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Abstract

Computational modeling and analysis of Fiber-Reinforced Concrete (FRC), an ad-
vanced composite known for its enhanced �exural strength and resistance to crack
propagation, form the focus of this research. The primary objective was to develop
a stable deterministic computational model capable of accurately replicating the
behavior of FRC beams under three-point bending. This model integrates funda-
mental material parameters observed at the micro-scale (�ber bond-slip and �ber
geometry) and links them to the resulting bending mechanism across the meso-
and macro-scales. A signi�cant contribution of this work lies in the formulation of
an e�cient inverse model which utilizes the Levenberg-Marquardt algorithm. This
method aims to extract explicitly de�ned material parameters (such as e�ective mod-
ulus and bundle scaling factor) by basing the objective function on the simpli�ed
forward model's expressions. The methodology includes comprehensive laboratory
testing to validate the computational results and ensure their practical applicabil-
ity. The fundamental novelty of this research is establishing a deterministic forward
model with formulations that are simpli�ed enough for e�cient inverse analysis, yet
precise enough to accurately predict FRC beam behavior, which thereby resolves
the traditional challenge of high computational cost in multi-scale inverse modeling.
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Glossary of Terms

axial sti�ness The combined resistance of the �ber bundle to axial deformation,
calculated as the product of the e�ective elasticity modulus (E) and the total
cross-sectional area (A) of the �bers.

crack inclination A parameter in the layered sectional model that represents the
angle of the crack opening.

crack-bridging The mechanism by which �bers cross a crack to maintain residual
strength and ductility.

deterministic model A computational model that always produces the same out-
put for a given set of inputs under �xed conditions.

displacement-controlled loading A testing method where the rate of deforma-
tion (displacement) is held constant.

�ber bundle model A multiscale framework used to describe and analyze the me-
chanical behavior of �ber-reinforced materials by linking the microstructural
properties of individual �bers to the overall strength, sti�ness, and damage
resistance of the composite.

�exural strength The maximum stress a material can withstand under bending.

forward model A computational model that predicts results (output) based on a
speci�ed set of known input parameters and governing physical laws.

global minimum The absolute smallest value of an objective function within the
entire solution space.

inverse analysis A technique that uses measured output data and a predictive
forward model to estimate or identify unknown input parameters of a system
or material.

inverse model A computational method used to estimate unknown physical pa-
rameters (input data) of a system based on measured responses (output data).
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Glossary of Terms

Jacobian Matrix A matrix composed of the �rst partial derivatives of a vector-
valued function.

load transfer The stress distribution mechanism across the cracked section from
the concrete matrix to the �bers via the bond.

local minima A solution found by an optimization algorithm that is smaller than
its neighbors but not the global minimum.

Monte Carlo Simulation A broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results, often used in stochastic
modeling to simulate parameter variability.

multiscale modeling A computational framework that links phenomena occurring
at di�erent length scales (e.g., micro, meso, and macro) to accurately predict
the overall structural response of a composite material.

parametric analysis A mathod of systematically mapping speci�c input param-
eters of a model to the corresponding predicted output or overall system be-
haviour.

post-cracked state The state of concrete after the formation of the �rst crack,
where load is primarily sustained by the �bers.

post-peak softening The phase in the load-displacement test where the load-
carrying capacity gradually decreases as the crack opens.

pseudo time A generalized time variable that represents the sequence of recorded
data points relative to the total testing duration.

scale e�ects The observed discrepancies in physical phenomena when comparing
a small specimen or model and its full-scale structural element.

self-compacting concrete A highly �owable concrete mixture designed to self-
compact under its own weight without the need for mechanical vibration.

stochastic model A computational model incorporating randomness and uncer-
tainty as an inherent part of its structure, often relying on statistical parame-
ters.

Tikhonov regularization A technique for estimating model parameters in scenar-
ios where the independent variables are highly correlated.

validation The process of determining the degree to which a computational model
accurately represents the real-world phenomenon.
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Glossary of Terms

veri�cation The process of con�rming that a numerical algorithm correctly solves
the underlying mathematical equations of the computational model.
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Chapter 1

Introduction

Fiber-reinforced concrete (FRC) is a composite material consisting of regular con-
crete (RC) with the addition of short-length, high-strength �bers which are added
during the mixing process to enhance the material's overall behavior under static
and dynamic loading [1]. The presence of �bers in the concrete matrix gives the
structure the ability to improve the resistance to failure in the post-cracked state.
Fibers bridge the micro-cracks and limit their propagation, preventing them from
merging into even larger cracks that ultimately lead to a complete brittle collapse
of the structure [2].

Various types of �bers are used in cement-based materials to improve their me-
chanical properties, such as, polyvinyl alcohol �bers, and polypropylene �bers, and
the most common ones - steel �bers. Steel �bers are known for signi�cantly en-
hancing the �exural and uniaxial tensile strengths of concrete due to their bridging
e�ect, which increases the material's fracture energy [3]. Steel �bers have a high
modulus of elasticity (typically between 200 and 210 Gpa) and a tensile strength
between 500 and 3000 MPa, which when added to the concrete mixture in�uences
the composite's own elasticity modulus and tensile strength [4]. However, steel �bers
are prone to corrosion, particularly when exposed to chloride environments, which
can compromise their durability [5, 6].

Despite its frequent use in construction, the procedures and regulations for de-
signing FRC structures that would meet all the necessary criteria for practical ap-
plication remain under-re�ned due to inherent uncertainties surrounding the mate-
rial's response under various loadings and the complex, micro-scale interactions that
govern its post-cracking behavior [7]. The insight into FRC behavior is primarily
obtained through laboratory testing, where the material is examined under con-
trolled conditions. Among these tests, the three-point bending test (TPBT) stands
as the standard procedure for the determination of �exural fracture properties of
beams. However, this experimental approach is both �nancially demanding and
time-consuming. Therefore, computational modeling, with its ability to simulate
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laboratory tests and predict material behavior, poses a convenient alternative. In
recent years, models for systematic analysis of parameters have been developed for a
range of materials, including concrete [8], steel [9], modern metamaterials [10], and
others.

The development of computational models that accurately capture the heteroge-
neous and stochastic nature of FRC by connecting local and global parameters with
constitutive laws, is of great interest to both researchers and engineers. Moreover,
an inverse model based on a reliable computational framework holds the potential to
provide additional insights into physically unmeasurable FRC material parameters.

Previous researchers in the �eld of multiscale modeling of FRC have developed
stochastic models that were successfully implemented in an inverse analysis algo-
rithm [11], [12]. These stochastic models incorporate the material's randomness and
uncertainty as an inherent part of its structure. Techniques such as Monte Carlo
simulations, probabilistic methods, and random �eld theory are commonly used to
introduce randomness, particularly to model the �ber distribution and bond-slip
law within the concrete matrix. For instance, Koºar et al. employed a stochastic
approach to homogenize the FRC composite, utilizing the �ber bundle model to
describe the �ber distribution [11, 13, 14].

