia density

defined in Chapter 2.

To obtain the numerical solution of a problem, the kinematic fields have to be approximated

using a chosen interpolation, and here we introduce the previously presented enhanced fixed-pole

interpolation uh(x1) =
∑m

i=1Ni(x1)
(
ρi − 1

k r̂
h
oφ
)
for approximating the displacement field uh =

Nupe and virtual displacement field uh = Nupe, where the matrix of interpolation functions

over an element is

Nu =

[
N1 0 ... Nm 0

]
− 1

k
r̂o

[
0 N1 ... 0 Nm

]
, (4.6)

with the spatial position vector ro =
∑m

i=1Niro,i. The sub-matrices Ni of Lagrangian polyno-

mials of order k − 1 are defined as Ni = NiI for i = 1, ...,m, where m = k3 stands for the

total number of nodes of each 3D finite element, while k represents the number of node along
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the each coordinate axis. The real and virtual microrotation fields have been interpolated by

Lagrangian polynomials as φh = Nφpe and φ
h

= Nφpe with Nφ =

[
0 N1 ... 0 Nm

]
. The

weak formulation of a 3D finite element is now defined with pe and pe as non-standard real and

virtual nodal degrees of freedom of an element with arbitrary chosen number of nodes m

pe =

〈
pT1 pT2 ... pTm

〉eT
, pe =

〈
pT1 pT2 ... pTm

〉eT
, (4.7)

with pTi =

〈
ρ1i ρ2i ρ3i φ1i φ2i φ3i

〉T
, pTi =

〈
ρ1i ρ2i ρ3i φ1i φ2i φ3i

〉T
, for i =

1, ...,m. The equation of motion of a 3D micropolar finite element mesh thus can be obtained as

nel
A
e=1

peT
[∫

V

[(
BT
ρ −

1

k
BT
R +

(k − 1

k

)
BT
Iφ

)
C1

(
Bρ −

1

k
BR +

(k − 1

k

)
BIφ)

+
(
NT
φD

T
)
C2

(
DNφ

)]
dV pe +

∫
V

ρNT
uNu 0

0 NT
φJNφ

 dV p̈e−
∫
V

(Nu
T

Nφ
T


T pv

mv


)
dV −

∫
S

(Nu
T

Nφ
T


T ps

ms


)
dS

]
= 0 (4.8)

that is

nel
A
e=1

peT
(
Kepe + Mep̈e − fe

)
= 0 (4.9)

where Ke, Me and fe are the element stiffness and mass matrix and external force vector of an

element e, for e = 1, ..., nel, where nel is the total number of elements in a mesh and A is the

finite-element assembly operator. The B matrices in (4.8) are Bρ =

[
Bρ1 0 ... Bρm 0

]
,

BR =

[
0 BR1 ... 0 BRm

]
, BIφ =

[
0 BIφ1 ... 0 BIφm

]
, where 0 is a 9×3 zero matrix

and the sub-matrices in Bρ, BR and BIφ are
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Bρi =



∂Ni
∂x1

0 0

∂Ni
∂x2

0 0

∂Ni
∂x3

0 0

0 ∂Ni
∂x1

0

0 ∂Ni
∂x2

0

0 ∂Ni
∂x3

0

0 0 ∂Ni
∂x1

0 0 ∂Ni
∂x2

0 0 ∂Ni
∂x3



, BRi =



0 −rx3 ∂Ni∂x1
rx2

∂Ni
∂x1

0 −rx3 ∂Ni∂y rx2
∂Ni
∂x2

0 −rx3 ∂Ni∂x3
rx2

∂Ni
∂x3

rx3
∂Ni
∂x1

0 −rx1 ∂Ni∂x1

rx3
∂Ni
∂x2

0 −rx1 ∂Ni∂x2

rx3
∂Ni
∂x3

0 −rx1 ∂Ni∂x3

−rx2 ∂Ni∂x1
rx1

∂Ni
∂x1

0

−rx2 ∂Ni∂x2
rx1

∂Ni
∂x2

0

−rx2 ∂Ni∂x3
rx1

∂Ni
∂x3

0



, BIφi =



0 0 0

0 0 Ni

0 −Ni 0

0 0 −Ni

0 0 0

Ni 0 0

0 Ni 0

−Ni 0 0

0 0 0



.

(4.10)

4.1.2 Hexahedral finite element with eight nodes

Unlike, for example, the couple-stress theory [21], which requires C1 continuity (the continuity of

the first derivatives) between adjacent finite elements, in the numerical analysis of the micropolar

theory the fulfilment of C0 continuity (the continuity of the function) is sufficient. Therefore, it is

generally possible to apply linear Lagrangian interpolation for the interpolation of displacement

and rotation fields. An isoparametric hexahedral finite element with 8 nodes and six degrees of

freedom per node i has been chosen here for the discretisation of the 3D micropolar continuum

(Figure 4.1) using the enhanced fixed-pole interpolation (which satisfies C0 continuity) for the

displacement field and the Lagrangian interpolation for the rotational field.

Figure 4.1: Hexahedral finite element with eight nodes - the relation between natural and global
coordinates (according to [119])
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Since the Cartesian global coordinate system is not always suitable for describing finite ele-

ments, a natural coordinate system is introduced. It is a system of local dimensionless natural

coordinates (ξ, η, ζ) which take numerical values assumed to be between -1 and +1, and they

are independent of the element’s size. The term isoparametric means that the same interpo-

lation functions are used to define the element geometry and kinematic fields. The mapping

between the natural and the global coordinate system is defined as [89] xh =
∑8

i=1Ni(ξ, η, ζ)xei ,

where xei =

〈
xe1i xe2i xe3i

〉T
and xe1i, x

e
2i, x

e
3i are the ith node coordinates of an element. The

components of the position vectors are also interpolated by the same Lagrangian polynomials

rh =
∑8

i=1Ni(ξ, η, ζ)rei with rei =

〈
re1i re2i re3i

〉T
and

Ni(ξ, η, ζ) =
1

8
[(1 + ξiξ)(1 + ηiη)(1 + ζiζ)], (4.11)

ξi = ±1, ηi = ±1, ζi = ±1

for node i = 1, ..., 8

After introducing the chosen interpolation into (4.8) we can compute the element mass and

stiffness matrix and the load vector. A numerical integration procedure is applied where an

integral function that calculates both matrices and the load vector appear in the following form

[89]

∫
V
f(x1, x2, x3)dV =

∫ +1

−1

∫ +1

−1

∫ +1

−1
f(ξ, η, ζ) detJ dξdηdζ ≈

∑
i,j,k

wijkf(ξi, ηj , ζk) detJ (4.12)

where wijk are the weight coefficients, f(ξi, ηj , ζk) are the functions to be integrated evaluated

at the integration points, and for a regular prismatic 3D finite element of volume V the Jacobian

determinant is a constant and equal to detJ = V
8 . We need eight integration points for this

brick finite element with the chosen interpolation, for full Gaussian integration. The value of

the natural coordinates of the Gaussian points i=1...8 are ξi = ± 1√
3
, ηi = ± 1√

3
, ζi = ± 1√

3

where the sign depends on the position of the point in an octant [89], with the weight coefficient

w = 1. In terms of the standard degrees of freedom pes =

〈
pTs1 ... pTsm

〉eT
, with pTsi =〈

u1i u2i u3i φ1i φ2i φ3i

〉T
approximated weak form (4.9) may be written as

pTs (Ksps + Msp̈s − fs) = 0 for arbitraty ps ⇒ Ksps + Msp̈s = fs. (4.13)
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with Ms =
nel
A
e=1

Me
s, Ks =

nel
A
e=1

Ke
s and fs =

nel
A
e=1

fes, where K
e
s = Re

oK
eRe

o
T and Me

s = Re
oM

eRe
o
T

where Re
o follows from ui = ρi − 1

n r̂o,iφi as

Re
o =



I 0 · · · 0 0

− 1
k r̂01 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

0 0 · · · − 1
k r̂0m I


. (4.14)

4.1.3 Numerical examples

The newly developed isoparametric hexahedral micropolar finite element with 8 nodes (called

Hex8EFP ) has been implemented in FEAP (Finite Element Analysis Programme [127]) written

in Fortran, a compiled imperative programming language. An own written Python script has

also been used for pre- and post-processing of the input and output data, as well as ParaV iew,

an open-source application for visualisation. The convergence of the proposed finite element

has been evaluated by performing a set of patch tests derived specifically for micropolar finite

elements (for details see [34], [40]). A numerical analysis of two boundary value problems with a

known analytical solution [60] has been also performed, as well as the natural frequency analysis

for a couple of representative problems involving different boundary conditions. All results are

compared with the numerical results using the conventional Lagrangian element (Hex8L).

4.1.3.1 Force patch test

In this patch test, we check whether the proposed elements can reproduce the constant stress

condition, regardless of the number of elements used. The test has been performed on a cantilever

beam subjected to an axial tensile load ps = 10 N/m2 acting on the free-end face of the beam

(Figure 4.2). The external surface load has been applied as shown in (4.8), and the values of

the nodal forces and the additional nodal moments have been obtained as a result of integration

over the surface on which the load acts. The chosen geometrical properties of the beam are the

same as in [40]: L = 10.0 m, h = 2.0 m and b = 1.0 m, while the chosen material properties

are µ = 1000 N/m2, λ = 1000 N/m2, ν = 500 N/m2, α = 20 N , β = 20 N , γ = 20 N .

On the left-hand side of the beam, all displacements in the x1-axis direction are fixed so that

u1(0, x2, x3) = 0, while u2(0, 0, x3) = 0 and u3(0, 0, 0) = 0 for x2 ∈ [0, h], x3 ∈ [0, b].
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Figure 4.2: Cantilever beam subject to the pure tension.

The patch test is performed on a single-element mesh and a 2×2×2 mesh. The obtained

numerical solutions for both FE meshes provide all stress and couple-stress components equal to

zero, except for the axial stress σ11, which is equal to ps, while the obtained axial displacement at

the free end of the beam is equal to the analytical solution ux(L, x2, x3) = psL
E with the highest

computer accuracy. Thus, the criterion of reproduction of the uniaxial stress state is satisfied.

Remark 2 It is important to point out that the external body and surface loads need to be applied in

accordance with the chosen interpolation as shown in equation (4.8) resulting with the additional

nodal moment forces. Correspondingly, the finite element Hex8EFP provides the analytical

solution without the need to use the Petrov-Galerking method as in [41].

4.1.3.2 Displacement patch tests

In general, satisfaction of a patch test ensures the convergence of the finite elements used in the

numerical analysis of a real problem. Three separate patch tests for a micropolar finite element

formulation were proposed by Providas and Kattis [34]. Their tests were developed for 2D

problems, and one of the possible generalisations from 2D to 3D is given in [40], which will be also

analysed here. Let us consider a prismatic domain defined by length L = 0.24 m, height h = 0.12

m and width b = 0.06 m. The considered domain is discretised using 7 disordered hexahedral

finite elements Hex8EFP as shown in Figure 4.3, where the coordinates of the internals nodes

are defined as P9 = (0.04, 0.02, 0.02), P10 = (0.18, 0.03, 0.02), P11 = (0.018, 0.03, 0.04), P12 =

(0.04, 0.02, 0.04), P13 = (0.08, 0.08, 0.02), P14 = (0.16, 0.08, 0.02), P15 = (0.16, 0.08, 0.04) and

P16 = (0.08, 0.08, 0.04). The material properties are kept as in the previous force patch test.

62



Figure 4.3: Distorted finite element mesh for the displacement patch tests (following [41]).

The first test represents a standard patch test for the finite elements in the classical theory of

elasticity providing constant symmetric stress and strain fields. Linearly varying displacements

and constant microrotation have been imposed at the external nodes as

u1 = 10−3(x1 + 0.5 · x2 + x3), u2 = 10−3(x1 + x2 + 0.5 · x3),

u3 = 10−3(0.5 · x1 + x2 + x3), φ1 = φ2 = φ3 = 0.25 · 10−3, (4.15)

without any applied external load. For this boundary conditions, the analytical solutions reads

σ11 = σ22 = σ33 = 5.0, σ12 = σ21 = σ13 = σ31 = σ32 = σ23 = 1.5,

ε11 = ε22 = ε33 = 10−3, ε12 = ε21 = ε13 = ε31 = ε32 = ε23 = 0.75 · 10−3, (4.16)

where all the couple-stress and curvature components are equal to zero.

The second test represents the state of constant non-symmetric stress and strain, where in

addition to the first patch test, the constant microrotations are now given as φ1 = φ2 = φ3 =

0.75 · 10−3 and the constant body moments mv1 = mv2 = mv3 = 1.0 are provided in order

to return the desired constant stress and strain fields. These boundary conditions and volume

loading lead to the following analytical solutions for the stress and strain components:

σ11 = σ22 = σ33 = 5.0, σ13 = σ21 = σ31 = 1.0,

σ31 = σ12 = σ23 = 2.0, ε11 = ε22 = ε33 = 10−3,

ε13 = ε21 = ε32 = 0.25 · 10−3, ε31 = ε12 = ε23 = 1.25 · 10−3. (4.17)

where all the couple-stress and curvature components are equal to zero.
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In the third test, in addition to linearly varying displacements as in the first two tests, the

microrotation φ1 = φ2 = φ3 = 10−3[0.25 + (x1 − x2 − x3)], the body moment mv1 = mv2 =

mv3 = 2(x1 − x2 − x3), and the constant body force pv1 = 0.0, pv2 = 2.0 pv3 = −2.0 are given,

which leads to the following analytical solution:

σ11 = σ22 = σ33 = 5.0, σ13 = σ21 = σ32 = 1.5− (x1 − x2 − x3),

σ31 = σ12 = σ23 = 1.5 + (x1 − x2 − x3), ε11 = ε22 = ε33 = 10−3,

ε13 = ε21 = ε32 = 10−3(0.75− (x1 − x2 − x3)), ε31 = ε12 = ε23 = 10−3(0.75 + (x1 − x2 − x3)),

µ11 = 0.02, µ22 = µ33 = −0.06, µ12 = µ13 = µ23 = µ32 = −0.04, µ21 = µ31 = 0.04,

κ11 = κ12 = κ31 = 10−3, κ22 = κ33 = κ12 = κ13 = κ23 = κ32 = −10−3. (4.18)

Satisfaction of a patch test such as this one, in which stress distribution is not constant, is not

considered to be necessary for convergence [89] and, for this reason, this test is treated as a

higher-order patch test [40], similar to a pure bending test.

