Name of teacher:	Leo Škec
Employed at:	Faculty of Civil Engineering, University of Rijeka
Since:	01/02/2009
Title:	Full professor
Since:	01/02/2025
In:	technical sciences / basic technical sciences / applied mechanics

e-mail address, web page	leo.skec@uniri.hr; https://portal.uniri.hr/Portfelj/Details/846
--------------------------	---

Knowledge of foreign languages	English, Italian

	- date of birth, nationality: 15/01/1985, Croatian
	- First degree obtained at: Faculty of Civil Engineering, University of Rijeka (2003-
Qualifications	2008)
	- Ph.D. degree obtained at: Faculty of Civil Engineering, University of Rijeka (2009-
	2014)
	- previous employments: Faculty of Civil Engineering, University of Rijeka: teaching
	assistant (2009-2014), postdoc (2014-2015), assistant professor (2015-2022), asociate
	professor (2022-2025); Brunel University London: postdoc (2016-2018)

	[1] Hlaca, Ivan, Skec, Leo, Ribaric, Dragan, Grbac, Marin (2024). Investigation of the
	influence of the loading arrangement on the measured mode-I fracture resistance.
	Journal of Adhesion Science and Technology, 38(3), 397-424.
	https://doi.org/10.1080/01694243.2023.2230654
	[2] Škec, Leo, Alfano, Giulio (2024). Characterisation of mode-I fracture resistance of
	adhesive layers with imperfections. Engineering Fracture Mechanics, 301, 110028.
	https://doi.org/10.1016/j.engfracmech.2024.110028
	[3] Škec, Leo, Alfano, Giulio (2023), Experimental and numerical study of rate-dependent
	mode-I failure of a structural adhesive. The Journal of Adhesion. 99(8), 1323-1355.
	https://doi.org/10.1080/00218464.2022.2106132
	[4] Ranibar, Maedeh, Škec, Leo, Jelenić, Gordan, Ribarić, Dragan (2023), Mixed-mode
	delamination of lavered structures modeled as Timoshenko beams with linked
	interpolation International Journal for Numerical Methods in Engineering 124(8) 1773
	1707 https://doi.org/10.1002/pmp.7187
	[5] Siciliano Alfio Francesco Škec Leo Jelenić Gordan (2023) Closed-form solutions for
	two-laver Timoshenko beams with interlaver slin, unlift and rotation compliance
List of papers	Moccapica 58/5) 803 018 https://doi.org/10.1007/c11012.023.01655.4
published in scientific	[6] Siciliano Alfio Francesco Škec Leo Jelenić Cordan (2021) Closed form solutions for
journals	modelling the rotational stiffness of continuous and discontinuous compliant interfaces
	in two lover Timoshanka haama. Acta Machanica, 222(7), 2702, 2024
	III two-layer Timoshenko beams. Acta wechanica, 252(7), 2795-2024.
	<u>nttps://doi.org/10.1007/s00707-021-02958-X</u>
	[7] Siciliano, Alfio Francesco, Skec, Leo, Fossetti, Marinella, Jelenic, Gordan (2021).
	Experimental and numerical study on the compressive behaviour of partially accessible
	concrete columns strengthened by a layer of high-performance concrete. Structures,
	34, 4100-4112. https://doi.org/10.1016/j.istruc.2021.09.048
	[8] Skec, Leo, Alfano, Giulio, Jelenić, Gordan (2019). Enhanced simple beam theory for
	characterising mode-I fracture resistance via a double cantilever beam test.
	Composites Part B: Engineering, 167, 250-262.
	https://doi.org/10.1016/j.compositesb.2018.11.099
	[9] Škec, Leo (2019). Identification of parameters of a bi-linear cohesive-zone model using
	analytical solutions for mode-I delamination. Engineering Fracture Mechanics, 214,
	558-577. https://doi.org/10.1016/j.engfracmech.2019.04.019
	[10] Škec, Leo, Alfano, Giulio, Jelenić, Gordan (2019). Complete analytical solutions for
	double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
	• • •