However, these models heavily rely on statistical parameters, which often don't
directly correlate with any speci�c physical properties of the material. The scatter-
ing in measurement data from stochastic models, although valuable for simulating
and representing errors in real experiments, presents a signi�cant challenge for in-
terpreting through an inverse analysis [14]. As a result, the use of stochastic models
for parametric estimation and precise analysis of material values on a multi-scale is
limited.

In contrast, deterministic models always produce the same output given the
same input under �xed conditions. These models are essential for scenarios where
predictability and reproducibility are crucial, such as in FRC, where reliable and pre-
cise parameters are necessary. Although deterministic models can handle complex
geometries, material properties, and boundary conditions, their comprehensive for-
mulations make implementation in an inverse analysis and parameter identi�cation
an overly complicated, time-consuming, and resource-demanding task [15].

The research gap addressed in this work is the absence of a computationally e�-
cient deterministic forward models for FRC that are suitable for subsequent integra-
tion into a stable inverse parameter identi�cation framework. This study focuses on
developing a novel deterministic numerical model of FRC beams under Three-point
bending test (TPBT). This was accomplished by integrating analytical solutions
and explicit parameters that de�ne a �ber bundle model, which mitigates the men-
tioned challenges. The proposed model aims to provide a systematic and consistent
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1.1. Thesis Outline

approach to simulating FRC behavior under TPBT, enabling more accurate and
practical applications in engineering design, particularly through inverse analysis.

1.1 Thesis Outline

This dissertation is structured to address the research objectives systematically.
Chapter 2 presents a relevant literature review that mainly focuses on multiscale
modeling, fracture mechanics, and various forward and inverse modeling techniques
for FRC. Chapter 3 outlines the research goals and hypothesis that motivate this
work. Chapter 4 presents the detailed development and validation of the simpli-
�ed deterministic forward model, including the analytical formulations used for the
�ber-matrix bond and the equilibrium equations. Chapter 5 focuses on the formula-
tion and validation of the inverse model using the Levenberg-Marquardt algorithm
(LMA). Chapter 6 presents the results of the parametric analysis and the inverse
analysis process on experimental data. Finally, Chapter 7 summarizes the key �nd-
ings, conclusions, and provides recommendations for future research.
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Chapter 2

Literature Review

2.1 General Characteristics of Fiber Reinforced Con-

crete

Fiber-reinforced concrete (FRC) integrates short, high-strength, and discontinuous
�bers into the conventional concrete matrix of aggregates and cement, and represents
a signi�cant advancement in composite materials and construction. These �bers
are added during the mixing process which fundamentally changes the material's
mechanical properties. The primary function of these embedded �bers is to increase
the concrete's inherent weak points, particularly its low tensile strength and brittle
failure mechanisms. By doing so, FRC structure's tensile and compressive strength,
ductility, and resistance to fatigue are signi�cantly enhanced, while the performance
of the structure under both static and dynamic loading conditions gets collectively
improved [1]. A critical characteristic of FRC is its ability to improve resistance
to failure in the post-cracked state, as the �bers act as crack-bridging elements
that slow down the micro-propagation of cracks and prevent their union into larger
fractures that could potentially lead to a sudden, brittle collapse of the structure
[16]. This bridging action fundamentally changes the failure mode from brittle to a
more ductile and controlled response, which is a highly desirable structural property
in modern structural design.

The choice of �ber type greatly in�uences the mechanical properties and overall
performance of FRC structures. Common types of �bers used in practice include
steel, synthetic, glass, and other specialized �bers, where each possesses distinct ma-
terial properties, shapes, and aspect ratios [17]. Steel �bers pose as the most com-
mon form of micro-reinforcement. They typically come in plain, hooked, crimped,
and enlarged end shapes, as presented in Figure 2.1. Steel �bers have a high ten-
sile strength in the range of 800�2,000 MPa, and elastic moduli of approximately
200 GPa. Their failure strains typically range from 3% to 5%, and the aspect ratio,
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2.1. General Characteristics of Fiber Reinforced Concrete

de�ned as the �ber length divided by its average cross-section diameter, commonly
lies between 30 and 80. Typically added dose rates from 0.3% to 1% of the concrete
volume, although higher dosages may negatively a�ect workability.[17].

Figure 2.1: Common types of steel �ber reinforcement [17]

Central to the e�ectiveness of FRC is a microscopic region between the �bers
and the surrounding cement matrix, known as the interfacial transition zone (ITZ).
The ITZ is a weak link due to its porous nature which makes it is critical to the
composite's overall performance. Around the predominantly heterogeneous ITZ,
�ber-matrix debonding can occur as cohesive failure, while at the �ber-cement con-
tact surface the �ber-matrix debonding appears as adhesive failure [18].

An appropriate bond is essential for high energy absorption through debonding
and the subsequent frictional phase of �bers during pullout. A poor �ber-matrix
bond obstructs e�cient load and energy transfer, while an excessively strong one
can lead to premature �ber breakage and minimize the fracture energy.Therefore,
as the e�ciency of force transfer within the ITZ plays a critical role in the overall
performance of FRC structures, it is of high interest to evaluate its properties and
parameters that govern it in order to improve the material performance.Previous
studies used nano-indentation and �ber pullout tests to analyze this, even though a
signi�cant gap still remained in investigating its mechanical properties at a micro-
scale and meso-scale [18].

Concrete reinforced with �bers operates through multiple interconnected mecha-
nisms that enhance its structural integrity beyond simple crack bridging [19]. Some
of the mechanisms include: crack arrest, load transfer and energy absorption. Crack
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2.1. General Characteristics of Fiber Reinforced Concrete

arrest mitigates micro-crack propagation by diverting their paths and redistributes
strain. Studies that utilized digital image correlation and acoustic emission tests
have showed that a higher volume of �bers leads to improved crack control and
strain redistribution [19]. Load transfer is a mechanism that directly in�uences
both pre-peak and post-peak stress-displacement relations [20]. Research has shown
that the e�ectiveness of this mechanism is greatly governed by the robustness of
interfacial �ber-matrix bond, as well as �ber position and orientation [19]. In terms
of energy absorption, it primarily refers to the absorption done through the �ber
pull-out and fracture mechanisms that directly a�ect structural toughness. Mechan-
ical testing and computed tomography studies shown that some FRC structures had
up to a 49% increase in toughness due to clever energy absorption solutions [21].
Approximately half of the internal energy dissipation is a result of concrete ma-
trix cracking, which includes crack propagation and multiple other cracking systems
governed by the �bers' in�uence, while the remainder is due to �ber pullout.

Fiber-reinforced concrete structures' enhanced mechanical properties have led to
FRC being widely adopted for various applications where conventionally reinforced
concrete falls short. The most common applications include sprayed concrete for tun-
nel linings and slope stabilization, industrial and airport runway �ooring subjected
to heavy dynamic loads, and other critical infrastructure elements like wind turbines
and nuclear plant wall linings exposed to extreme stresses and fatigue. Furthermore,
FRC o�ers signi�cant economic bene�ts that extend beyond the improved structural
performance [22]. It also allows for the design of thinner elements, which leads to
reduced material usage and lighter structures, and a potential decrease in overall
material costs and improved sustainability [22, 23]. The incorporation of �bers
can also partially or completely replace traditional rebar reinforcement, and signi�-
cantly lower labor and material costs associated with rebar installation [22, 24, 25].
Moreover, FRC's properties quicken the construction processes by reducing the com-
plexity of reinforcement necessary for geometrically complex elements, which overall
translates into lower overhead costs and shortened project timelines [24, 26]. While
the initial investment in �ber materials can be a obstacle, the long-term savings in
maintenance and labor often outweigh these initial expenses. All of this makes FRC
a compelling choice for modern construction practices and further research [25].