For the first two tests, the proposed finite element Hex8EFP provides the exact solution

but for the third patch test it indeed does not reproduce the exact results. Table 4.1 shows

the displacement components in all three directions and the microrotation around the x1-axis

at the point P9 as well as the stress and couple-stress components at the point with coordinates

(0.07536, 0.03435, 0.024227). As argued above Hex8EFP is still convergent. Interestingly, the

ordinary Lagrangian element Hex8L passes this test, but the proposed element Hex8EFP will

perform better in the more demanding tests to be considered next.

Table 4.1: Numerical results for third displacement patch test: displacements/microrotation at
P9, stress/couple stress at (0.07536, 0.03435, 0.02423).

u1 · 105 u2 · 105 u3 · 105 φ1 · 104 σ11 σ13 µ11 µ12

Exact solution 7.000 7.000 6.000 2.500 5.000 1.483 0.020 -0.040

Hex8EFP 6.9143 6.5613 6.5362 2.5016 4.965 1.482 0.0199 -0.0402

4.1.3.3 Pure bending test

Analytical solutions for two boundary value problems in terms of measurable surface tractions

and displacements have been derived by Gauthier and Jahsman [60]. The first problem involves

an elastic rectangular plate of length L, width b and height h subjected to pure bending by
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end moments M around the coordinate axis x3, with lateral boundary conditions preventing

anticlastic distortion and turning the problem into a pure cylindrical plane-strain bending of

a rectangular micropolar beam. This means that u1(x1, x2), u2(x1, x2) and φ3(x1, x2) are the

only allowable displacement and microrotation components. In contrast to the classical theory

of elasticity, where the concentrated moment M can only be generated by applying a linearly

varying normal surface traction load ps = 2·x2
h p0 [128], Gauthier and Jahsman showed that for

the pure bending of the micropolar continuum, the moment M must be generated by both the

linearly varying surface load ps and a constant surface momentms, i.e. M = b
∫ h

2

−h
2

(x2·ps+ms)dx2

which have to be defined as

ps = σ11 = − 1

1 + (1− n)δ

M

W

2x2

h
, (4.19)

ms = µ31 =
(1− n)δ

1 + (1− n)δ

M

A
, (4.20)

with the cross-section area A = bh, the resistance moment about the neutral axis x3 W = bh2

6

and δ = 24(lb/h)2 . The state of pure bending is thus achieved only for a precisely determined

ratio of ms and ps which depends on the micropolar material properties (for details see [42]),

given as

ms

p0
=

1

h

(λ+ 2µ)(β + γ)

2µλ+ µ
≡ h

6
(1− n)δ. (4.21)

The analytical solutions for displacement and microrotation fields are

u1 = − 1

1 + (1− n)δ

Mx1x2

bD
, u2 =

1

2

1

1 + (1− n)δ

M

bD
(x1

2 +
n

1− n
x2

2)

φ3 =
1

1 + (1− n)δ

Mx1

bD
, (4.22)

where D = Eh3

12(1−n2)
represents the flexural rigidity. Due to the symmetry of the problem, only

a half of the structure may be considered in the numerical analysis, which can be modelled as

a cantilever beam of length L
2 = 10 m, height h = 2 m, and thickness b = 1 m, with the

following boundary conditions: u1(0, x2, x3) = u2(0, 0, x3) = u3(x1, x2, x3) = φ1(0, x2, x3) =

φ2(0, x2, x3) = φ3(0, x2, x3) = 0 (Figure 4.4). The beam is discretised using the proposed ele-

ments Hex8EFP and, for comparison, the numerical solutions have also been obtained by the

standard Lagrangian elements Hex8L [40]. The resulting bending moment M = 20 Nm has
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been applied through linearly varying surface loading and a constant surface moment loading in

the defined proportion (4.21), at the free edge of the beam.

Figure 4.4: Discretised micropolar beam subjected to pure bending.

It is important to emphasise that the external surface loads and moments have been applied

strictly in accordance with the chosen interpolation functions (4.8) which avoids the need to use

the computationally more demanding Petrov-Galerkin approach as used in [41]. All geometrical

and material properties, as well as the value of the resultant moment, are taken as in [40], i.e

the engineering material parameters are E = 1500N/m2 and n = 0.25 which give the Lamé

constants λ = 600N/m2 and µ = 600N/m2. In order to investigate the influence of the increase

in bending stiffness due to the increase in the value of the characteristic length for bending (the

size-effect) on the proposed element’s accuracy, numerical solutions are provided for different

values of the characteristic length lb = 1
2

√
β+γ
G , i.e for lb ∈ [0.0, 1.8]. The microstructure of the

material is neglected when lb = 0 (classical continuum), with the concentrated moment generated

only by the surface loading traction. As the ratio between the characteristic length for bending

and the height of the beam increases the effective stiffness grows, as it does with decrease in the

Poisson’s ratio. The remaining additional micropolar engineering material parameters are in this

problem inconsequential and can be chosen arbitrarily. Here they are taken as N = 0.5, Φ = 0

and lt = 0.1.

The problem is solved using a very rare mesh containing only two hexahedral finite ele-

ments Hex8L and Hex8EFP across the height of the beam. Table 4.2 shows the analytical

solutions (A) and the numerical results (N) for the displacement u2 and the microrotation

φ3 at the point P (L2 ,−
h
2 ,

b
2), and for the stress σ11, at the Gauss point with the co-ordinates

(7.88675, 0.211325, 0.788675).
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Table 4.2: Differences between analytical solutions and numerical results using Hex8L and
Hex8EFP .

Element lb
h Displacement u2 Error Microrotation φ3 Error Stress σxx Error

A N [%] A N [%] A N [%]

Hex8L
0.0 0.94063

0.06910 92.65
0.18750

0.01262 93.27
23.66030

1.96844 91.68

Hex8EFP 0.91212 3.03 0.18182 3.03 23.99300 1.41

Hex8L
0.05 0.90012

0.06892 92.34
0.17943

0.01269 92.93
22.64140

1.95033 91.39

Hex8EFP 0.87402 2.88 0.17426 2.88 22.99500 1.56

Hex8L
0.15 0.66948

0.06740 89.93
0.13345

0.01296 90.29
21.35230

1.83451 91.41

Hex8EFP 0.65566 2.06 0.13071 2.05 17.24470 19.24

Hex8L
0.3 0.35902

0.06203 82.72
0.07157

0.01261 82.38
11.45040

1.59974 86.03

Hex8EFP 0.35518 1.07 0.07082 1.05 9.34061 18.43

Hex8L
0.6 0.12575

0.04624 63.23
0.02507

0.00977 61.02
3.16310

1.14357 63.85

Hex8EFP 0.12527 0.38 0.02498 0.36 3.29403 4.14

Hex8L
0.9 0.06037

0.03224 46.59
0.01204

0.00691 42.63
1.51860

0.79036 47.95

Hex8EFP 0.06025 0.20 0.01202 0.21 1.58433 4.33

Convergence curves on the control size of the normalised vertical displacements at point P for

both types of elements have been compared in Figure 4.5 for lb = 0.1 and Figure 4.6 for lb = 1.8,

where the enhanced fixed-pole interpolation certainly shows a much better convergence towards

the exact solutions.
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Figure 4.5: Convergence curves of Hex8EFP and Hex8LI elements for normalized vertical
displacement u2 when lb = 0.1.
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Figure 4.6: Convergence curves of Hex8EFP and Hex8LI elements for normalized vertical
displacement u2 when lb = 1.8.

Considerable improvement in numerical results has been observed by applying the finite elements

Hex8EFP instead of the standard Lagrangian elements Hex8L which give poor results. Table

4.2 also shows that more accurate numerical solutions are obtained for larger values of the

characteristic length for bending (which also increases the stiffness). An even better performance

was noted in [40] using the finite elements with incompatible modes, but this is achieved at the

expense of additional numerical overhead as these elements contain additional internal degrees

of freedom.

4.1.3.4 Torsion test on a solid cylinder

The second boundary-value problem considered is a cylinder of height c and radius a subjected to

pure torsion (Figure 4.7a). The analytical solution in the cylindrical coordinate system (r, θ, x)

for stresses, displacements, and microrotations has been provided by Gauthier and Jahsman [60]

for the resultant torque T acting on the edge surfaces of the cylinder (x = 0 and x = c). As in the

pure bending test, they showed that in the micropolar theory pure torsion can be achieved only

if the external surface torque T is generated by a tangential traction psθ and an axial moment

traction msx acting on the edge surfaces as follows

T =

∫
A

(r psθ +msx)dA, (4.23)

where A = r2π is the cross-section area of the cylinder, and where surface normal and moment

tractions are described by micropolar material parameters and modified Bessel functions of the
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first kind In of order n as

σθx = psθ = µ C1 r + 2ν C9 I1(pr), µxx = msx = α p C9 I0(pr) + 2β C1, (4.24)

with

p =

√
4ν

α+ 2β
, C1 = 2C9

(α+ 2β

2β
pI0(pa)− 1

a
I1(pa)

)
,

C9 =
T

2π a2

[(µ a2

4β
+ 1.5

)(
α+ 2β

)
p I0(pa)−

(µ a2

4β
+ 2
)2β

a
I1(pa)

]−1
. (4.25)

T

T

ac

r

(a) Geometry (b) Finite element mesh

Figure 4.7: Solid circular cylinder under torsion.

Bessel functions are functions that result from the solution of Bessel equations, that is second-

order linear differential equations. In situations where standard Bessel functions cannot ade-

quately describe the solution, modified Bessel functions are applied as their variant [129].

All the fields are independent of the angle θ, where the displacement and rotation fields are

obtained as

uθ = C1 r x, φr = −C1 r

2
+ C9 I1(pr), φx = C1 x, (4.26)

as described in detail in [40,60]. A numerical analysis of the observed problem has been carried

out, where all degrees of freedom are restricted at the bottom surface of the cylinder (x = 0).

The material and geometrical characteristics have been taken from [40] as a = 0.2mm, c = 1mm,

µ = 10 500N/mm2, λ = 157 500N/mm2, ν = 3 500N/mm2, α = 0N , β = 105N , γ = −105N ,

based on which the corresponding engineering material parameters can be calculated. Since
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parameter α is chosen to be zero, the moment surface loading msx becomes constant, while the

tangential surface loading psθ is generally a non-linear function.

Figure 4.8: Graphs of external load distribution

If we look at the graph 4.8a of the psθ function, for a sufficiently small radius of the cylinder we

can assume that the function is almost linear, and the value of the radius we have chosen belongs

to this domain of linearity. The green line on the Figure 4.8c represents a linear function and we

can see that it could be sufficient approximation of psθ function for that range. Thus, the resultant

torque T = 1 Nmm in the finite-element model is distributed by a linearly varying surface

traction with boundary values for psθ(0, θ, c) = 0.0N/mm2, psθ(r, θ, c) = 43.93044N/mm2, and

a constant moment surface traction msx = 3.63683 Nmm/mm2. The solid cylinder has been

discretised as an axisymmetric mesh of the proposed hexahedral finite elements Hex8EFP , and

the Lagrangian finite elements Hex8L. It has been shown in [40] that the numerical solution

using the Lagrange finite elements is in good agreement with the analytical solutions, even for

the sparsest mesh of 24 finite elements (Figure 4.7b), and very similar to the solution obtained

by the incompatible mode elements. In Table 4.3 we show that comparable results are obtained

using Hex8EFP , too.
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Table 4.3: Comparison between analytical and numerical results at (a, 0, c) for the cylinder sub-
jected to the torque using hexahedral finite elements with the enhanced fixed-pole and Lagrangian
interpolation.

Element φx · 102 Error φr · 104 Error uθ · 103 Error

A N [%] A N [%] A N [%]

Hex8L
1.7318

1.7378 0.35
-6.5151

-6.3600 2.38
3.4636

3.4779 0.41

Hex8EFP 1.7382 0.37 -6.3894 1.93 3.4779 0.41

The numerical solutions for the displacement uθ(a, 0, c) and the microrotation φx(a, 0, c) have

been analysed in the cases of five different ratios of the characteristic length for the torsion lt

and the radius r of the cylinder (Figure 4.9) in order to capture the size-effect. Indeed, as the lb

value increases, the micropolar torsional rigidity also grows and can be up to seven times higher

than the classical torsional stiffness [60]. The numerical results are more accurate in the case of

the higher values of lb.

Figure 4.9: Comparison of numerical solutions for displacement uθ and microrotation ϕx3 at
node (a, 0, c) with respect to lb/a.

4.1.3.5 Vibration response of 3D micropolar square plates

A free vibration analysis of a 3D square plate with edge-length L = 33.0 mm and height h = 3.3

mm has been conducted. The plate has been subjected to two types of boundary conditions:

(i) CCCC - a fully clamped plate, and (ii) CFFF - a cantilever plate, where C and F stand for

clamped and free ends, respectively. The same plate, but with a central circular hole of radius

R = 0.3·L has been also analysed: (iii) CCCC - fully clamped plate with the hole and (iv) CFFF

- cantilever plate with the hole. The plates are discretised using a regular mesh of the proposed

hexahedral micropolar finite elements Hex8EFP and the Lagrangian elements Hex8L as well

as the elements Hex8OFP , in which the original fixed-pole interpolation (k = 1) is used. Figure
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4.10 shows schematic representations of the discretisation of the chosen plate geometry using a

mesh of 1600 and 3200 elements for the full plate and plate with the circular hole respectively.