International Journal of Fracture, 215(1-2), 1-37. https://doi.org/10.1007/s10704-018-
<u>0324-5</u>
[11] Škec, Leo, Alfano, Giulio, Jelenić, Gordan (2019). Complete analytical solutions for
double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces.
International Journal of Fracture, 215(1-2), 1-37. https://doi.org/10.1007/s10704-018-
<u>0324-5</u>
[12] Škec, Leo, Alfano, Giulio, Jelenić, Gordan (2018). On Gc, Jc and the characterisation
of the mode-I fracture resistance in delamination or adhesive debonding. International
Journal of Solids and Structures, 144-145, 100-122.
https://doi.org/10.1016/j.ijsolstr.2018.04.020
[13] Škec, Leo, Jelenić, Gordan (2017). Geometrically non-linear multi-layer beam with
interconnection allowing for mixed-mode delamination. Engineering Fracture
Mechanics, 169, 1-17. https://doi.org/10.1016/j.engfracmech.2016.11.003
[14] Škec, Leo, Jelenić, Gordan, Lustig, Nikola (2015). Mixed-mode delamination in 2D
layered beam finite elements. International Journal for Numerical Methods in
Engineering, 104(8), 767-788. <u>https://doi.org/10.1002/nme.4939</u>
[15] Škec, Leo, Jelenić, Gordan (2014). Analysis of a geometrically exact multi-layer beam
with a rigid interlayer connection. Acta Mechanica, 225(2), 523-541.
<u>https://doi.org/10.1007/s00707-013-0972-5</u>
[16] Šćulac, Paulo, Jelenić, Gordan, Škec, Leo (2014). Kinematics of layered reinforced-
concrete planar beam finite elements with embedded transversal cracking. International
Journal of Solids and Structures, 51(1), 74-92.
<u>https://doi.org/10.1016/j.ijsolstr.2013.09.011</u>
[17] Škec, Leo, Bjelanović, Adriana, Jelenić, Gordan (2013). Glued timber-concrete beams
 – analytical and numerical models for assessment of composite action. Engineering
Review, 33(1), 41-49. <u>http://er.riteh.hr/index.php/ER/article/view/297</u>
[18] Skec, L., Schnabl, S., Planinc, I., Jelenic, G. (2012). Analytical modelling of multilayer
beams with compliant interfaces. Structural Engineering and Mechanics, 44(4), 465-
485. https://doi.org/10.12989/sem.2012.44.4.465

List of publications which serve as a proof of teaching qualifications	All the aforementioned publications.
---	--------------------------------------

-			
	Leader of the following research projects	[1] [2] [3] [4] [5]	Mechanical performance evaluation and design optimisation of a novel composite support structure for large-capacity offshore wind turbines (OWT-ENO), European Commission, HORIZON-MSCA-2024-PF-01-01 MSCA, Seal of Excellence 101211741, funded through DIGIT project of the Ministry of Science, Education and Youth of the Republic of Croatia, 2025-2027 Investigation of the mechanical property and environmental reliability of the adhesive interface in battery modules for electric vehicles under complex service conditions, Ministry of Science, Education and Youth of the Republic of Croatia, Croatian-Chinese scientific and technological cooperation, 2025 Efficient and Robust Computational Modeling of Delamination in Spatial Layered Structures, University of Rijeka, Project for experience scientists (uniri-iskusni-tehnic- 23-300 3294), 2024 Numerical and experimental investigation of mode-II rate-dependent delamination, University of Rijeka, Initial support for young researchers (17.06.2.2.01), 2019 Stability of multilayer composite columns with interlayer slip and uplift (in Croatian), National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia, Fellowships for Doctoral Students (03.01/59), 2009-2010
-			
		[1]	Dynamic characterisation of rigid blocks with cohesive contacts. University of Rijeka.

Participant in the following research projects	[1]	Dynamic characterisation of rigid blocks with conesive contacts, University of Rijeka, Project for experience scientists (uniri-iskusni-tehnic-23-280), 2024 Development of a shell finite element on the linked interpolation concept with application on layered structures, Ministry of Science and Education of the Republic of Croatia and Research Agency of the Republic of Slovenia, bi-lateral project, 2020-2021 Optimising Design for Inspection (ODIN), COST Action CA18203, 2019-2023
--	-----	---

[4]	Assumed strain method in finite elements for layered plates and shells with application on layer elamination problem (ASDEL), Croatian Science Foundation – Research Projects (IP-2016-06-4775), 2017-2021
[5]	Modelling mixed-mode rate-dependent delamination in layered structures using geometrically nonlinear beam finite elements (MOLAY-STRUDEL), MSCA-IF-2015-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF), Project ID: 701032, 2016-2018
[6]	Configuration-dependent Approximation in Non-linear Finite-element Analysis of Structures (CANFAS), Croatian Science Foundation – Research Projects (IP 11-2013- 9068), 2014-2018
[7]	Investigation of slender beam-like space structures with an accent to model validation (in Croatian), University of Rijeka Research Support, 2014-2016
[8]	Non-linear numerical modelling of 3D reinforced concrete frame stuctures subject to reinforcement corrosion, Ministry of Science, Education and Sports of the Republic of Croatia and Research Agency of the Republic of Slovenia bi-lateral project, 2009-2010
[9]	Improved accuracy in non-linear beam elements with finite 3D rotations, Ministry of Science, Education and Sports of the Republic of Croatia (project No 114-0000000-3025), 2007-2009
Supervision of PhD theses	2 finished (co-supervisor) 1 ongoing

Supervision of Fild theses	z inisheu (co-supervisor), r ongoing
Examination of PhD theses	1