Despite the increase in FRC usage in modern construction practices, it still re-
mains an insu�ciently described material from a computational modeling point of
view. A signi�cant gap exists in the establishment of standardized procedures and
regulations for designing FRC structures that would comprehensively encompass
all necessary criteria for practical application [27].Existing standards for FRC have
several limitations, particularly in their ability to adequately address post-peak be-
havior and ductility, as well as inconsistencies in testing methodologies [28, 29]. This
leads to engineers still choosing conservative design solutions even in cases where it's
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2.1. General Characteristics of Fiber Reinforced Concrete

structurally not the most optimal choice, simply due to current standards lacking
su�cient parameters for evaluating post-peak stresses in FRC elements [28], and
an agreed upon testing setups (e.g., four-point versus three-point bending), which
creates discrepancies in for performance evaluations when choosing FRC over tradi-
tional RC [28]. This absence of a uni�ed approach to testing and evaluation across
di�erent standards not only prolongs the reliance on traditional design methods,
but also slows down the integration of innovative materials [29]. This shows that
there is a clear need for studying of advanced modeling techniques to bridge the gap
between costly experimental observations and vigorous design guidelines [30].

Traditionally, the knowledge about any engineering material, including FRC, is
primarily gathered through laboratory testing. Experimental approaches allow for
an accurate examination of various material properties and structural behaviors un-
der highly controlled conditions. However, experimental testing of FRC has several
signi�cant limitations that obstruct reproducibility and accurate performance anal-
ysis. As �bers are inherently randomly distributed and the number of �bers bridging
cracks can widely vary even within supposedly identical specimens, it causes a sub-
stantial variability in the post-cracking phase of tested performance. Such variability
further complicates the establishment of standardized testing protocols, as existing
methods often fail to take into account parameters such �ber count at crack surfaces
and obscures their actual impact on the �nal element's behavior [31]. Furthermore,
directly measuring localized strains and crack bridging forces is often impossible due
to the interactions between individual �bers and the concrete matrix being either
overly complex, microscopic or both [32]. Traditional testing methods frequently
fail to capture the nuanced behaviors of �bers during crack formation which limits
the ability to comprehensively understanding their contributions to structural in-
tegrity [33]. Lastly, scale e�ects pose a considerable challenge, because laboratory
samples may not accurately represent full-scale structural behavior, as larger spec-
imens can exhibit di�erent mechanical properties than smaller ones [34, 35]. This
further complicates the direct conversion of laboratory obtained data to real-world
applications, but highlights how such limitations, coupled with the �nancial expense
and time-consumption of experimental campaigns allude to a need for alternative
and complementary approaches [35].

For all these reasons, computational modeling emerges as a key tool, for its ca-
pability to e�ciently simulate and predict material behavior. It serves as a vital
complement to, and in certain scenarios, a complete replacement for, traditional
experimental methods. Therefore, the development of accurate and reliable com-
putational models that e�ectively capture the complex interactions within FRC is
of high interest to both engineers and researchers. By establishing clear connec-
tions between local and global parameters, such models provide a cost-e�ective and
time-conserving means to explore diverse design scenarios and loading conditions.
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2.2. Challenges and Approaches in Computational Modeling of Fiber Reinforced
Concrete

Furthermore, the integration of an inverse model o�ers potential for a trans-
formative method of gathering insight into FRC material properties. Such models
provide a look into physically unmeasurable material parameters, as well as param-
eters that are di�cult or impossible to obtain through direct experimental means.
This includes, but is not limited to, the actual in-situ �ber distribution within a
cast element, the characteristics of the �ber-matrix bond for individual �bers, or
the localized post-cracking tensile constitutive law of the FRC beyond what can be
derived from global load-displacement curves. This capability could be critical for
improving FRC design optimization methods, as it allows engineers and other poten-
tial users to �ne-tune material compositions and structural geometries for optimal
performance. Moreover, inverse models can signi�cantly contribute to the monitor-
ing and evaluation of existing FRC structures, which allows for an eased inspection
of current material states or even detection of any internal damages from observable
structural responses. The research and development of such computational tools is
essential for improving potential of �ber-reinforced concrete and establishing it as
a comprehensively understood and con�dently applied material in civil engineering
practices.

2.2 Challenges and Approaches in Computational

Modeling of Fiber Reinforced Concrete

In order to adequately model �ber-reinforced concrete, it is necessary to examine
the characteristics that distinguish it from conventional concrete. As was pointed
out in the work of Jansson[36], the primary bene�t of �ber reinforcement lies in
its ability to control cracking, which is largely governed by the bond mechanism
between the �bers and the concrete matrix, as well as the pull-out behavior during
crack propagation. Both of these mechanisms are directly related to two �ber-
reinforced concrete material characteristics that can be observed on various scales:
the bond-slip law and the �ber distribution within the concrete matrix [37].

2.2.1 The Multiscale Nature of Fiber-Reinforced Concrete

The behavior of FRC is inherently multiscale, as it spans from the micro-scale to the
meso-scale and the macro-scale. At the micro-level, �bers interact with the concrete
matrix through interfacial slip and pullout mechanisms, which in�uences the crack
bridging and arresting [38], [39]. The meso-scale behavior is characterized by �ber
distribution and orientation within the matrix, which a�ects the overall performance
of the composite [40]. At the macro-scale, what is observed are the mechanical
properties of FRC elements, which includes improved compressive, �exural, and
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tensile behavior [41], [40].

Capturing this multiscale nature of FRC is critical for accurately predicting
the overall response of �nished FRC structures. Multiscale modeling approaches
are essential for bridging these scales and capturing the complex interactions be-
tween them. For instance, Zhan and Meschke [42] developed a multiscale framework
that links micro-scale �ber pullout behavior to macro-scale structural performance,
demonstrating the importance of integrating �ber-matrix interactions into larger-
scale models. Similarly, Huang et al. [43] used a meso-macro model to analyze
the �exural behavior of FRC, showing how �ber orientation and distribution at the
meso-scale in�uence the load-displacement response at the macro-scale. Without a
multiscale approach, models risk oversimplifying the material behavior, which leads
to inaccurate predictions of structural performance and ultimately being useless for
any structural design.