To validate the newly developed finite elements, the numerical results of the first three natural

frequencies of (i) have been compared with the results presented in [48] which were obtained by

a very dense mesh with the use of tetrahedral finite elements of the second order, which are here

taken to represent the reference solutions. Furthermore, the first three eigenfrequency values

for (iii) have been read from the graph in [48] and compared to the numerical results obtained

with a very dense mesh of 256000 Hex8L elements, which yielded approximately equal results.

For accuracy, the reference solution is the one obtained using Hex8L elements (Table 4.4). The

geometric and material characteristics are defined as in [48]: G = 104 MPa, n = 0.44, N = 0.04,

lb = 0.33 mm, lt = 0.62 mm, Ψ = 1.5, ρ = 2000 kg/m3, j = 5 · 10−5 m2, J = ρj = 10−1

kg/m, that is J = JI, while the micropolar elasticity constants (2.85). After we have established

that our newly presented finite elements converge to the solutions from [48], we have additionally

considered the same plates but with CFFF boundary conditions (ii) and (iv), where the reference

solutions have been obtained by FEM for a mesh with 25000 (ii) and 43264 (iv) Hex8L elements

(Table 4.4).

(a) Full plate (b) Plate with the circular hole

Figure 4.10: Schematic representation of the discretisation 3D micropolar plates.
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Table 4.4: Reference solutions of the first three natural frequencies (f1, f2 and f3) of all four
considered plate types.

Square plate type f1 [kHz] f2 [kHz] f3 [kHz] FE number Used FE

Full CCCC plate (i) [48] 14.2795 18.4830 18.4830 9000 2nd order LI tetrah.

Full CFFF plate (ii) 2.0226 3.9761 7.8912 20000 1st order LI hex.

CCCC plate with a circular hole (iii) 16.5992 17.5233 17.5233 25600 1st order LI hex.

CFFF plate with a circular hole (iv) 1.6728 3.2666 6.6409 43264 1st order LI hex.

Figure 4.11: Convergence study of first three natural frequencies of CCCC plate (i)

Figure 4.12: Convergence study of first three natural frequencies of CFFF plate (ii)
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Figure 4.13: Convergence study of first three natural frequencies of CCCC plate with the circular
hole (iii)

Figure 4.14: Convergence study of first three natural frequencies of CFFF plate with the circular
hole (iv)

The results in Figures 4.11-4.14 largely show superior performance of the proposed elements

against the elements with either Lagrangian or the original fixed-pole interpolation, the only

exception being 2nd/3rd natural frequency for the CCCC plate (Figure 4.11), where Hex8L give

better results, but only for the very coarse meshes. The best performance of Hex8EFP is

observed in the first natural frequencies for the plates (i), (ii) and (iv), and in the second and

third natural frequencies for the plates (ii) and (iv). For the plate (iii), the results of Hex8EFP

and Hex8L are pretty close. However, the performance of Hex8OFP is the poorest and is not

recommended for use.
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4.2 Analysis of 2D micropolar continuum

4.2.1 Integral form of equations of motion

In order to develop a micropolar membrane finite element, the governing differential equations

have been reduced from 3D to 2D continuum as shown in Chapter 2. The integral (weak)

formulation, that follows from D’Alambert’s principle (4.1), is thus also reduced for the plane-

strain condition. In this case there are only three degrees of freedom, i.e. two displacement

(u1, u2) and one in-plane microrotation φ3, which represents a drilling (micro)rotation. Again,

for approximation of both, the displacement field uh = Nupe and the virtual displacement field

uh = Nupe, the same enhanced fixed-pole interpolation is used (Bubnov-Galerkin approach),

where the matrix of interpolation functions over an element is

Nu =

[
N1 0 ... Nm 0

]
− 1

k
r̂o

[
0 N1 ... 0 Nm

]
, (4.27)

with the position vector ro =
∑m

i=1Niro,i. The sub-matrices Ni of the Lagrangian polynomials

of order k − 1 are given as Ni = NiI for i = 1, ...,m, where m = k2 stands for the total number

of nodes of each 2D finite element, while k represents the number of nodes along the element’s

side. The microrotation and virtual microrotation fields have been interpolated by standard

Lagrangian polynomials as φh = Nφpe and φh = Nφpe with Nφ =

[
0 N1 ... 0 Nm

]
. By

introducing the chosen shape functions for the unknown fields, the equation of motion of a 2D

micropolar finite element mesh with a non-standard real pe and virtual pe nodal degrees of

freedom of an element with arbitrary chosen number of nodes m

pe =

〈
pT1 pT2 ... pTm

〉eT
, pe =

〈
pT1 pT2 ... pTm

〉eT
, (4.28)

with pTi =

〈
ρ1i ρ2i φ3i

〉T
, pTi =

〈
ρ1i ρ2i φ3i

〉T
, for i = 1, ...,m, can thus be obtained as
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= 0, (4.29)

that is,

nel
A
e=1

peT
(
Kepe + Mep̈e − fe

)
= 0, (4.30)

where Ke, Me and fe are the element stiffness and mass matrix and external force vector of

an element e, for e = 1, ..., nel, where nel is the total number of elements in a mesh, t stands

for the thickness of the finite element and A is the finite-element assembly operator. The B

matrices of mutual dependence of the strains in the element with unknown degrees of freedom in

the node in (4.30) are Bρ =

[
Bρ1 0 ... Bρm 0

]
, BR =

[
0 0 BR1 ... 0 0 BRm

]
,

BIφ =

[
0 0 BIφ1 ... 0 0 BIφm

]
, where 0 is a zero vector, while the sub-matrices in Bρ,

BR and BIφ are

Bρi =



∂Ni
∂x1

0

∂Ni
∂x2

0

0 ∂Ni
∂x1

0 ∂Ni
∂x2


, BRi =



rx2i
∂Ni
∂x1

rx2i
∂Ni
∂x2

−rx1i
∂Ni
∂x1

−rx1i
∂Ni
∂x2


, BIφi =



0

Ni

−Ni

0


, (4.31)

while the matrix of differential operators D given in (4.4) is also reduced for the 2D analysis.

Again, it is important to note that the external loads should be determined according to the

chosen interpolation functions when satisfying the finite element equilibrium equation. In other

words, the external moments should be defined with the respect to the fixed-pole exactly as it

has been shown in (4.29).

Remark 3 In [41], where a new quadrilateral Q4 finite element with linked interpolation is pre-

sented, it is explicitly pointed out that it is necessary to apply the Petrov-Galerkin method, that
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is, use different interpolations for test and trial functions in order to satisfy the convergence

conditions. However, if the external load vector is interpolated correctly, the equilibrium of the

finite element is reached without the application of the Petrov-Galerkin method.

4.2.2 Quadrilateral micropolar FE with four and nine nodes

For discretisation of the 2D micropolar continuum, quadrilateral finite elements with 4 and 9

nodes with three degrees of freedom per node have been chosen, where the proposed enhanced

fixed-pole interpolation is used to interpolate the displacement field and Lagrangian interpolation

for the rotational field. The mapping between the natural and global coordinate system is defined

as [89] xh =
∑m

i=1Ni(ξ, η)xei , where x
e
i =

〈
xe1i xe2i

〉T
and xe1i, x

e
2i are the ith node coordinates

of an element. Figure 4.15 shows the numeration of nodes of both finite elements (Q4 and Q9) in

the natural coordinate system. The Lagrangian polynomials for the quadrilateral element with

four nodes m = 4 (Q4) are

Ni(ξ, η) =
1

4
[(1 + ξiξ)(1 + ηiη)], for i = 1, ...4, where ξi = ±1, ηi = ±1,

Lagrangian polynomials for the quadrilateral element with nine nodes (Q9) are are given as [89]

• Corner nodes:

Ni(ξ, η) =
1

4
ξη(ξ + ξi)(η + ηi), for i=1,... 4, where ξi = ±1, ηi = ±1

• Mid-side nodes:

Ni+4(ξ, η) =
1

2
η
(
1− ξ2

)
(η + ηi+4) , for i=1,3, where ξ5 = ξ7 = 0, η5 = −1, η7 = 1

Ni+4(ξ, η) =
1

2
ξ (ξ + ξi+4)

(
1− η2

)
, for i=2,4, where ξ6 = 1, ξ8 = −1, η6 = η8 = 0

• Middle node:

N9 =
(
1− ξ2

) (
1− η2

)
.
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Figure 4.15: Quadrilateral finite elements with four and nine nodes in the natural coordinate
system

The numerical integration has been used, while the set of basic algebraic equations for the whole

system of elements, as well as the transfer of non-standard degrees of freedom to standard ones,

have been obtained in an analogous manner to that shown earlier for the 3D analysis.

4.2.3 Numerical examples

A numerical analysis on a set of patch tests (one force patch test and three displacement patch

tests [34]) has been performed to validate the newly presented micropolar 2D finite element

Q4EFP which has been implemented into FEAP [127]. These numerical examples have been

previously introduced in detail in the 3D micropolar continuum analysis and they are reduced for

the planar analysis here. As mentioned earlier, the finite elements with the enhanced fixed-pole

interpolation for the standard degrees of freedom ultimately yield the same stiffness matrix as

the one with the linked interpolation. Therefore, the numerical results of these patch tests are

the same as in [41], and there is no need to present them in detail here, but a few important

notes are brought to the light.

On the other hand, the application of such a finite element formulation for the dynamic anal-

ysis of a planar micropolar continuum is not yet known. Therefore, a more detailed vibrational

analysis is carried out here through four numerical examples.

4.2.3.1 Force patch tests

A force patch test has been performed on a planar cantilever subjected to a pure uniaxial dis-

tributed loading p = 10N/m2. All geometrical (with the only dimension in the out-of-plane

direction) and material properties are the same as in the equivalent force patch test for 3D
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analysis, with the note that the parameter α does not manifest itself in the 2D analysis. The an-

alytical results of all components of the stress and couple-stress tensors are equal to zero, except

for the axial stress, which is equal to p. The finite elements Q4EFP and Q9EFP provide the

analytical solutions only with the appropriate interpolation of the applied surface load as shown

on the right side of (4.29). We note again that it is not necessary to use the Petrov-Galerking

method, in contrast to the approach presented in [41].

4.2.3.2 Three displacement patch tests [34]

Providas and Kattis presented three separate patch tests for a complete validation of the microp-

olar finite element formulation, originally for 2D analysis. The patch tests have been performed

on a rectangular domain discretised by five distorted finite elements, where displacements and

microrotations are restricted in the external nodes (for details see [34, 41]). The used material

parameters are the same as those defined in the force patch test example.

The first test represents the state of constant symmetric stress and strain. Linearly varying

displacements u1 = 10−3(x1 + 0.5 · x2) and u2 = 10−3(x1 + x2) and constant microrotation

φ3 = 0.25 · 10−3 have been imposed at the external nodes without any applied external load.

The second test represents the condition of constant non-symmetric stress and strain, where

in contrast to the first test, the value of the constant microrotation is now φ3 = 0.75 · 10−3 and

the constant body moment mv3 = 1 is also required.

Third test represents the state of constant curvature, where in addition to the linearly chang-

ing displacements applied in the outer nodes, as at the first two tests, the value of the microro-

tation φ3 = 10−3[0.25 + (x1 − x2)], the body moment mv3 = 2(x1 − x2), and the constant body

force pvx1 = pvx2 = 1.0 are applied. For the first two tests, the finite elements Q4EFP and

Q9EFP satisfy the required criteria, while the elements for the high-order third patch test do

not reproduce the exact results, but a relatively good agreement is obtained as in [41]. However,

since our presented element can reproduce any state of constant stress, we can say that the

element satisfies the convergence criterion.

4.2.3.3 Vibration analysis

A free vibration analysis on different numerical examples has been conducted:

(i) Planar cantilever beam (CF) of length L = 3.3 mm and height h = 0.165 mm,
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(ii) Planar beam clamped on both sides (CC) with the same geometrical properties as in (i),

(iii) Cantilever square plate with a central circular hole (CF) with edge-length L = 3.3 mm and

radius of the hole r = 0.33 mm,

(iv) Fully clamped circular plate of radius R = 1.65 mm with a central circular hole r = 0.33

mm,

while the thickness in all examples is taken as unity. The material properties are as in [47]:

G = 104 MPa, n = 0.44, N = 0.04, lb = 0.33 mm, lt = 0.62 mm, Ψ = 1.5, ρ = 2000 kg/m3,

j = 5 · 10−5 m2, J = ρj = 10−1 kg/m, while their relation to the micropolar elasticity constants

is described in (2.85). Schematic presentations of the geometries and FE discretisations of the

square and circular plate with a hole in the middle are shown in Figure 4.16.

(a) Square plate with a circular hole (b) Circular plate with the circular hole

Figure 4.16: Schematic representation of discretisation in numerical example (iii) and (iv) with
a mesh of 10x10 elements per each quadrant.

The present quadrilateral micropolar FE with four nodes Q4EFP and also with nine nodes

Q9EFP have been used to discretise those geometries. The coefficient k appearing in the en-

hanced fixed-pole interpolation stands for the number of nodes along the element edge, i.e. k = 2

for Q4EFP and k = 3 for Q9EFP . The numerical results have been also obtained using the

original fixed-pole interpolation (elements Q4OFP and Q4OFP have k = 1) and the standard

Lagrangian interpolation LI (elements Q4LI, Q9LI). Full numerical integration has been used,

and the obtained convergence curves of the first three natural frequencies are shown in Figures

4.17 - 4.20. The reference solutions have been computed from FEM on very dense meshes, where

the Lagrangian elements with 9 nodes have been used. The reference solutions for (i) and (iv)

coincide with the numerical results form [47], which verifies the accuracy of the model, and based
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on this we investigate the additional numerical examples (ii) and (iii) with different boundary

conditions. The reference solutions for the first three natural frequencies for each numerical

example can be found in the Table 4.5.