However, multiscale models of �ber-reinforced concrete confront quite signi�-
cant challenges, especially when applied for inverse analysis of material parameters.
According to literature, these challenges can be categorized into three main areas:
computational burden, parameter identi�cation limitations, and cross-scale valida-
tion issues. First, integrating micro-, meso-, and macro-scale phenomena into a
computational model is extremely computationally taxing. For example, studies
have showed that the resource intensity of simulating problems containing large
numbers of �bers and heterogeneous materials within the �nite elements workframe
could take up to hundreds of millions degrees of freedom in order to be solved
[44]. To mitigate these issues, a common approach is applying order statistics to
reduce simulation times [45, 46]. Second, inverse analysis for parameter identi�ca-
tion faces signi�cant limitations, such as sensitivity to experimental data quality,
risks of converging to local minima instead of a global one, and the overestimation
of post-cracking tensile capacity [32]. And third, validating models across di�erent
scales is a challenge on its own. Errors at the micro-level can propagate upward and
lead to signi�cant discrepancies at the structural level [47, 48]. This is also furthered
by experimental limitations, such as data availability, precision and noise, which all
a�ect the stability reliability of validation [44, 45].

Bridging the gap between length scales presents one of the primary challenges in
multiscale modeling of FRC. Often times sophisticated coupling techniques are re-
quired to ensure consistency and accurate information transfer between scales, which
are often computationally demanding. This can also be seen in the work of Zhan
and Meschke [42] who highlighted the di�culty of accurately transferring localized
micro-scale e�ects to the macro-scale without oversimpli�cation, as a mismatch in
scale-dependent phenomena can lead to inaccuracies in predicting structural behav-
ior. Mar�a and Sacco also developed a micromechanical model for FRC that makes
use of the homogenization theory to predict macroscopic behavior from a periodic
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microstructure [49]. This method uses a "cell model" to represent the composite's
microstructure and de�nes the overall properties of the composite through homog-
enization. While homogenization techniques can be computationally e�cient, they
often rely on simplifying assumptions, such as a periodic or regular distribution of
�bers, which contrasts with the real-life randomness of real FRC.

Another big challenge is how computationally intensive multiscale models are
due to the need to simulate various phenomena at multiple scales simultaneously.
Of course, this also greatly depends on the method used to build the model and will
be further elaborated while categorizing models in chapter 2.2.

2.2.2 Modeling Mechanisms of Fiber-Matrix Interactions

In order to understand the speci�c challenges of modeling �ber-reinforced concrete
as opposed to regular concrete, it is essential to identify the material and behav-
ioral characteristics that set it apart. The primary di�erence lies in the addition
of �bers within the concrete matrix and their in�uence on the cracking behavior
of the element. This increased heterogeneity makes modeling this composite even
more challenging, especially since the heterogeneity of �ber-reinforced concrete is
closely connected to the failure mechanisms of regular concrete [? ]. Modeling these
mechanisms is key to successfully simulating FRC behavior. Key factors include
�ber orientation, distribution, and the bond-slip relationship. Therefore, these pa-
rameters and their e�ects will be discussed in detail in the following chapters.

2.2.2.1 Modeling of Fiber Orientation and Distribution

Fiber orientation and distribution are FRC characteristics that represent the spatial
arrangement and angular alignment of �bers within the concrete matrix, which di-
rectly in�uence the anisotropic mechanical properties, crack resistance, and overall
performance of FRC structures. Modeling �ber orientation and distribution means
mathematically de�ning these characteristics within a computational model of a
composite matrix, in this case - concrete. This is critical for predicting the �ber-
reinforced concrete's anisotropic mechanical properties, such as tensile strength,
crack resistance, and overall structural behavior. However, this is highly challeng-
ing as mechanisms that de�ne �ber orientation and distribution are in�uenced by
a variety of factors, such as the �ber geometry, the rheological properties of the
matrix, the bar embedding and concrete mixing methods, element shape, etc. [50].
Obtainment of detailed �ber orientation data within a cured concrete specimen is
one of the main challenges when researching FRC. Some of the methods of measuring
�ber orientation include electromagnetic induction, image analysis, and computed
tomography scanning [51]. It is also important to note that the causes for anisotropic
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�ber alignment cannot be evaluated independently due to their coupled nature. For
instance, the e�ect of casting direction cannot be quanti�ed by disregarding the
type of casting element, and an isotropic �ber orientation cannot be assumed when
anisotropy from fresh-state properties, casting, and compaction is likely to occur
[52]. Even though �ber orientation and distribution are distinct concepts, they are
frequently con�ated and discussed under the same notion. This is due to their in-
terconnected in�uence on the behavior of the structure, shared modeling challenges,
and shared practical di�culties of isolating their e�ects in experimental studies.

Fiber orientation refers to the angular alignment of individual �bers within a
composite matrix relative to loading directions or principal stresses. It is typically
de�ned using spherical coordinates (azimuth angle ϕ, polar angle θ) or represented
as a unit vector p along the �ber's longitudinal axis. A simpli�ed representation
of �ber orientation de�ned with �ber's angle of orientation, embedment length and
embedment position relative to the loading axis is shown on Figure 2.2.

Figure 2.2: Half embedded �ber with angle orientation properties

On the other hand, the �ber distribution refers to the spatial arrangement of
�bers within the composite, which includes their density, clustering, and interac-
tions, and is seen in Figure 2.3. It is in�uenced by material rheology, parameters
that in�uence the casting process, and �ber-matrix interactions. Unlike �ber ori-
entation, distribution addresses both local heterogeneity (e.g., �ber clumping) and
global uniformity.

Figure 2.3: X-ray image of a FRC beam [53].

In the context of incorporating �ber orientation into computational models,
second-order orientation tensors are frequently used to describe the average align-
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ment of the �bers [54]. This approach, often used to describe the average 3D �ber
con�guration inside a concrete volume, provides a simpli�ed yet e�ective way to ac-
count for �ber orientation, which is critical for predicting the anisotropic mechanical
properties of �ber-reinforced concrete [51, 55].The main diagonal components of the
tensor can be expressed as a percentage of �ber orientation in each of the three main
directions [51]. For example, Reinold, Gudºuli¢, and Meschke [56] developed a �nite
element method framework based on the probabilistic representation of �ber distri-
bution proposed by Advani & Tucker [54]. Their work builds on the Folgar�Tucker
model, which incorporates the dynamic evolution of �ber orientation during pro-
cessing, and takes into account e�ects such as �ow-induced alignment and �ber to
�ber interactions [57]. Despite its widespread use, the Folgar�Tucker model has a
notable limitation as it tends to overpredict �ber orientation in certain scenarios
[58]. Given the inherent complexity and stochastic nature of such models, and the
signi�cant challenge of validating them with experimental data, a more deliberate
and simpli�ed approach was chosen for this thesis.

In addition to orientation tensors, several other formulations have been proposed
to quantify �ber orientation. Krenchel's orientation factor (α) is a 2D approach
that relates the number of �bers in a cross section with the theoretically possible
maximum number if all �bers were eligned perfectly equal relative to each other and
homogeneously distributed [51]. Another broadly used formulation is Schönlin's
orientation coe�cient (η), which is based on the measured average out-of-plane
angle (θ) among all visible �bers on a cross section [51]. The e�ective steel �ber
reinforcement ratio (ρf,eff ) combines these concepts and takes into account both
the number of �bers and their measured out-of-plane angle. These parameters are
used because the residual bending tensile strength can be directly related to both
the orientation factor and the orientation angle [51].

In FRC elements, �bers are uniformly distributed and oriented in various direc-
tions, which means not all �bers align with the direction of the applied load. This
variability in orientation a�ects the mechanical behavior of the composite material.
Pullout response and bond-slip relations are sensitive to the �ber orientation [52].
Therefore, the pullout responses of �bers aligned with the load direction can be
misleading for modeling the composite's tensile behavior [52]. Even so, it has been
documented that �bers inclined at an angle between 0° and 20° show greater pull-out
resistance compared to fully aligned �bers, while those at an angle greater than 30°
have a great likelihood to be subjected to rupture and crumbling of the surrounding
concrete matrix [59, 60]. The in�uence of �ber alignment on the bearing capacity
of a singular �ber subjected to pullout is shown in Figure 2.4. The document states
that the peak pullout load of an inclined �ber was found to be almost as high as that
of an aligned one [52]. Moreover, the work required to completely remove an inclined
�ber was higher than that of an aligned one [52]. Many modeling approaches also
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focus on a unidirectional �ber alignment with an orientation angle of 0°, examples
given in [37, 61], as it simpli�es the problem and allows for a direct focus the pullout
failure mechanism.

Figure 2.4: Pull-out load for di�erent orientation angles of �bers [62].

For this research, a controlled, deterministic �ber arrangement with all �bers
aligned parallel to the pullout axis (0◦ orientation) was adopted. This deliberate
choice allowed the research to isolate the bond-slip law and the pull-out failure
mechanism more directly, which is the primary focus of this work. Even though
such simpli�cation does not capture the full anisotropy of FRC, it provides a well-
posed problem that is more suitable for the development and validation of an inverse
analysis algorithm. The model's core structure and algorithm are designed to be ex-
tensible, and leave room for future implementation of more complex �ber orientation
models. However, this would require signi�cant experimental validation consisting
of three-point bending of beams with �bers at known angular positions which also
would be a challenge in itself, and developing the full procedure would be beyond
the scope and budget of this research. Therefore, this is considered a key step for
future work and model improvements.

Considering the complexity of an exact mathematical description of the �ber
orientation and distribution, a di�erent approach has been applied when taking
into account that only the �bers that are directly crossing the crack path have an
e�ect on adding to the crack initiation and crack propagation resistance, which
signi�cantly reduces the necessary complexity of the computer model of the �ber-
reinforced concrete. With such an approach, the only position of the beam to have
the �bers implemented is the position where the crack will be located during the
simulation [63].
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2.2.2.2 Modeling of the Bond-Slip Law

The bond-slip law represents the relation between the interfacial shear bond (the
bonding stress) and the relative displacement (slip τ) at the interface between �bers
and the surrounding concrete matrix. More simply put, The bond-slip law refers to
the shear bond responsible for the load transfer parallel to the longitudinal axis of the
reinforcement [64]. This relation is crucial for understanding how forces are trans-
ferred between reinforcement and concrete, as they impact the structural behavior of
reinforced concrete elements [65]. Therefore, accurate modeling of the bond-slip law
is essential for predicting the performance of reinforced concrete structures under
various loading conditions [66].

The bond-slip law is typically modeled using constitutive laws that incorporate
parameters such as �ber geometry, surface characteristics, concrete matrix proper-
ties, and interfacial friction. The impact of the bond-slip law on the mechanical
properties of Fiber Reinforced Concrete (FRC) has been extensively investigated by
Smol£i¢ and Oºbolt [67], who used a meso-scale approach based on the microplane
model to replicate experimental tests. A stochastic approach to model the bond-slip
law and an adequate description of the force-displacement relation are applied by
Koºar et al. [37]. Whereas more exact methods were used by Rukavina [15], whose
model is developed using the �nite elements method.

In terms of incorporating parameters into the model, it is important to note that
the modulus of elasticity for individual �bers in FRC, particularly steel �bers, is not
a standardized value in the same sense as the nominal E ≈ 200 GPa commonly used
for bulk steel. In a lot of the literature, what is reported is the e�ective modulus
of the FRC composite rather than that of a single isolated �ber. For example, Kim
et al. [68] reported that the e�ective modulus of steel-�ber-reinforced composites
ranged between 45 and 55 GPa, which re�ects the combined contributions of the
�bers and the surrounding matrix. This e�ective modulus is a function of multi-
ple parameters, including �ber material properties, aspect ratio, volume fraction,
orientation, and interfacial bonding characteristics. Wang et al. [69] showed that
complex micromechanical models can predict this composite modulus by accounting
for these parameters in combination, instead of relying on a single inherent material
property. Furthermore, empirical studies have shown that increases in �ber volume
fraction and aspect ratio tend to modestly increase the composite's elastic modulus,
which may also provide a partial explanation for observed size-e�ect correlations in
FRC experimental results.

A notable approach of analytical modeling of FRC with solely deterministic pa-
rameters was developed by Parise, who created a comprehensive analytical model
for full �ber pull-out [70]. This model was chosen as representative for its relatively
simple formulation, completeness of its analytical solution, and good �t with experi-
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mental data. What makes this model comprehensive in a deterministic context is its
use of a functional relationship that captures the di�erent phases of pull-out rather
than a single value. The model is based on several simplifying hypotheses, such as a
planar crack and negligible matrix deformation, and assumes a linear slip-hardening
frictional bond where the interfacial shear stress at the tip of debonding zone (τ) is a
function of �ber slip (S) and a non-dimensional hardening parameter (β) [70]. This
allows the model to analytically describe the pull-out force-displacement relationship
for both pre-debonding and post-debonding stages [70]. This approach was further
extended to describe the behavior of hooked-end �bers, where the model integrates
an energy approach to simulate the progressive straightening of the hook through
the development of plastic hinges [70]. This deterministic model for hooked-end
�bers produces a characteristic stepped force-displacement curve that successfully
captures the main phases observed in experiments. This level of parameterization
and breakdown of key complex phenomenon into a series of analytically solvable
stages all within a deterministic framework, is a direct inspiration for the model
developed in this thesis.

The in�uence of �ber geometry, such as half-hooked or hooked �bers, on pull-
out behavior is signi�cant and depends heavily on the embedment length [71]. For
half-hooked �bers, the pullout performance can be superior to that of straight �bers
at short embedment lengths. However, this e�ectiveness decreases with increasing
length, and at very long embedment lengths, half-hooked �bers can rupture pre-
maturely, which can result in lower pullout energy and equivalent bond strength
compared to straight �bers. This shows that for mechanically anchored �bers, there
is an optimal embedment length beyond which their e�ectiveness can diminish due
to premature straightening or stress concentrations. This understanding of how em-
bedment length and �ber geometry interact is important for developing FRC models,
especially as the plastic deformation of the �bers is re�ected on their pull-out be-
havior seen in relations such as load-displacement or load-slip. This elastic-plastic
response can be simpli�ed withing within a so-called frictional pulley model, where
the input parameters are the mechanical and geometrical properties of the �bers
and the concrete's ultimate strength, and which represent the pull-out force due to
plastic deformation contribution of one, two, three or more plastic hinges [72].