Table 4.5: Reference solutions for the first three natural frequencies (f1, f2 and f3) of all four
considered numerical example.

Example f1 [kHz] f2 [kHz] f3 [kHz]

CF beam (i) [48] 1.59481 4.76076 7.61669

CC beam (ii) 3.75830 6.45379 9.73899

Square plate (iii) [48] 2.43085 3.96779 5.16320

Circular plate (iv) [48] 5.68080 7.54525 7.54525

Figure 4.17: Convergence study of the first three natural frequencies for the cantilever beam (i):
Q4 elements on the left, Q9 elements on the right.
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Figure 4.18: Convergence study of the first three natural frequencies for the fully clamped (ii):
Q4 elements on the left side, Q9 elements on the right side.
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Figure 4.19: Convergence study of the first three natural frequencies for the cantilever square
plate with a circular hole (iii): Q4 elements on the left side, Q9 elements on the right side.
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Figure 4.20: Convergence study of the first three natural frequencies for the circular plate with
a circular hole (iv): Q4 elements on the left, Q9 elements on the right.

The convergence study of the first two natural frequencies of the planar beam (i) and (ii)

clearly shows the efficiency of the elements Q4 and Q9 where the enhanced fixed-pole interpo-

lation has been used. At the higher frequencies (shown here only for the third frequency, but

the same has been observed for the fourth and fifth frequency as well) all three curves seem to

match quite closely.

For the cases of the square and circular plate with a circular hole, we have somewhat unex-

pected results indicating that the Lagrangian interpolation provides the most accurate description

for the first three modes for coarse meshes. For the mesh with only eight elements, the maximum

error difference between the numerical results computed using Q4LI and Q4EFP elements for

the first three eigenfrequencies is 22.65% for numerical example (iii) in the 3rd mode and 18.08%

for (iv) in the 1st mode, while the maximum difference between Q9LI and Q9EFP elements is

0.93% for the 3rd mode of (iii) and 0.47% for the 2nd mode of (iv). However, these differences

are significantly reduced as the finite element mesh becomes denser.

In contrast to the Timoshenko beam, the OFP interpolation does not improve of the results.

Moreover, in all cases it gives either the same or worse results than the Lagrangian elements,

which leads us to the same conclusion as before, i.e. that this type of interpolation should not

be recommended for application in a micropolar continuum.
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4.3 Conclusion

In this Chapter we have presented a new formulation of 3D finite elements of arbitrary order

based on micropolar theory where the enhanced fixed-pole interpolation has been used. The

newly presented eight-node hexahedral finite element has been tested through four standard patch

tests, where the element has shown the ability to reproduce the constant stress condition. Two

additional benchmark problems have been also analysed, comparing the numerical solutions with

those obtained by the standard Lagrangian finite elements. It has been shown that the enhanced

fixed-pole interpolation provides faster convergence to the analytical solutions, especially for the

pure bending test.

The formulation has been reduced to the 2D micropolar continuum, which leads as to the

same formulation as presented in [41], where the linked interpolation is used to interpolate the

displacement field, while the virtual displacements are interpolated by the Lagrangian polyno-

mials. Here, the Bubnov-Galerkin approach has been applied and it has been shown that such

formulation passes the set of patch tests. Motivated by the good properties of the presented for-

mulation in the linear static analysis, as well as in the dynamic analysis of beams, the fixed-pole

approach has been also applied to the vibration analysis of the micropolar continuum.

The conducted numerical examples within the 3D micropolar continuum analysis clearly show

the improvement, for the first two modes of the planar beam under the two considered boundary

conditions. In the case of the 2D square and circular plate with a hole, it has been demonstrated

that Lagrangian elements describe the first three modes for a very coarse mesh slightly better.

But, for the next two to three increment steps of mesh refinement, the Q4EFP and Q9EFP

elements provide nearly correct solutions.

Based on the presented results, the elements with the enhanced fixed-pole interpolation are

sufficiently reliable and efficient for employing them in the inverse static analysis for the identi-

fication of micropolar material parameters. A comprehensive procedure for this will be outlined

in the forthcoming chapters.
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Chapter 5

Virtual experiments on perforated

specimens

”A scientist in his laboratory is not a mere technician: he

is also a child confronting natural phenomena that

impress him as though they were fairy tales.”

Marie Curie

A reliable methodology for determining micropolar material parameters is crucial for its

broader use. However, despite many investigations carried out, which have contributed signifi-

cantly to its development [11,60] (see Section 1.4), it is still not uniquely established, even for the

simplest possible (linear-elastic, isotropic and centrosymmetric) micropolar continuum described

by six independent constants (see Section 2.4.1).

Building upon Gauthier’s pure bending problem [60] and inspired by the work of Beveridge

et al. [130], our research group in the framework of FIMCOS project has suggested a simple

methodology for capturing the characteristic length for bending of aluminium specimens with

an artificially created internal structure of a regular pattern [71]. Instead of subjecting these

specimens to the three-point bending (3PB) (as in [130]), the research group subjected them

to four-point bending (4PB). In this way, the area of pure bending could be monitored, and

for this purpose, strain gauges were used by attaching them on the top and bottom edges of

the specimens at several characteristic positions. Furthermore, in contrast to the displacement

measurement (as in [130]), the strain measurements in the pure bending area are not affected by

shear deformations from the regions outside the pure bending area. This allowed a clear path for

a proper comparison between the experiment and Gauthier’s analytical solution for the strains
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of a homogeneous 2D micropolar continuum subjected to pure bending, leading to the proposed

methodology for determining the characteristic length for bending and the homogenised Young’s

modulus in [71].

Continuing from the previously conducted experimental investigations and the methodology

for determining lb, this Chapter proposes a method for identification of the remaining micropolar

material parameter required for the analysis of the planar micropolar continuum – the coupling

number N . The methodology for its determination based on a displacement calculation from a

numerical virtual experiment is presented in Section 5.1. A comparison between the obtained

value of the coupling number, as well as the reliability and accuracy of the methodology used

for this purpose, with the alternative protocol proposed in the literature [130] is carried out in

Section 5.2.

5.1 Capturing coupling number N – displacement calculation

5.1.1 Description of modelled specimens

To establish a methodology for capturing the coupling number N , we begin with a FE model of

aluminium specimens for which the value of lb was determined based on the laboratory experi-

ments and with a help of Gauthier’s analytical solution. The geometry of the specimens and their

internal structure were manufactured according to [130]. The internal structure of the specimens

is artificially produced by drilling circular holes in a regular pattern within an aluminium alloy

matrix. The geometry of the internal structure is defined with a hole radius r = 3.5 mm, a ver-

tical pitch P2 = 12.7 mm, and a horizontal pitch P1 = 16.0 mm. Figure 5.1 shows the geometry

of the internal structure of the specimens and demonstrates three possible representative cells

(among others) outlined by dashed lines. The green line represents a rectangular cell, the blue

one is a honeycomb cell and the red one is a triangular cell. To ensure complete isotropy of

the specimens, the rectangular unit cell should ideally be square, as for instance demonstrated

in [131] (where the authors identified the material parameters for metamaterial beam specimens

based on micromorphic theory). In that situation, it would be perfectly correct to compare the

experimental results with Gauthier’s analytical solution of an isotropic micropolar beam sub-

jected to pure bending. Here, the specimens are slightly orthotropic, but it is convenient to use

the isotropic elasticity as an approximation (as also done in [130], whose results we will use for

comparison).
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Figure 5.1: The geometry of internal structure for the analysed specimens, following [130].

To capture the size-effect anticipated here, four types of specimens have been investigated,

distinguished by the number of rows of holes within their matrix. Thus, the specimens with a

single row of holes are denoted as B1-i, those with two rows are denoted as B2-i, and similarly

for B3-i and B4-i (shown in Figure 5.2), where i represents the specimen number i = 1, 2, 3,.

The dimensions of the beam-like specimens are given in Table 5.1 for each specimen type, where

L stands for the length of the specimen, h for the height, and w for the width.

B4

B3

B2

B1

Figure 5.2: Perforated specimens B1-B4 with marked positions of applied forces and supports.

Table 5.1: Dimensions of beam specimens [mm] [130].

Beam L h w

B1 150 12.7 12.7

B2 280 25.4 12.7

B3 400 38.1 12.7

B4 530 50.8 12.7
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5.1.2 Set-up

The coupling number is a micropolar material parameter that influences shear stresses and affects

the amount of their non-symmetry (see Eq. (2.90)). Therefore, the key to its determination lies

in the shear stresses that occur outside the pure bending area in the 4PB test, within the region

between an applied concentrated force and its nearest support. The shear in the 4PB does not

have any effect on the strain computation in pure bending area, but it has an impact on the

displacements. Consequently, the detection of the coupling number is based here on calculated

displacements (from a virtual experiment). The 4PB virtual set-up is thus based on [71], but the

locations of the concentrated forces and the points of the supports have been selected differently.

Additional attention has been directed towards two aspects:

(i) Symmetry of the specimen geometries does not align with the symmetry of the created

internal structure for specimens B1 and B4 (this can be observed in Figure 5.2 if the left

and right edges of these specimens are compared). Hence, the symmetry axis of the internal

structure is exactly midway between the beam supports and the concentrated forces.

(ii) The positions of applied forces and the supports are set directly above/below the centre

of the nearest hole or above/below the centre of the solid aluminium matrix between two

holes, in order to better control the stress distribution. This also applies to the positions

where displacements have been measured.

In order to identify the coupling number, three set-up conditions have been considered in

which the influence of shear, which is known to affect it, is varied: In the first, the supports

are almost at the edge of the specimens (indicated by the black marker on the specimens shown

in Figure 5.2), while in the second and third setups the supports approach the centre of the

specimens labelled with blue and green markers in Figure 5.2, respectively. Tables 5.2 and 5.3

list the support positions of each specimen type in terms of the value ai, which represents the

distance from the edge of the specimen to the support, and fi, which is the distance between

the two supports, for all three setups i = 1, 2, 3 (see Figure 5.3). It is conveniently chosen to

keep the fi
h ratio constant for all specimen types in each individual experimental set-up i, that

is f1
h = 10.08, f2h = 8.82 an f3

h = 7.56.
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Figure 5.3: Set-up of HMD specimens subjected to the four-point bending.

Table 5.2: Positions of supports for specimens B1 and B4 (the specimens with different symmetry
axis of geometry and internal structure) [mm].

1st set-up 2nd set-up 3rd set-up

Specimen a1 left a1 right f1 a2 left a2 right f2 a3 left a3 right f3

B1 6 16 128 14 24 112 22 32 96

B4 8 10 512 40 42 448 72 74 384

Table 5.3: Positions of supports for specimens B2 and B3 [mm].

1st set-up 2nd set-up 3rd set-up

Specimen a1 f1 a2 f2 a3 f3

B2 12 256 28 224 44 192

B3 8 384 32 336 56 288

Each concentrated force F is applied at a distance e from the edge of the specimen, with

a spacing d between the two applied forces (Table 5.4 and 5.5). The values of the applied

force F on each specimen type (Table 5.4 and 5.5) is taken from [71] where it was computed

that will not exceed the elastic limit. The value of the chosen applied force in the virtual

experiment is important here because if we manage to establish a methodology for identifying the

coupling number based on the displacement calculation, we would extend the identical procedure

to laboratory experiments in the future work (where the displacement measurements could be

monitored using LVDTs and/or non-contact optical equipments). These laboratory experiments

would remain within the linear-elastic area, and their results could be directly compared with
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those presented here.

Table 5.4: The values of the maximum applied forces F [kN] on specimens B1 and B4 and the
positions of their application [mm].

Specimen F e left e right d g left

B1 0.9 38 48 64 38

B4 2.5 96 98 336 136

Table 5.5: The values of the maximum applied forces F [kN] on specimens B2 and B3 and the
positions of their application [mm].

Specimen F e d

B2 1.4 76 128

B3 2.0 88 224

5.1.3 Virtual-experiment procedure

The virtual experiments have been conducted to simulate 4PB laboratory tests on specimens,

where their internal structure defined in regular pattern has been incorporated into the geometry

of the finite element model. The open-source software Gmsh 3.0.5. [132] has been used for mod-

elling the geometry of the specimens and their discretisation with a mesh of quadrilateral finite

elements. The exact coordinates of the nodes where the boundary conditions and concentrated

forces will be applied have been defined in this step (according to Tables 5.2-5.5). Each specimen

has been discretised using a highly dense mesh, and the total number of finite elements for each

specimen’s model is given in Table 5.6. A visual demonstration of the finite element mesh density

is shown in Figure 5.4 for a representative cell.

Table 5.6: The total number of finite elements for each type of model.

Specimen’s type model Number of FE

B1 15 304

B2 41 694

B3 64 000

B4 93 678
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Figure 5.4: The schematic representation of finite element mesh density for a unit cell.

An own-developed short Python code has been used to adjust the mesh input data for FEAP

programme [127]. The concentrated forces and the boundary conditions (for simply supported

beam) have been defined in the corresponding nodes at the top and bottom edge of the model,

respectively. The constitutive description for this planar model has been defined as a plane-stress

state. However, it is worth noting that in the laboratory conducted experiments, the applied load

jacks prevented anti-clastic curvature in the cross-section of the specimens, which to a very small

extent represents the plane-strain condition. The material parameters for the aluminium matrix

have been introduced as E = 72.4 GPa and n = 0.3. The numerical analysis has been then

performed using classical quadrilateral finite elements (originally integrated in FEAP). Due to

the irregular node number ordering stemming from the mesh generator in the Gmsh programme,

and the large number of finite elements in the model, the command OPTIMIZE in FEAP has

been additionally used to optimize the number ordering of the unknowns [127]. This significantly

reduced the time required to solve the algebraic system of equations, resulting in a significant

reduction in the numerical computational time from one hour (on average) to only a few minutes.

The numerical results for the vertical displacement fields of models B1-B4 have been plotted using

the open-source software ParaView 5.0.1., which are shown in Figures 5.5-5.8.