By integrating the bond-slip law, and �ber orientation and distribution into
a load-displacement curve approach, researchers can more accurately simulate the
structural response of FRC elements under bending loads. This method involves
developing constitutive models that account for the interfacial bond-slip behavior
and the spatial distribution of �bers within the concrete matrix. For instance,
Meng et al. [73] investigated the bond-slip constitutive relationship between basalt
�ber-reinforced polymer bars and basalt �ber recycled-aggregate concrete. Through
pullout tests, they derived bond stress-slip curves and established constitutive laws
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that can be utilized in �nite element modeling to predict load-displacement behav-
ior. The load-displacement curve approach, which takes into consideration both
the bond-slip mechanism and �ber orientation in 2D, provides a comprehensive
framework for modeling the complex behavior of FRC elements. This methodology
improves the accuracy of structural analyses and supports the optimization of FRC
design for improved performance under various loading scenarios.

2.2.3 Comparison of Modeling Paradigms

When creating a numerical model that simulates the behavior of any structural
element that is de�ned by its material parameters, it's important to properly de-
�ne the scale on which the mechanism will be observed. Therefore, in engineering
applications, macro-scale models are commonly employed for numerical modeling.
Nevertheless, the use of meso-scale models o�ers a more detailed and insightful rep-
resentation of concrete behavior, while micro-scale models provide detailed material
parameter analysis. However, the immense heterogeneity of concrete presents a
signi�cant challenge to qualitatively describe with a numerical model on a micro-
scale. This, in terms of FRC, is further compounded by the addition of �bers to
the mixture. This increased heterogeneity makes modeling a composite even more
challenging.

In previous research, two primary approaches have been taken to address this
problem: applying an appropriate �nite element model where the �bers are dis-
cretized and located along the edges of the �nite elements [67], and using the �ber
bundle model (FBM) for composite materials [74]. Both approaches assume that the
material sample consists of extremely small elements, such as the concrete mixture
and �bers, described by local properties, whose behavior during experiments can be
described by the global response behavior of the concrete element.

As with these approaches, most computational models of �ber-reinforced cemen-
titious composites, such as �ber-reinforced concrete, are based on:

1. formulation of the stress-strain behavior within the framework of homogenized
continuum mechanics;

2. bridging stress-crack opening displacement of �bers (and the concrete matrix);

3. bond-slip behavior of �bers, where the concrete matrix and each �ber are
modeled separately [75].

These three challenges can be seen as checklists when modeling FRC. A variety
of modeling paradigms have been developed to tackle these challenges, each with
distinct advantages and disadvantages, and applied approaches mostly depend on
the researchers' goals and available tools.
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2.2.3.1 Discrete and Semi-Discrete Models

Methods that take into account each individual �ber's interaction with the concrete
matrix can be categorized as discrete modeling. This is most often seen in the Dis-
crete Element Method (DEM) and Finite Element Method (FEM), where �bers are
modeled as embedded elements or discrete entities with bond-slip relationships at
the �ber-matrix interface. Caggiano et al. [76] developed a meso-scale model us-
ing DEM to simulate hybrid steel �ber-reinforced concrete, while Smol£i¢ & Oºbolt
[77] proposed a similar microplane-based meso-scale model to capture �ber-matrix
bond-slip behavior. Finite element-based models, such as those by Soetens et al.
[78] and Zhang et al. [79], also use embedded �ber elements to study �exural and
fracture performance. This discrete approach was advanced by Huang et al. [43]
who integrated meso and macro-scale models to analyze hooked-end steel �bers.
Pros et al. [80] proposed a numerical strategy to account for individual �bers in
their actual location and orientation within the concrete bulk. Congro et al. [81]
developed a mesoscale approach with a novel �nite element formulation, embedding
�bers in cementitious matrix elements and considering �ber orientation, sti�ness,
and strength. This method allows for random �ber distribution without mesh de-
pendency. Marcalikova & Sucharda [56] utilized a 3D computational model with a
fracture-plastic material model, emphasizing the importance of determining input
parameters and mechanical properties for accurate FRC modeling. Despite their
accuracy in simulating crack bridging and stress transfer, these models face chal-
lenges in the form of computational costs, scalability limitations for large structures,
and the need for precise calibration of bond-slip and �ber orientation parameters
[82, 83].

Semi-discrete approaches can o�er a relief to these issues by combining the abil-
ity to capture �ber-level parameters to a certain extent with methods borrowed
from continuum models that are much more e�cient. Here, �bers are represented
as semi-discrete bodies within a continuum matrix, which allows for the simula-
tion of �ber-concrete interactions without explicitly modeling every individual �ber.
Cunha et al. [84] developed a semi-discrete model where steel �bers are represented
as line elements embedded in a �nite element mesh, which enables the simulation of
crack bridging and stress transfer in FRC beams. This model was validated using
experimental results, which proved its ability to accurately predict �exural behavior.
Kang and Kim [85] proposed a semi-discrete framework that combines orientation
tensors with discrete �ber representations to model the anisotropic behavior of FRC
under bending loads. Their approach reduced computational costs while maintain-
ing accuracy in predicting crack patterns and load-de�ection responses. However,
semi-discrete models face limitations in capturing localized e�ects, such as �ber
clustering or complex crack patterns, due to the simpli�ed representation of �ber-
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matrix interactions [55]. Moreover, the calibration of semi-discrete models often
requires extensive experimental data to accurately de�ne �ber orientation and dis-
tribution parameters, which can be a signi�cant drawback for practical applications
[56]. Capturing the stochastic nature of �ber distribution and orientation remains
a signi�cant challenge, particularly for multiscale applications.

2.2.3.2 Continuum and Stochastic Models

In contrast to these methods, continuum modeling approaches treat �ber-reinforced
concrete as a homogeneous material with e�ective properties that represent the aver-
age behavior of the composite, which also includes the �bers. These methods do not
explicitly model individual �bers but instead use homogenized material properties
to describe the overall response of the material. One common continuum approach
is homogenization, where e�ective material properties are derived by averaging the
contributions of �bers and the matrix at a macroscopic scale. For example, Zhan
and Meschke [42] developed a multiscale homogenization framework to predict the
mechanical behavior of FRC structures, starting from micro-scale �ber pullout and
scaling up to macro-scale structural response. While continuum models are com-
putationally e�cient and suitable for large-scale structural analyses, they rely on
simplifying assumptions about �ber orientation and distribution, which limits their
capability in capturing localized parameters or complex failure mechanisms [55].
Despite these limitations, continuum modeling and homogenization of the material
remains a widely used approach in FRC modeling practice.

Most widespread approach to mathematically include the �ber orientation and
distribution e�ect into an FRC model is by introducing probability density function
(PDF), like the von Mises-Fisher distribution for 3D orientations [86], the Watson
distribution [87] etc. An example can be found in the work of Cunha et al. (2021)
who employed a PDF to generate stochastic �ber orientations in meso-scale mod-
els, calibrated using X-ray computed tomography scan (CT)s. When it comes to
modeling of �bers' spatial homogeneity/heterogeneity within the concrete matrix, a
common method is by applying spatial statistics. In the work of Huang et al. [88],
the authors proposed a statistics-based algorithm that combines orientation proba-
bility to angle the �bers at a certain angle, and spacing distance to distribute �bers
within a given space. Stochastic models often generate �ber positions using various
probability distribution functions. Soroushian and Lee [89] developed a stochastic
model for �ber orientation that uses probability density functions to describe the
random distribution of �bers in FRC in isotropic conditions. Stroeven [90] devel-
oped and experimentally validated a streological model for rigid �ber distribution
that considers lengths of �bers in di�erent directions. In various publications by
Koºar et al. [46, 91, 92] the stochastic approach was applied to homogenize the
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�ber-reinforced concrete composite, and utilized the �ber bundle model to describe
the �ber distribution in the �ber-reinforced concrete using various statistical distri-
butions. They also expended their models to include the dispersion of �bers in the
matrix based on X-ray scans of FRC beams [37]. In contrast to methods of modeling
�ber distribution in stochastic models, deterministic approaches include modeling
virtual layers of the concrete �ow during pouring and assuming �bers' alignment in
those layers [93]. Many models, such as the one developed by Alberti et al. [94],
combine probability methods in an inherently deterministic model to predict �ber
orientation and distribution.

In empirical models, a so-called orientation e�ciency factor is often used to
model �ber orientation while simultaneously simplifying its e�ects using scalar fac-
tors. The orientation factor, denoted as λ, scales the contribution of �bers based on
their alignment relative to principal stresses:

λ =
1

L

N∑
i=1

li cos
2 θi, (2.1)

where li is �bers' embedment length, θi is the angle between the �ber and the plane
in which the cracking occurs, and L is �ber length.

Design codes incorporate orientation factors [95], as the post-cracking behavior
of �ber-reinforced concrete (FRC) elements is highly dependent on �ber orientation
[96], making these factors essential for structural design. These orientation factors
are typically de�ned as the ratio between the performance of the designed structural
element and that of a standard beam, since the actual material properties of the
designed beam often di�er from those of the standard specimens. However, current
orientation factors used in design codes are often based on a limited number of
research studies, which provide only partial insights into this complex phenomenon
[64]. Furthermore, orientation prediction models based on orientation factors have
so far not been established to connect orientation with mechanical properties of FRC
due to complexity [97].

Alhassan et al. [63] pointed out how this presence of added �bers induces a
bridging action across the crack in the fracture process zone at the front of the crack
tip and complicates the fracture mechanics. However, in the domain of fracture
mechanics and cases where applicable, modeling only the �bers that e�ectively con-
tributing to carrying the load pose as a notable solution to the extreme heterogeneity
and computational extensiveness issues [63].
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Chapter 3

Motivation

Deterministic and analytical formulations of materials, such as the �ber-reinforced
concrete, provide a clear and predictable understanding of the material's response
under various conditions which is why they are preferred in engineering practices.
The straightforwardness of deterministic models makes them simpler and easier to
implement in engineering design and analysis practices without compromising pre-
cision and accuracy. On the other hand, this precisely de�ned relationship between
input and output data when analyzing material behavior is something stochastic
models lack by introducing randomness that may compromise and complicate pre-
diction accuracy.

The motivation to develop and work with deterministic models also lies in their
ease of validation and calibration by using experimental data in a lesser quantity
than stochastic models require. As these models allow engineers to analyze how
changes in input parameters directly impact the performance of concrete which is
why many design codes and standards are based on deterministic principles.

Furthermore, a complement to deterministic forward analysis is inverse model-
ing, which o�ers a distinct advantage in understanding and optimizing the behavior
of FRC through direct parameter identi�cation. This is particularly relevant for
FRC, where direct measurement of certain properties can be challenging or outright
impossible. Through the use of inverse models based on deterministic formulations,
essential parameters such as the ones de�ning the �ber-matrix bond and �ber ori-
entation can be extracted, which is crucial for understanding and optimizing FRC
behavior under various conditions.

This characteristic has historically limited their usage for inverse analysis for
complex materials like FRC, as real-world experimental results invariably exhibit
scatter and variability. Due to the complex and time-consuming nature of deter-
ministic forward models for �ber-reinforced concrete, coupled with this perceived
inability to handle experimental variability, their application in inverse analysis has
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not yet been fully realized. This need for a deterministic predictive model that is
both simpli�ed enough for an e�cient inverse analysis and robust enough to produce
accurate parameter extraction results despite experimental data variability presents
a gap in literature and serves as the direct motivation for this research.

3.1 Hypothesis

The hypothesis for this thesis is as follows:

1. A simpli�ed and analytical computational model of �ber-reinforced concrete,
where both the concrete and the �bers are formulated with optimized deter-
ministic expressions, devoid of any random variables and processes, as devel-
oped by Parise [70], and brought into relation within equilibrium equations
as was established by Koºar in multiple works, should be able to successfully
replicate three-point bending test results.

2. Such a forward model, featuring precise yet simpli�ed expressions, can serve
as the foundation for an inverse model. These optimized formulations, already
validated by numerous researchers for their accuracy in predicting FRC behav-
ior, are expected to quicken the iterative computation process in the inverse
analysis. This approach could e�ectively address the issue of excessive time
consumption that poses as one of the main issues why such models are not yet
established.

3. While deterministic models don't account for experimental data's inherent
variations, a well-posed, robust, and simpli�ed deterministic model can e�ec-
tively compensate for this during the inverse analysis. This means that such a
model will be capable of adequately extracting necessary material parameters
even when dealing with the inherent variability present in measured experi-
mental results. This compensation will be further achieved by comprehensively
analyzing parameter sensitivity and interdependencies, which will assist in in-
terpreting and validating the extracted parameters against real-world, variable
data.

3.2 Research Goals

Considering this, the research goals for this thesis are the following:

1. Develop and validate a computational model that replicates three-point bend-
ing tests of �ber-reinforced concrete beams. This model will as input values
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3.2. Research Goals

have precisely de�ned both load-displacement laws of �bers and the concrete
matrix. Once validated, the model will be used as a basis for developing the
inverse model.

2. Develop and validate the inverse model using the Levenberg-Marquardt al-
gorithm, the previously established forward model and crack mouth opening
displacement data obtained from laboratory testing.

3. Utilize the inverse analysis process to perform a parametric analysis of the
�ber reinforced concrete beams subjected to three-point bending.
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Chapter 4

Methodology

Determination of the pull-out behavior of �bers and failure mechanism of FRC in
bending was done by subjecting beams to three-point bending as well as single �bers
to pull-out tests. Initial �ndings of these results were already presented in previous
works, more recently published in [98], and this thesis extends that work by applying
the experimental results more comprehensively in the later chapters focused on the
inverse analysis.

The computational framework in this thesis primarily relies on Wolfram Math-
ematica, which was used to implement the new deterministic forward model algo-
rithm, solve the non-linear system of equilibrium equations, and execute the iterative
Levenberg-Marquardt inverse analysis. Data processing, calculation of statistical
metrics, and visual representation of results were performed using a combination of
MS Excel and integrated functions within the Mathematica environment.