Note: The heterogeneous material of the HMD specimens (which consists of an aluminium

alloy matrix and voids, i.e. air) has a clearly visible internal structure at the macroscopic level,

defined by a controlled pattern. Such a geometry of the internal structure can be easily integrated

within a classical FE model (to perform virtual experiments). However, it could become more

complicated if these voids are randomly arranged. In such a case, the specimen could be scanned

optically, and the geometry of the inner structure could be defined computationally, which could

then be incorporated into the FE model. Additionally, if this random internal structure gets

smaller up to the micro-scale (e.g. for bones), implementing such a methodology for verification

of the classical FE model with experimental results is a big challenge.
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Figure 5.5: Plotted numerical results for vertical displacement field of B1 model [mm].

Figure 5.6: Plotted numerical results for vertical displacement field of B2 model [mm].

Figure 5.7: Plotted numerical results for vertical displacement field of B3 model [mm].

Figure 5.8: Plotted numerical results for vertical displacement field of B4 model [mm].
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5.1.4 Inverse numerical analysis

The specimens can also be modelled without voids as a homogenised micropolar continuum, with

captured influence of the internal structure on their behaviour through micropolar constitutive

equations. For the plane-stress analysis the model requires the values of four material parameters

(see Eq. (2.90)), three of which are already known from [71] for these specimens: E = 42.37 GPa

as a homogenised Young’s modulus, lb = 2.45 mm, and n = 0.3, while the coupling number is

still unknown point and needs to be determined. The geometry of all specimen types (without

voids) is discretised again in the FEAP programme, but now with a regular dense mesh of

newly developed quadrilateral micropolar finite elements Q4EFP . The boundary conditions,

the values of the applied concentrated forces and their application points are the same as in the

virtual experiment. Through an iterative process, we seek the value of the coupling number that

gives the identical numerical results of the vertical displacements in the homogenised micropolar

model as the results from the virtual experiment on modelled specimens using the classical FE,

shown in Table 5.7 for the considered profiles. Of course, it is necessary to obtain a unique

value of N for all types of the models and different setups. In order to properly compare the

displacement results of the classical model with the homogenised model, all vertical displacements

along several characteristic profiles P of each specimen type (defined in Figure 5.9) have been

considered. These profiles are located approximately at the mid-span of the models (sufficiently

far away from the locations of the concentrated forces/reactions) to ensure that the displacement

values are not affected by local effects. The considered profiles have a thickness of 0.25 mm and

all displacements at the nodes within each profile are averaged.

P1 P2

(a) B2

P1 P2P3

(b) B2

P1 P2P3

(c) B3

P1 P2P3

(d) B4

Figure 5.9: Characteristic profiles P for calculating the average displacements.
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The coupling number has been captured by an inverse analysis for each considered profile of

all four model types, which provides the average results for the displacements of the homogenised

model identical to those listed in Table 5.7 and obtained by the virtual experiment (model based

on the classical theory of elasticity). Subsequently, the average value of the coupling number

for all the model types has been determined for each individual experimental set-up, which is

shown in Table 5.8. It is interesting to note that the value of the coupling number is higher

when the specimen size decreases and it is also higher for a smaller f
h ratio, that is, as the

shear becomes more pronounced compared to the bending. However, keep in mind that this is

a material parameter that should not depend on the boundary conditions or the applied loads,

i.e. that it is a constant.

Based on the obtained values of the coupling number, we see a large deviation between

different set-ups and different model types, which indicates its sensitivity. As the shear becomes

more pronounced in comparison to the bending (3rd set-up), the coupling number becomes more

prominent and the dispersion becomes somewhat milder. In order to find a constant of that

material parameter, a linear regression of average values of N has been performed.

Table 5.7: The average values of the vertical displacements computed from the virtual experi-
ments on classical models B1-B4 for each characteristic profile.

Average values of vertical displacements [mm]

Model type Profile 1st set-up 2nd set-up 3rd set-up

B1
P1 (middle) -0.40242 -0.23968 -0.12459

P2 -0.39749 -0.23601 -0.12195

B2

P1 (middle) -0.83777 -0.49799 -0.25548

P2 -0.83706 -0.49746 -0.25513

P3 -0.83427 -0.49537 -0.25374

B3

P1 (middle) -1.10536 -0.61262 -0.26978

P2 -1.10513 -0.61246 -0.26968

P3 -1.10372 -0.61148 -0.26912

B4

P1 (middle) -1.18764 -0.59556 -0.19927

P2 -1.18758 -0.59553 -0.19924

P3 -1.18653 -0.59487 -0.19894
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Table 5.8: Determined values for the coupling number and its average for each set-up.

Set-up f
h Model type 1/h2 Obtained N Average value of N

1st 10.08

B1 0.0062 0.0850

0.041
B2 0.0016 0.0418

B3 0.0007 0.0216

B4 0.0004 0.0145

2nd 8.82

B1 0.0062 0.0950

0.047
B2 0.0016 0.0471

B3 0.0007 0.0230

B4 0.0004 0.0228

3rd 7.56

B1 0.0062 0.0960

0.053
B2 0.0016 0.0602

B3 0.0007 0.0280

B4 0.0004 0.0285

Observing the extending situation when the shear becomes more and more pronounced, when
f
h → 0, we obtain the calculated coupling number N=0.091, which represents the material

constant of the internal structure (Figure 5.10).

y = -0.00494x + 0.09053

R² = 0.99999

y = -0.0056x + 0.0709

R² = 0.9886
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Figure 5.10: Coupling number obtained from the inverse analysis based on the virtual experiment,
and their linear regression.

Moreover, the B1 models show the highest dispersion of the calculated N values for each
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individual experimental setup from the average. If we consider Figure 5.2, we can see that

the positions of the applied concentrated forces on B1 are relatively close to the considered

displacement profiles, which makes us wonder if local influences also play a role in this. The

considered profile P2 of model B1 also differs from the profile P2 of the other model types (see

Figure 5.9).

5.2 Discussion

In order to assess the reliability of the proposed methodology and the accuracy of the obtained

coupling number, we rely on a comparison with a somewhat different approach of [39], which

inspired this research. Let me first briefly describe their procedure for determining the coupling

number [39]:

1. The analysis was based on the virtual experiment on the models simulating perforated

specimens with an aluminium matrix with material properties of E = 70.0 GPa and n = 0.3

and with the same beam and internal structure geometries as ours. The simulation of 3PB

was conducted, and to compute the stiffness, the applied force was divided by the average

value of all calculated vertical displacements at the nodes located at the mid-profile.

2. In the second step, they considered the specimens as a homogenised linear and isotropic

micropolar model discretised by micropolar finite elements based on the control volume

formulation [133]. As input, they used the values of the Poisson ratio for aluminium, the

characteristic length for bending and the homogenised Young’s modulus, where the last

two parameters were obtained from the 3PB laboratory experiments and the analytical

solution. The remaining required micropolar material parameter N is identified by inverse

analysis in a slightly more automated manner than shown here. They provided a code

that fully automatically searched for the value of N that gave the same stiffness of the

micropolar model as obtained from the virtual experiment. In their code, they started

from the setup of the model with the smallest ratio f
h = 5.04 and obtained the value of

the coupling number N = 0.112 for this situation, which had the biggest possible coeffi-

cient of determination R2 = 0.93 for all four specimen types B1-B4. However, when they

applied the same parameters to the other experimental considered setups, they obtained

much larger deviations in the stiffness values of their homogenised model and the virtual

experiment. In Figure 14 in their work [39], it can be seen for the largest range that even
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with the highest possible value, the desired stiffness cannot be achieved.

3. This encouraged them to update the previously obtained values of the homogenised elastic

modulus and the characteristic length for bending through a parameter that depended on

these two parameters, while the value N = 0.112 was fixed. In this way, they obtained

the final parameters: the homogenised elastic bending modulus E∗ = 39 GPa, lb∗ = 10.14,

which corresponds to E = 42.86 and lb = lb∗√
24(1−n)

= 2.47. These values were in very good

agreement with those obtained in [71], i.e. E = 42.37 GPa and lb = 2.45 (for a detailed

comparison and explanation of the two notations used in the micropolar community for

the characteristic length lb∗ and lb see [71]).

Considering that they obtained micropolar material parameters close to those in [71] for

N = 0.112, it has been expected that the obtained N here should also be approximately the

same as theirs. However, the obtained value is N = 0.091, and this difference of 18.75% seems

quite significant.

However, we should bear in mind that Figure 5.10 shows some deviation between the average

values of the coupling number between the two boundary model types. On the other hand there

is also a note in [39]: "For the f
h= 10.08 case it is interesting to note that reducing N significantly

from 0.9 to 0.112 results in a reduction in stiffness of less than 10% for the smallest sample. The

influence of N on the size-effect is less significant and the distinction between the micropolar

and couple stress cases is less pronounced.", which is the likely reason why they chose N = 0.112

from the first iteration and carried it over to the second iteration, where they fixed the other

two material parameters that play a more significant role. In order to perform a preliminary

test on specimen B4 for all three experimental setups, it has been investigated how much the

change of N affects the difference between the results of the homogenised model and the virtual

experiment. For the case of N = 0.112, there is a very small average difference of 0.2%. At least

in two characteristic profiles we have been considered here, and these profiles are not located at

the place where a concentrated force is applied, which could locally affect the displacements in

nearby points of this profile, as in [39].

However, based on obtained results we conclude that in future work it would be better to

conduct the identification of the coupling number according to the virtual experiment based on

pure shear problem.
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Chapter 6

Experimental investigation of plates

with circular hole under tension

”An experiment is a question which science poses to

Nature and a measurement is the recording of Nature’s

answer.”

Max Planck

The Meaning and Limits of Exact Science (1949.)

The conducted investigation and results presented in this Chapter are also shown in: [134]

Grbac, L., Jelenić, G., Čeh N., "Axially loaded strip with circular hole – assessment of predictive

capacity of micropolar continuum theory", submitted to Journal of Mechanics of Materials and

Structures, 2023.

Discontinuities in shape and size are a common appearance in structural elements or indi-

vidual parts of mechanical systems (such as gears or cylinders). In such cases, the stress values

and their distribution along the cross-section in the vicinity of areas where the cross-sectional

geometry changes due to notches, cut-outs, or locations where a concentrated force acts, differ

significantly from the stress distribution that occurs in a cross-section without discontinuities.

This localised occurrence of higher stress values is called stress concentration and is quantified

by the stress concentration factor. The stress concentration factor is defined as the ratio between

the maximum stress at the edge of the discontinuity and the average (nominal) stress value [30].

It is of great importance for engineers to accurately calculate the value of stress concentration

because cracks can occur and propagate at these locations, which could ultimately lead to the
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collapse of the structure if it is not properly designed. Therefore, it is not surprising that engi-

neers have been analysing the stress concentrations stemming from various causes for more than

a century (comprehensive research on stress and strain concentration factors in many cases can

be found in [30]).

This part of the thesis is specifically focused on the simplest example: a stress and strain

distribution around a circular hole in a homogeneous plate subjected to uniaxial tension. In the

first part of this Chapter, we shed light on observations from previous research in the literature,

revealing the gap between experimental results and solutions based on the classical theory, even

in linear analysis. These discrepancies motivate us to investigate whether the classical theory of

elasticity can accurately describe the studied problem in Section 6.2, which describes the exper-

imental campaign, and in Section 6.3, which provides numerical results based on the classical

theory and their comparison with the experimental results. In Section 6.4, we embark on a quest

for a more accurate theoretical prediction, where the micropolar theory is employed as a candi-

date theory in parametric and inverse numerical analysis aimed at providing suitable micropolar

parameters that give the numerical results which should correspond to those obtained experi-

mentally. The final assessment of the micropolar theory’s predictive capacity for the considered

problem is provided in Section 6.5.

6.1 Motivation: Why is stress concentration factor based on clas-

sical theory doubtful?

The problem of stress concentration (increase in a nominal stress) near a circular hole in a

symmetric uniaxially loaded elastic plate is very well-studied theoretically (see e.g. [30,128,135–

140] and the references therein), numerically (e.g. [141–144]) and experimentally (e.g. [145–152])

with additional results considering a set of holes of different shape and possibly forming different

patterns also available in the literature [153–157]. Focussing on the problem involving a single

circular hole in a symmetric isotropic elastic plate, the complexity of a theoretical solution

varies significantly depending on whether we consider a plate of infinite width [128, 135] (the

Kirsch solution, after [135]) or a plate of finite width (strip) [136, 139] (the Howland solution,

after [136]). The extent of additional work in moving from the former approach to the latter is

critically assessed in [138]. Naturally, the ratio between the hole diameter and the plate width

( dw ) affects the solution only in the latter approach, while providing the well-known constant
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value of the stress-concentration factor of three [128,135] for the plate of infinite width.

In an experimental setting, however, we are bound to work with specimens of finite dimen-

sions and, to obtain a precise experimental validation of a theoretical prediction, the simpler

(Kirsch’s) result for an infinitely wide plate may be impractical, especially for narrow specimens

with a relatively large d
w ratio. This is shown by Toubal et al. [149], who performed experiments

on a composite material (carbon/epoxy). During the experimentally performed non-contact

measurement using the electronic speckle pattern interferometer (ESPI), the obtained stress-

concentration factor was compared with the analytical solution for an infinite anisotropic plate

with a hole [137] and the obtained results were significantly smaller than those predicted theo-

retically. The authors actually attributed this discrepancy to the precision of the measurement,

but it is also clear that the analytical solution for an infinite plate used [137] may not have been

too appropriate for their samples with a relatively high d
w ratio of 0.3.

The first experimental investigations began in 1912 [145], immediately followed by [158, 159],

after which Howland derived his analytical solution [136]. Wahl et al. [146] turned to the ex-

perimental validation of Howland’s solution in their work where the extrapolation method to

the photoelastic analysis of bakelite specimens with a circular hole subjected to uniaxial tension

was applied. The obtained results of the stress concentration factor at the edge of the hole,

which depend on the ratio of the hole diameter to the width of the plate d/w, were compared

with both, the experimental results available until then [145,158,159], and Howland’s analytical

solution. Their results roughly correspond to Howland’s analytical solution, while other known

experimental results show much larger deviations. In his technical note for NACA (National

Advisory Committee for Aeronautics, the ancestor of NASA) Griffith reported about conducting

an experiment on five different aluminium strip specimens 2.31 mm thick with a circular hole in

tension [148]. He investigated the strain and stress concentration around the hole in both elastic

and plastic behaviour, where the strain gauges were used for strain measurements. In the case

of elastic behaviour, the experimentally obtained stress concentration factor was on average only

0.7% higher than the theoretical (Howland’s) assumption, while a larger deviation was observed

along the transverse profile across the cross section cut through the middle of the hole. During

plastic deformation, it was demonstrated that stress concentration at the hole’s edge decreased,

while the strain concentration increased significantly compared to the elastic behaviour. Durelli

and Sciammarella [147] compared the results in the elastic part of their analysis with Griffith’s
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experimental results [148] and with Howland’s analytical solution. For strain measurement of

an aluminium strip with a circular hole, the Moiré method was used [160]. This technique in-

volves comparing the grid pattern (i.e. changes in the grid’s alignment) on the sample before

and after applying load to assess deformations [161]. The experimentally determined values of

the stress-concentration factor were several percent lower than Howland’s, and in addition it was

shown that the axial stress profile across the specimen through the hole visibly departs from the

analytical solution in the region modestly away from the edge of the hole.

Aradhye and Kulkarni investigated the influence of the number and size of the holes on the

stress concentration factor [154]. For this purpose, they conducted an experiment on isotropic

(mild steel) and orthotropic specimens (composite material with carbon fibres) subjected to

uniaxial tensile loading. For each type of specimen, a case with one, two or three holes was

considered. The strains were monitored with strain gauges and from these results the maxi-

mum stresses, and consequently the stress concentration factors, were determined. Comparing

the experimental results with the numerical model, it was found that the experimental results

are always lower than the numerical ones, and that appropriate matching occurs only for or-

thotropic plates with two and three holes and partial agreement for isotropic plates with the

same number of holes. The largest error occurs for both types of single-hole plates, which is to

be expected considering that increasing the number of adjacent holes in a regular grid reduces

the inhomogeneity of the plate. Interestingly, the largest error occurs in the case of an isotropic

plate with one hole, where the experimental values of the stress concentration factor of all tested

cases of chosen d/w ratios are on average 40% lower than the numerical results. However, it

has been observed that there is a lack of explanation of the methodology used to compare the

numerical and experimental results of the stress concentration values, especially considering that

one strain gauge was used to measure the transverse strain across the transverse mid-section of

the specimen, and another strain-gauge was used to measure the longitudinal strain along the

longitudinal profile. It is worth noting that these strain gauges are not positioned directly at the

edge of the hole, and that their measuring area is even larger than the hole itself.

If we, for a moment, step beyond the framework of the stress concentration analysis around a

circular hole and consider, for example, a rectangular cut-out, the difference between theoretical

predictions and experiments is also noticeable. This is demonstrated in [153], where an experi-

ment is conducted on an isotropic (metal) plate with a rectangular hole, also in the context of

linear-elastic behaviour. The authors point out the challenges in determining stress concentra-
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tion factors based on strain-gauge measurements, with an exact quote: "Nevertheless, it is very

hard (almost impossible) to “catch” stress concentration by means of classical measuring devices

(strain gauges, inductive sensors) where a large gradient exists. . . " [153], and therefore they used

an optical measuring system with 3D cameras for the displacement field measurements. They

also concluded that the experimentally determined values of the stress concentration factor are

about 6% lower than the numerical and analytical results [162].

The conducted experiments form the literature thus largely provide (i) slightly lower stress

values at the edge of the hole and (ii) different stress profile up to a certain distance from the

hole than those predicted theoretically. These discrepancies provide the main motivation for the

present research, which is focussed on answering the following three important questions: (i)

Can we confirm that the classical theory of elasticity cannot describe the considered problem

well enough, (ii) can we provide a better theoretical prediction by assuming an alternative (non-

classical) continuum theory, and (iii) what is the exact procedure for determining the unknown

material parameters? Here, we are specifically looking for a possible solution to this problem

in the framework of the so-called micropolar (Cosserat) continuum theory [15], with the aim of

providing an evidence-based assessment of the suitability of this particular theory to provide the

solution which passes experimental validation.

In the present context, due to the existence of additional micropolar parameters (in partic-

ular, the coupling number and the characteristic length for bending), we are testing whether it

is possible to better capture the behaviour of the problem under consideration using this the-

ory. Analytical micro-polar solutions for the present problem in fact exist [27, 35], but to the

best of our knowledge only for the case of the infinitely wide plate. The discrepancy between

experimental results and solutions based on the classical theory for the problems involving stress

concentrations due to holes or cracks has already been noted in the literature [10, 11, 13]. This

was especially highlighted by W. Nowacki: "However, in many cases essential differences have

been observed between theory and experiment; this fact refers first of all to the states of stress in

which there occur large stress gradients. As an example of such a state let us mention the stress

concentration in the vicinity of holes, or near notches and cracks." [10], and by another pioneer

of the micropolar theory R. Lakes: "The predictions of elasticity theory agree with experiment

for most engineering materials under most circumstances. Discrepancies have been reported in

the literature between theory and experiment in fatigue properties of coarse-grained materials in
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regions of large strain gradient." [13]. The micropolar theory has been mentioned as a possible

better description of the phenomenon [163], but this hypothesis has not yet been tested, most

likely due to the challenges in monitoring the experiment in the region of large strain gradi-

ents and due to the lack of reliable methods for determining micropolar material parameters.

Hence, we propose a complete methodology involving parametric and inverse numerical anal-

ysis tuned to provide the numerical results for strains corresponding to those obtained from the

strain-gauge measurements for specimens with different d
w ratio.
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6.2 Experimental testing

6.2.1 Specimen description

A set of experimental tests on specimens made of a widely used aluminium extrusion alloy EN-

AW 6060 t66 has been performed in order to provide the analysis described. The geometrical

characteristics of the rectangular specimens are L = 300 mm (length), w = 60 mm (width) and

t = 7 mm (thickness), as shown in Figure 6.1a. In order to investigate the influence of the

hole size, the experiment has been performed on three different types of the specimens having

different dimensions of the circular hole drilled in the centre (Figure 6.1b). According to the hole

diameter size d = 10, 15 and 20 mm, each specimen has been denoted as PH10-i, PH15-i and

PH20-i, where PH stands for "plate with a hole" and i = 1, 2, 3 denotes the specimen number

(three specimens for each specimen type).

w = 60

3030

L
 =

 3
00

gr
ip

 =
 7

5
75

75
gr

ip
 =

 7
5

t 
=

 7

d
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(PH10, PH15, PH20)

Figure 6.1: PH Specimens.

Three additional solid control samples of a dog-bone shape (labelled as TS7-1, TS7-2, TS7-

3) have been tested to determine the mechanical properties of the specimen material. As in
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the PH specimens, the rectangular cross-sectional shape and the thickness t = 7 mm of the

control samples have been chosen. The control samples have been designed in accordance with

European Standard for Tensile Testing of Metallic Materials at Room Temperature EN ISO

6892-1 [164], where the recommendations for the method and the design of specimens thicker

than 3 mm are given in Annex D. In addition, their design took into account the technical

constraints of the tensile machine, such as the minimum "grip to grip" distance and the required

area of the specimen edge entering the machine jaws. Three samples have been prepared for

each specimen type, which are shown in Figure 6.2. The experiments have been performed on a

universal tension-compression testing machine Zwick/Roell Z600, in the Structures Laboratory

of the Faculty of Civil Engineering, University of Rijeka [165]. The tensile testing machine is

vertically divided by a movable cross head, and it consists of two working chambers: the upper

chamber with hydraulic jaws, and the lower chamber with either pneumatic or hydraulic. All

specimens have been tested using the testXpert II programme [166]. To determine the mechanical

properties of the control specimens, a standard uniaxial tensile test according to EN ISO 6892-

1, A1 method has been performed, where the strain rate 0.00025 1/s has been applied using

extensometers until the yield point has been reached. After reaching the yield point, the strain

rate increases up to 0.0067 1/s, where the displacements have been controlled by the movable

cross head.

Figure 6.2: Test specimens (TS) for determination of material properties.

Figure 6.3 shows the stress-strain curves of the tested specimens and it also shows the corre-

sponding Ramberg-Osgood’s material law, which is often used to define a three-parameter model
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relationship between stress and strain for such an aluminium material [167]. A slightly curved

elastic part of the stress-strain curve is characteristic of this model, but in our tests the elastic

behaviour exhibits complete linearity. For the purpose of this research, the elastic part of the

stress-strain diagram will thus be considered as exactly linear.

The following average values of the test results thus have been obtained: tensile strength

fu = 209.85 MPa, offset yield strength fy,0.2 = 175.34 MPa, fy = 165.06 MPa, Young’s modulus

E = 67050.55 MPa, and Poisson’s ratio n = 0.3.

Figure 6.3: Stress–strain curves for tested TS7-i specimens and according to Ramberg-Osgood
relationship.

6.2.2 Preparation for strain measurements

Two types of strain gauges have been attached to each specimen, inside and near the hole, to

measure the longitudinal strains. For this, the electrical-resistance strain gauges with the smallest

possible measurement areas have been chosen. The first type is HBM K-CLY9x-1.5/120 [168],

a configurable, pre-wired linear strain gauge with 1.5x2.0 mm2 measurement area and 120 Ω

resistance, which is placed inside the hole (Figure 6.4a). The second strain-gauge type used is

HBM 1-LY5x-3/120 [168], a narrow strain gauge with the wire lead at each end of the grid,

which is placed on the outer surface of the specimen near the edge of the hole (Figure 6.4b).

Its measuring surface is 3.0x0.4 mm2 and its resistance 120 Ω. Before gluing the strain gauges,

each specimen must be thoroughly cleaned of all dirt and grease. The strain gauges have been

placed at the positions as shown in Figure 6.5. Depending on the position, each strain gauge is

labelled with the following designations: LI (left inside), RI (right inside), LO (left outside) and

RO (right outside).
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(a) Strain gauge for the inner part of the hole (b) Narrow strain gauge for the external
part

Figure 6.4: Used strain gauges from the manufacturer’s catalogue [168].

RILO
LI RO

Figure 6.5: Strain-gauge positions (LI, RI - type K-CLY9x-1.5/120 placed inside the hole; LO,
RO - type 1-LY5x-3/120 placed near the hole on the face of the specimen).

The internal strain gauges (LI, RI) are attached to the specimens with a fast-curing glue

for experimental testing HBM X60 [168], which consists of two components (powder and liquid)

that are mixed just before use. A pair of tweezers and an adhesive tape help with the gluing

process. This type of strain gauge is pre-wired, and the wires have been simply connected to

the adapters containing Wheatstone circuits in a quarter-bridge type I setting, from which the

measured signal is passed to the acquisition unit connected to a PC terminal. The strain gauges

LO, RO have been attached to the specimen using a cold-curing superglue for experimental

testing HBM Z70 [168]. Furthermore, the strain gauges LO, RO have wire leads on each end

and HBM LS7 external terminals [168] have been used to solder them to the wires connected to

the adapters (Figure 6.6a). Some areas around the strain gauges are additionally protected with

an insulating duct tape so that the leads do not touch the (metal) specimen (Figure 6.6b). The

strain gauges have been calibrated immediately before the test starts. Then the strain gauge

measurement data is recorded using NI Signal Express software [169] and analysed once the test

has been completed.
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(a) Strain gauge soldering (b) The specimens ready for experiment

Figure 6.6: Preparation for strain measuring.

High strain gradients arose in the area around the hole during the tensile test. For this reason,

the installation of the external strain gauges (LO, RO) has been performed as accurately as

possible to ensure that they are equidistant from the edge of the hole. However, small deviations

from the exact positions occurred during installation. The actual distances between the edge

of the hole and the inner edge of the strain gauges have been measured using a high-accuracy

digital caliper after installation, and are shown in Table 6.1.

Table 6.1: Measured distances between the inner edge of each external strain gauge and the edge
of the hole [mm].

Strain gauge Average distance for

Sample LO RO each specimen type

PH10-1 0.663 0.657

0.662PH10-2 0.615 0.550

PH10-3 0.680 0.650

PH15-1 0.681 0.670

0.661PH15-2 0.675 0.620

PH15-3 0.645 0.677

PH20-1 0.543 0.659

0.605PH20-2 0.627 0.610

PH20-3 0.650 0.540

6.2.3 Experimental setup

All nine specimens prepared in this way have been subjected to uniaxial tension using Zwick/Roell

Z600 tensile testing machine (Figure 6.7). The largest possible value of the force has been applied
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in order to achieve the greatest precision of the measured data, while at the same remain in the

zone of linear elasticity. A maximum force F = 20 kN has been chosen for all three types of

specimens to ensure F <
fy ·Anet
Ktn

, where Anet is net cross-sectional area for the specimen with

the largest hole PH20, and Ktn is the stress concentration factor at the edge of the hole obtained

from the analytical solution [136]. The experiments consist of three phases: 1st phase in which

the jaws grip the sample (the pressure of the jaws on the ends of the sample is 9 MPa), and

when the tensile force is zero, 2nd phase is preloading of the sample up to 500 N (for 30 seconds),

and 3rd phase is a slow-rate uniaxial stretching of the sample. The tensile force has been applied

under displacement control of a constant speed 0.2 mm/min to the maximum force F . Low

strain rate (0.0033 1/s) experiments provided practically the same material properties of tested

aluminium solid control samples TS7-i [170].

Figure 6.7: Experiment - a specimen subjected to uniaxial tension.

6.2.4 Data collection

The strains measured at the monitored positions in time are shown in Figures 6.8-6.10. The

internal strain gauges show higher strains than the external ones, as expected. The specimen

is preloaded with low forces during the first 30 seconds, hence the initial part of the measured

strain curve is not properly linear. Due to the symmetry of the considered problem, the strains

on the left and those on the right should coincide. However, the measurements do not entirely
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confirm this expectation. The fundamental reason for this may be found in the actual distance of

the outer strain gauges from the edge of the hole, or perhaps the correct placement of the inner

strain gauges at the point of the hole nearest to the longitudinal edge of the specimen. That

this is really so for the outer strain gauges (LO, RO) may be seen by comparing the distances

of the individual strain gauges from Table 6.1 with the corresponding measured strain results in

Figures 6.8-6.10, where it can be observed that the discrepancies between the strains measured

by LO and RO are the largest in PH10-2, PH20-1 and PH20-3, where their respective distances

from the edge of the hole are scattered the most. For this reason, only the results of the strain

gauges whose distance in Table 6.1 do not deviate too much from the average value of 0.65 mm

are considered for further comparison with the numerical results. More precisely, measurements

provided by RO in PH10-2 , LO in PH20-1 and RO in PH20-3 are excluded from further analysis.

Table 6.2 shows the obtained strain results at the time tmax when the maximum force F = 20

kN is reached, where the results provided by the strain gauges mentioned above (RO in PH10-2,

LO in PH20-1 and RO in PH20-3) have been printed as bold-face, and are not considered in the

computation of the average strain. As expected, the hole size obviously affects the value of the

longitudinal strain near the hole (and thus the value of the stress concentration factor), i.e., as

the hole size increases, the values of the strain measured also increase.

Figure 6.8: Strain measurements for the specimen PH10.

Figure 6.9: Strain measurements for the specimen PH15.
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Figure 6.10: Strain measurements for the specimen PH20.

Table 6.2: Experimental measurements obtained by external and internal strain gauges for F =
20 kN.

Specimen Position εx Average εx* Position εx Average εx*

PH10-1
LO 0.00136

0.001347

LI 0.00155

0.00201731

RO 0.00132 RI 0.00216

PH10-2
LO 0.00141 LI 0.00207

RO 0.00114 RI 0.00211

PH10-3
LO 0.00135 LI 0.00203

RO 0.00130 RI 0.00219

PH15-1
LO 0.00161

0.001539

LI 0.00211

0.002179

RO 0.00161 RI 0.00212

PH15-2
LO 0.00154 LI 0.00228

RO 0.00151 RI 0.00225

PH15-3
LO 0.00146 LI 0.00216

RO 0.00151 RI 0.00215

PH20-1
LO 0.00194

0.001742

LI 0.00227

0.002384

RO 0.00157 RI 0.00232

PH20-2
LO 0.00186 LI 0.00245

RO 0.00188 RI 0.00242

PH20-3
LO 0.00166 LI 0.00238

RO 0.00193 RI 0.00247

6.2.5 Control experiment

To ensure the reliability of the obtained measurements, another control experiment on the same

specimens under slightly modified conditions has been conducted. The tensile test has been

performed in the lower chamber of the tensile testing machine, using pneumatic jaws up to a
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maximum force of 10.5 kN (this is also the maximum allowable force for the used jaws), reached

by the displacement control rate of 0.15 mm/min. By comparing the average strain-gauge results

of each specimen type for both experiments, it has been demonstrated that deviation is less than

0.9%, as shown in Table 6.3.

Figure 6.11: Control experiment - specimen subjected to uniaxial tension using pneumatic jaws.

Table 6.3: Experimental measurements from both conducted experiments for F = 10.5 kN.

Average εx - external SG Average εx - internal SG

Experiment Control experiment Experiment Control experiment

PH10 0.00067 0.00067 0.00110 0.00110

PH15 0.00080 0.00079 0.00113 0.00112

PH20 0.00094 0.00095 0.00125 0.00124

Given that this control experiment has been carried out using jaws that did not obscure

the view of the front or back surfaces of the specimens (cf. Figures 6.7 and 6.11), and that

they were positioned in the accessible lower chamber of the tensile machine, the additional 2D

optical measurements with 64 MP camera have been also performed. Before the experiment, the

specimens were first sprayed with white anti-reflective spray, and then with the black spray to

achieve a stochastic pattern. The experiment has been recorded at 4K resolution with an original

frame rate of 30fps, which has been later reduced to 2fps, in order to reduce the amount of data

and simplify processing. During the setup preparation, great care has been taken to ensure that

the camera was aligned parallel to the specimen. Each video is post-processed using GOM Aramis

Professional 2020 to calculate strain values through the measured displacements, at the exact

locations where the external strain gauges were placed on the specimens to carry out a proper
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comparison of the results. However, despite the use of various filters (spatial and temporal) to

remove noise, it was not possible to obtain sufficiently accurate results. The obtained strains vary

for about ±0.025% (which falls within the expected accuracy range of the DIC method [171]),

that is too much for our very small linear elastic deformations (for both conducted experiments),

which is in the range of 0.067% - 0.094%. This makes the optical results inadequate for proper

comparison.

6.3 Numerical investigation based on the classical theory of elas-

ticity

A virtual experiment has been performed as an equivalent to the conducted real experiment. The

geometrical and material parameters of the virtual specimens are based on PH specimen’s data,

where the thickness is t = 7 mm and the width is w = 60 mm, while the length is considered from

grip to grip of the tensile machine so, for the numerical model it is equal to L′ = 150 mm. Three

types of numerical models corresponding to three specimen types with different hole diameters

d = 10, 15 and 20 mm have been modelled. Given that there are two axes of symmetry, only one

quarter of the whole sample model is considered, as shown in Figure 6.12. The elastic modulus

E = 67050.55 MPa and the Poisson’s ratio n = 0.3 are taken from the previous standardised

tests. The finite-element mesh has been defined in the open-source software Gmsh 3.0.5. [132],

where a dense mesh of planar quadrilateral finite elements with four nodes has been generated to

discretise the model (the total number of finite elements is about 65000). Before the automatic

discretisation, additional nodes have been inserted into the model as the boundary points of the

external strain-gauge measurement area (1.5x0.4 mm2), located at the measured average distance

between the inner edge of the strain gauge and the rim of the hole (Table 6.1), as shown in Figure

6.13 for the PH10 specimen type. After the numerical procedure, the results of the longitudinal

strains in all Gauss points within the area of the so-called virtual strain gauge are read, averaged

and compared with the experimental results. The circular arc of the hole is discretised using

the finite elements whose sides are smaller than 0.15 mm, so we can say that the generated

mesh faithfully approximates the geometry of the specimens. The mesh is generated in such a

way that the mesh is denser in the area around the hole, and introduced into FEAP (Finite

Element Analysis Programme) [127]. The uniformly distributed maximum load q = F
w·t = 47.62

N/mm2 is applied to the shorter edge of the model. Boundary conditions are defined along the
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symmetry lines where the displacements constraints are imposed as shown in Figure 6.12. In

the numerical analysis, the problem is considered as a plane-stress condition modelled using a

very dense mesh as described composed of standard Lagrange Q4 finite elements. In addition,

the results have been compared with a model where higher-order quadrilateral Q9 Lagrangian

elements are applied, with the same number of finite elements as in the Q4 element model, both

at the strain gauge locations and near the hole. Also, the 3D and 2D numerical models of the

PH10 specimen type have been compared. Since there have been no differences in the results, it

can be concluded that the simplified 2D model with a high mesh density of Q4 finite elements is

sufficiently reliable and has been used for all the analysis in the following.

uy(x,0) = 0

q = 47.62 MPa

L'  = 75 mm

ux(0,y) = 0

w 2
 =

 3
0 

m
m

r

x

y

Figure 6.12: Quarter-plate model with a circular hole subjected to uniaxial tension.

Figure 6.13: Finite element mesh around the hole of PH10 specimen [mm].

The value of the stress concentration factor Ktn has been defined as the ratio between the

maximum longitudinal stress at the node placed at (0, r) and q w
w−d and compared to Howland’s

analytical solution [136] for each specimen type ( dw = 0.667, 0.333, and 0.25) to assess accuracy

of the numerical approach. Table 6.4 shows the comparison between the numerical and analytical
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results, where it can be observed that the maximum difference between the two results is 0.12%.

The numerical model is thus considered to be reliable and is taken for comparison with the

experimental results without further recourse to the analytical solution. It is worth mentioning

that the stress results in the node at (0, r) are calculated by extrapolation from the corresponding

stress at the integration points near the node.

Table 6.4: Comparison between Howland’s analytical solution [136] and numerical results (using
Q4 and Q9 finite elements) for the stress concentration factor at the edge of the hole.

Sample d
w Ktn [136] Ktn num. Q4 Difference [%] Ktn num. Q9 Difference [%]

PH10 0.167 2.584 2.581 0.11 2.583 0.03

PH15 0.250 2.432 2.429 0.12 2.435 0.11

PH20 0.333 2.314 2.314 0.03 2.311 0.10

Because of the large strain gradient in region near the circular hole, it is very important to

carefully interpret the numerical results in order to compare them with the experimental results

in a reliable manner. In other words, the strain values near the hole differ from point to point,

and as we approach the edge of the hole, these values increase very sharply. For this reason, it

is not correct to consider only the strains of the numerical model obtained in the position of the

centre of a strain gauge, but account for the entire measurement area. In each strain gauge, there

are several longitudinal wires whose electrical resistance changes depending on how much the

cross-section decreases under the tensile load of the specimen. The measured strain value of each

strain gauge strip represents the average value of the strain measured on the entire measurement

area of the strain gauge’s surface [168, 172]. For this reason, the average strain value obtained

from all the Gauss points within the modelled surface of the "virtual strain gauge" is calculated

for a realistic comparison with the experimental results. The same applies to the internal strain

gauges, where the average strain values are obtained from all Gauss points closest to the edge of

the hole, at the strain gauge measuring grid length of 0.75 mm. The surface and length on which

the numerical results for the longitudinal strains at the external strain gauge (Ext. SG) and for

the internal strain gauge (Int. SG) have been considered are shown in Figure 6.13 for the PH10

specimen type (the same applies to the remaining two specimen types). Tables 6.5 and 6.6 show

the average numerical results obtained in this way and the obtained experimental strain results

for all three specimen types from Table 6.2. The numerical model based on the classical theory

of elasticity overestimates the influence of the circular hole in that it returns higher values of

stresses and strains, which has been confirmed experimentally (see e.g. [147,154]). Interestingly,
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the difference between the numerical prediction and the experimental measurement increases

with increase in the ratio d
w for the external strain gauges, but it decreases for the internal strain

gauges.

Table 6.5: Comparison between numerical and experimental results at the internal strain gauges.

Sample
Expt. results Numerical results Difference Numerical results Difference

(average) Q4 FE [%] Q9 FE [%]

PH10 0.002017 0.002138 6.00 0.002152 6.65

PH15 0.002179 0.002269 4.12 0.002283 4.77

PH20 0.002384 0.002441 2.36 0.002457 3.03

Table 6.6: Comparison between numerical and experimental results at the external strain gauges.

Sample
Expt. results Numerical results Difference Numerical results Difference

(average) Q4 FE [%] Q9 FE [%]

PH10 0.001347 0.001451 7.73 0.001450 7.68

PH15 0.001539 0.001712 11.23 0.001712 11.23

PH20 0.001742 0.001953 12.08 0.001955 12.19

Tables 6.5 and 6.6 show that even samples made of aluminium alloy (which is considered a

homogeneous material) do not behave exactly as the classical (Cauchy’s) theory predicts.
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6.4 Numerical investigation based on the micropolar theory of

elasticity

In practice, obviously, it is very important to be able to predict the real behaviour of structural

elements, their parts and joints, and to this end a question as to whether there exists an al-

ternative mechanical theory with better predictive capabilities occurs naturally. In an attempt

to answer this question we will here consider the so-called micropolar or Cosserats’ theory of

elasticity [3].

We will investigate if it is possible to determine the extra material constants present in the

theory capable of providing complete agreement between the numerical and experimental results.

6.4.1 Numerical model based on the micropolar theory of elasticity

Previously developed quadrilateral finite elements with four nodes and three degrees of freedom

per node (two displacements ux, uy and one in-plane microrotation φz) Q4EFP have been used

here to simulate a micropolar continuum in a plane stress condition. The displacement-type

weak formulation is obtained by means of the principle of virtual work. The microrotation

field is interpolated by the standard Lagrangian interpolation, while the displacement field is

enhanced by applying the enhanced fixed-pole interpolation (see Chapter 4). The finite elements

formulated in this way are introduced into FEAP, thus allowing numerical analysis based on the

micropolar theory. With this numerical tool in hand, additional virtual experiments of a strip

plate with a circular hole under tension have been carried out, but now using the micropolar

theory of elasticity. The previously generated finite element mesh discretising each PH specimen

type has been utilised. Along the specimen symmetry lines all the displacements orthogonal to

them have been constrained (as shown in Figure 6.12), as have also the microrotations. The

values of the Lamé constants are λ = 38683.01 N/mm2 and µ = 25788.67 N/mm2 (which

are computed from the known Young’s modulus and the Poisson’s ratio). The identification

of the unknown micropolar parameters is a serious challenge, because a reliable procedure for

their identification has not been established yet. A comprehensive parametric analysis will be

performed next to determine the two unknown micropolar parameters (N and lb), and then an

inverse analysis will be used to find a suitable combination of these two parameters that gives a

numerical result consistent with the experimental measurements.

In the utilised procedure, the values of the coupling number N ∈ [0.1, 0.99] in the intervals
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of 0.1 as well as the values for the characteristic length for bending lb ∈ [0, 10] in the intervals

of 1.0 are considered, giving a total of 110 combinations. The results of the numerical analysis

which are monitored are the strains determined at the locations of the "virtual strain gauges",

as defined earlier in the numerical tests using the classical theory.

6.4.2 Results of parametric and inverse analyses

The numerical strain results for different values of the micropolar parameters N and lb for

all three specimen types are shown in Figures 6.14-6.16 at the locations of the internal strain

gauges, while Figures 6.17-6.19 show the results at the locations of the external strain gauges.

In these figures, the strains obtained using the numerical analysis based on the classical theory

are represented by the top horizontal line, while the experimental results are represented by

the bottom horizontal line. The strain results generally decrease by increasing the values of

the micropolar material parameters, N and lb. The intersection points in Figures 6.14-6.19

represent a family of combinations of parameters N and lb that lead to the micropolar numerical

results consistent with the experimental results for each specimen type at both sampling points

(positions of the strain gauges).

The inverse analysis has been performed first for the case of the internal strain gauges, and

then for the case of the external strain gauges. Clearly, the following two demands have to be

met to confirm the hypothesis that the micropolar continuum theory is capable of predicting the

measured results. First, for a chosen set of strain gauges (external or internal) a unique pair of

values (N and lb) provides the measured strains for all specimen types (PH10, PH15, PH20) and,

second, the same (N and lb) provides the correct prediction for the other set of strain gauges.

Therefore, for all the six measurements, the experimental results have to be correctly predicted

by a unique pair of micropolar material parameters (N and lb).

121



Figure 6.14: Parametric analysis of PH10 sample for internal strain gauges

Figure 6.15: Parametric analysis of PH15 sample for internal strain gauges

Figure 6.16: Parametric analysis of PH20 sample for internal strain gauges
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Figure 6.17: Parametric analysis of PH10 sample for external strain gauges

Figure 6.18: Parametric analysis of PH15 sample for external strain gauges

Figure 6.19: Parametric analysis of PH20 sample for external strain gauges

123



• Internal strain gauges

In order to find a parameter combination that properly describes the behaviour of all the

specimen types and thus has the potential to be generalised not only for arbitrary d
w ratio, but

also for different tests involving the same material, an analysis of the possible combinations

of N and lb has been performed for each specimen type. Only those values of N for which a

solution exists for each specimen type (N = 0.3, ... , 0.99) have been retained for analysis. The

analysis of combinations has been carried out in such a way that for each N -curve a value of

the characteristic length has been sought which provides the numerical results corresponding to

the experimental results for each particular specimen type (Table 6.7). For each observed N , an

average value of the characteristic length for bending has been calculated from the results for

each specimen type. Of course, there are more possible combinations when we consider denser

intervals for the N and lb parameters. Generally, it can be seen that for smaller values of the

coupling number N , a suitable value for lb is higher, and vice versa. More importantly, larger

variation of the characteristic bending lengths across the specimen types is observed for smaller

values of the coupling number, indicating that a unique characteristic bending length is more

likely to be found at the maximum theoretically possible value of the couple number (N → 1).

Table 6.7: Combinations of parameters N and lb for each specimen type providing the numerical
results for the longitudinal strains equal to the experimental results obtained by the internal
strain gauges.

N
Specimen

lb
Specimen

lb
Specimen

lb
Average Standard

type type type lb deviation

0.3

PH10

1.64

PH15

1.26

PH20

0.84 1.25 0.40

0.4 1.06 1.02 0.74 0.94 0.17

0.5 0.88 0.90 0.68 0.82 0.12

0.6 0.78 0.84 0.64 0.75 0.10

0.7 0.73 0.81 0.62 0.72 0.09

0.8 0.69 0.76 0.61 0.69 0.08

0.9 0.67 0.76 0.60 0.68 0.08

0.99 0.63 0.73 0.59 0.65 0.07

Indeed, for the highest analysed value of the coupling number (N = 0.99), the characteristic

bending lengths vary the least, leading to the conclusion that their average (lb = 0.65) along

with N = 0.99 provides the best theoretical prediction. This in turn indicates that here the
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microrotation coincides with macrorotation, which is a characteristic of the couple-stress theory

[173,174].

• External strain gauges

In an analogous manner, the analysis for the six possible values of the coupling number

(N = 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) for the external strain gauges has been performed for each

specimen type (see Figures 6.17-6.19).

Table 6.8: Combinations of parameters N and lb for each specimen type providing the numerical
results for the longitudinal strains equal to the experimental results obtained by the external
strain gauges.

N
Specimen

lb
Specimen

lb
Specimen

lb
Average Standard

type type type lb deviation

0.5

PH10

4.90

PH15

5.15

PH20

4.26 4.77 0.46

0.6 3.57 3.92 3.62 3.70 0.19

0.7 3.19 3.50 3.35 3.35 0.16

0.8 3.07 3.31 3.22 3.20 0.12

0.9 3.05 3.24 3.15 3.15 0.10

0.99 3.08 3.21 3.13 3.14 0.07

The smallest difference between the experimental and the numerical results for all three

specimen types are obtained for the combination with N = 0.99 and lb = 3.14. This effectively

means that at these positions the material does not exhibit a behaviour featuring an independent

microrotation field which is on its own a characteristic of the couple-stress theory [20, 174]. As

before, the characteristic bending length varies the least for the highest values of the coupling

number (N = 0.99) providing the average lb = 3.14. This pair of micropolar material parameters

therefore provides the best theoretical prediction of the strains at the positions of the external

strain gauges.

As can be seen from Tables 6.7, 6.8, a unique combination of the micropolar parameters N

and lb capable of capturing both cases of the strain gauge position does not exist. Moreover, the

possible parameter combinations in the case of the external strain gauges involve the values of

the characteristic length for bending that are several times larger than in the case of the internal

strain gauges. Clearly, the micropolar theory therefore cannot model the actual behaviour of

the studied problem, nor the couple-stress theory can, as its special case (N → 1). The unique

coupling number of N = 0.99 in both sets of experiments, however, clearly indicates that no
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independent micropolar field develops in the process. Figure 6.20 illustrates the above conclusion

about the inability of the couple-stress theory to model the present problem, for the specimen

type PH10 (similar graphs may be plotted for the specimen types PH15 and PH20, too). This

specimen type is singled out because its ratio d
w = 0.166 makes its results comparable with the

analysis conducted in [147] ( dw = 0.156), where the strain field was measured using the Moiré

method, which provided a complete strain distribution in the specimen. Comparing the present

strain-gauge measurements with those from [147] for the load of 44.82 N/mm2 applied here, we

are able to validate the present measurements. Furthermore, we may reasonably conclude that

the whole longitudinal strain profile across the cross-section cutting through the centre of the

hole in [147] is a reliable experimental result, which is plotted in Figure 6.20 and compared with

our numerical simulations. Precisely, none of the two parameter choices (lb = 0.65, lb = 3.14),

along with N = 0.99 can make the numerical results reproduce the experimental curve obtained

in [147].

Figure 6.20: Comparison between the experimental and numerical results based on the two
theories for PH10 specimen type (r - distance from the hole rim to the specimen edge).

6.5 Conclusion

In an attempt to test if the micropolar theory of elasticity may better describe the stress and

strain distribution around the circular hole in an axially loaded strip than the classical theory,

laboratory experiments have been carried out on three types of aluminium strip specimens and

the corresponding numerical simulations provided. By comparing the experimental longitudinal

strains at characteristic positions near the hole obtained by strain gauge measurements with the
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corresponding results obtained by a virtual experiment in the framework of numerical analysis

based on the classical theory of elasticity, discrepancies of up to 12.08% have been observed.

We have stipulated that one of the alternative theories of elasticity, the so-called micropolar

theory, would be able to provide a potential solution to this problem through its capacity to

accommodate the experimental results via additional material parameters - the coupling number

and the characteristic length for bending. To this end, numerical analysis of the problem is

performed within the finite element method based on the micropolar theory to find a family of

possible solutions. Parametric and inverse numerical analyses have been applied to determine

the combination of the two micropolar constants that would provide numerical strain results

that agree with the experimental measurements. For both sets of strain-gauge measurements,

it has been concluded that the smallest scatter of the characteristic bending lengths across the

specimen types takes place for the maximum possible value of the coupling number (N → 1),

which clearly indicates that no independent micropolar field develops in the process. In addition,

considerable difference in the values of the characteristic bending length is obtained based on

the two sets of measurements. We thus conclude that the micropolar continuum theory is not

capable of predicting the actual behaviour and that the answer should be sought in some other

alternative continuum theory, possibly of the strain-grade type.

To further validate the presented experimental results in future work, a strain gauge strip com-

posed of several equidistant strain gauges in a chain specifically designed to determine the strain

gradient along the analysed line [168] may be used, as well as non-contact measurement in sit-

uations when a larger load may be applied while remaining within the confines of linear-elastic

behaviour (which has been a limitation in this research).

127



128



Chapter 7

Conclusions and future work

7.1 Development of new micropolar finite elements

From the extensive investigation of the relationship between the Lagrangian, the helicoidal and

the fixed-pole interpolation in their linear form, and the well-known linked interpolation, the

new enhanced fixed-pole interpolation has emerged as a possible interpretation of the linked

interpolation. By introducing an additional coefficient into the enriched part of the interpolated

displacement field, the same formulation is obtained as in the application of the linked interpo-

lation for the standard degrees of freedom, which is known to provide an exact solution for the

3D Timoshenko beam of arbitrary order with a sufficient number of nodes.

The presented interpolation has been then used for the development of the new family of finite

elements of arbitrary order based on the micropolar continuum theory. The new quadrilateral

and hexahedral finite elements have been validated through a set of patch tests, where the

elements showed the ability to reproduce the constant stress state. The convergence rate has

been additionally evaluated on several numerical examples in the static and vibrational analysis

of the 2D and 3D micropolar continuum, where the proposed interpolation almost always proves

to be the best approximate solution. Given that the research on the dynamic analysis of the

micropolar continuum is quite limited so far, this excursion into the numerical analysis of natural

frequencies of 2D and 3D micropolar problems with the application of Lagrange interpolation

and two variants of fixed-pole interpolation represents a good basis for the future work that

includes a complete dynamic analysis of a micropolar continuum.

It is concluded that the newly developed finite elements exhibit convergence and efficiency

based on the showed results and therefore, they can be employed as a simulation tool for the
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inverse determination of unknown micropolar material parameters in the second part of this

research.

7.2 Identification of micropolar material parameters

The described procedure, based on a virtual experiment, has been performed to determine the

value of the coupling number for the perforated aluminium specimens, for which the value of

another important micropolar material parameter - the characteristic length for bending - was

determined in an earlier research. The methodology is based on the virtual experiment of a

planar classical model simulating the considered specimens under four-point bending, where the

shear influence on the determination of the coupling number value is considered through three

different experimental setups. The specimen model is then treated as a homogenised micropolar

continuum discretised by the newly developed 2D micropolar finite elements. The coupling

number is obtained through inverse analysis by fitting the results of the average displacements

along the height of the model of several characteristic profiles based on the results obtained from

the virtual experiment (classical model). Although the proposed methodology is not innovative,

that is, it is inspired by the methodology from the literature, it does draw attention to certain

components in the determination of the coupling number, aimed at its improvement. On the

other hand, this study provides us to better understand this micropolar material parameter. It

has been demonstrated that the coupling number is a highly sensitive constant and that it does

not have a significant influence in the context of the considered 4PB problem, particularly in the

1st setup where the biggest bending moment is present. On the other hand, its influence becomes

more pronounced as the ratio of shear to bending increases, leading to a smaller dispersion of

the obtained values of N for all 4 types of specimens. For this reason, it is suggested that future

research could benefit from exploring the region beyond pure bending or, even more effectively,

conducting a virtual experiment involving pure shear to obtain a more accurate determination.

We have also performed tensile laboratory tests on a set of aluminium strips with three differ-

ent ratios between the hole diameter and the strip width, in order to investigate the frequently

reported discrepancies between experimentally obtained results and theoretical values for the

stress concentration factor in this classical problem. Considering that the differences are notable

in the literature even for homogeneous specimens in linear analysis (which additionally increases

under cyclic loading), we limited our study to the simplest possible case of this problem to clearly
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investigate the gap between theoretical and experimental values. The numerical results have been

carefully compared with the strain gauge measurements, and, the results indeed show a certain

deviation. The application of micropolar theory is investigated as an alternative, better descrip-

tion of this problem, which has not been studied before. A methodology based on parametric and

inverse numerical analysis is hence suggested for the identification of the micropolar parameters

present in the problem (coupling number and characteristic length for bending). However, it is

concluded that there exists no specific set of constant values for these parameters that may make

the simulation fit with the experiment for all the specimens tested. On the basis of the analysis

conducted, we indeed affirm that the micropolar theory cannot predict the experimental results,

in particular that it is not suitable for materials with a very low-scale internal structure.

In future work, conducting a 3D analysis of all three types of PH specimens and comparing

the numerical solutions with the experimental results would be desirable. Alternatively, it will

be good to perform an additional combined comparison with the numerical results of the 2D

analysis based on the plane strain condition (only the plane stress condition has been analysed

in Chapter 6), since the thickness of the specimens is not so insignificant compared to the width of

the hole. This way, it would be completely verified whether the local theory adequately describes

this problem. If this is still not satisfactory, future work could investigate whether another

theory of the continuum is more adequate - such as the couple stress theory. Additionally,

the problem of stress concentration around the circular hole in a plate made of micropolar

material could be analysed in future work, specifically, a microstructure of a regular pattern

could be artificially designed in the aluminium matrix of the tested specimens, and the inverse

and parametric analysis presented in this paper could be performed to identify the micropolar

material parameters for the designed microstructure.

As part of the research proposal ”Experimental research and numerical analysis of materials

with a pronounced (micro)structure” for which the BST grant has been awarded, laboratory

experiments are also planned on cylindrical 3D-printed specimens of several different dimensions

that will be subjected to pure torsion. The size-effect will be analysed and attempts will also

be made to determine additional micropolar material parameters that manifest themselves in a

state of pure torsion.
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“Education is not something you can finish.”

Isaac Asimov
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