4.1 Material properties

All testing samples were made using the same type of self-compacting concrete
(SCC) to eliminate the need for mechanical vibration, which in practice disrupts
�ber orientation and distribution. The SCC mixture was speci�cally designed to
achieve optimal �owability while maintaining adequate segregation resistance, which
allows the concrete to thoroughly coat the positioned �bers without the need for
mechanical vibration. This eliminated the risk of unintentionally altering the �bers'
predetermined location and orientation.

The recipe of the SCC mixture is detailed in Table 4.1 that also outlines the
quantity and density of each constituent material required for one cubic meter (1 m3)
of fresh concrete. The mixture was formulated to comply with the EN 206-9:2010
standard for self-compacting concrete [99].
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4.1. Material properties

Table 4.1: Recipe for Self-Compacting Concrete Mixture for a 1.0 m3 Reference
Volume

Component Mass (kg) Density (g/cm3)

Cement 42,5 R 500.0 2.96
Sand 0 - 4 mm 1091.9 2.74
Aggregate 4 - 8 mm 468.0 2.74
Water at room temperature 225.0 1
Superplasticizer 2.5% mc 10.0 1.04
viscosity modifying agent (VMA) (0.44%) 2.2 1.01

The fresh state characteristics of the SCC mixture were evaluated through stan-
dardized testing ([100],[101],[102], [103]). This was crucial to make sure the SCC
possessed the necessary properties for proper embedment and consistent distribution
of the precisely placed �bers, which is fundamental to controlling the experimental
variables in this study. The results of these tests, presented in Tables 4.2, 4.3, and
4.4, con�rmed the desired workability and density of the fresh concrete.

Speci�cally, the mean density of the fresh SCC was measured as 2.305 kg/dm3

(Table 4.2). The slump �ow test resulted with a �ow time (T500) of 4.0 s and a
maximum spread diameter (Dmax) of 685 mm (Table 4.3), which indicated high
�owability. This high �owability was necessary for the concrete to e�ortlessly �ow
around and encapsulate the �bers within the molds, preventing voids and ensuring
optimal bond development between the �bers and concrete mixture. Furthermore,
the V-funnel �ow time (tv) was recorded as 4.4 s (Table 4.3), which indicated ade-
quate viscosity for self-compaction without segregation. This ensures the stability
of the mixture and prevents the �bers from �oating freely and not maintaining their
pre-determined positions. The L-box test, done in accordance with the testing stan-
dard [104], resulted in an average height ratio (H2/H1) that demonstrated good
passing ability through obstacles, with average heights of 9.50 mm after the �rst set
of bars and 8.97 mm after the second, which resulted in blocking ratio of 0.94 (Ta-
ble 4.4). The results of the fresh state tests con�rmed the stability and �owability
required to maintain the precisely placed �bers and ensure a uniform mix without
segregation.

Table 4.2: Fresh concrete density measurement results

Volume Mass Density Mean Density
(dm3) (kg) (kg/dm3) (kg/dm3)

5.000 11.290 2.258
2.3055.299 12.440 2.348

5.299 12.240 2.310
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4.1. Material properties

Table 4.3: Slump �ow test results (EN 12350-5)

Parameter Symbol Value

Flow time T500 4.0 s
Maximum spread diameter Dmax 685 mm
Measurement 1 d1 700 mm
Measurement 2 d2 670 mm
V-funnel time tv 4.4 s

Table 4.4: L-box test results (EN 12350-10)

Measurement Height (mm) Average height (mm)

H11 9.0
0.95H12 9.4

H13 10.1
H21 8.8

0.90H22 9.0
H23 9.1

The characteristics of the steel �bers used in all tests are summarized in Table 4.5
[105]. These were DE 30/0,55 N steel �bers speci�cally chosen for their dimensions
and mechanical anchorage. A visual representation of a single �ber is provided in
Figure 4.1.

Table 4.5: Properties of DE 30/0,55 N steel �bers used in testing

Property Value/Description

Type DE 30/0,55 N steel �bers
Shape of ends Hooked
Cross-section Round
Diameter (d) 0.55 mm (± 10%)
Length (l) 30 mm (± 10%)
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4.1.1. Specimen Naming Convention

Figure 4.1: Fiber type used in laboratory testing [105]

Fibers with two distinct surface conditions were used - coarse and smooth. While
a comprehensive comparative analysis of the in�uence of this on bond behavior is
beyond the primary scope of this study, their inclusion in the testing program allows
for the characterization of a broader range of bond-slip responses and provides data
for potential future investigations into �ber surface engineering.

4.1.1 Specimen Naming Convention

In order to maintain clarity, consistency and transparency of identi�cation of ex-
perimentally obtained data throughout this thesis, a systematic naming convention
was done for all test specimens.

Every specimen was assigned a unique identi�er based on the testing type, dimen-
sions (for beam specimens), �ber type, and the consecutive sample number. This
labeling system helped easy referencing and comparison of results between di�erent
experimental conditions, and is used throughout this whole thesis.

The convention for specimens subjected to three-point bending tests follows the
format [Size Code]-[Fiber Type Code]-[Sample Number].

� Size Codes:

� S: Small-sized beams (40× 40× 160 mm)

� M: Medium-sized beams (70× 70× 280 mm)

� L: Large-sized beams (100× 100× 400 mm)

� Fiber Type Codes:

� P: Plain concrete (without �bers)

� CF: Fiber-reinforced concrete with coarse surface steel �bers

� SF: Fiber-reinforced concrete with smooth surface steel �bers
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4.2. Compressive Strength Tests

� Sample Number: The unique numerical identi�er assigned to each individual
specimen (e.g., L-SF-1, L-SF-2, L-SF-3, L-SF-4).

For example, a large-sized beam specimen with smooth surface �bers would be
identi�ed as L-SF-X (e.g., L-SF-1), while a small plain concrete beam would be
S-P-X (e.g., S-P-1).

For specimens subjected to single �ber pull-out tests, the identi�er follows the
format SFP-[Fiber Typ Code]-[Sample Number].

� SFP: Single �ber pull-out test indicator.

� Fiber Type Codes:

� CF: Coarse surface �bers

� SF: Smooth surface �bers

� Sample Number: The number corresponding to the order of testing (e.g., SFP-
CF-1, SFP-SF-1).

With this labeling system, it was ensured that all presented experimental data
can be linked to its speci�c test conditions and individual specimen.

4.2 Compressive Strength Tests

In order to get an insight into the mechanical properties of the self-compacting con-
crete (SCC) used in this study, compressive strength tests were performed. These
tests are important for understanding the concrete matrix's load bearing capacity
because it's baseline data on both material's sti�ness and strength. This characteri-
zation is taken into account when modeling the concrete's contribution to the overall
behavior of the composite. Prior to testing all machines were carefully calibrated
and tests were performed in accordance with the EN ISO 7500-1:2018 norm [106].

A total of one 130 × 300mm cylindrical and four 150 × 150 × 150mm cubic
specimens were prepared using the same SCC mixture described in Section 4.1.
All specimens were cast and cured in accordance with the EN 12390-2:2019 norm
[107]. The four cubic specimens were designated as the primary data source for
concrete characterization due to laboratory standardization, while the single cylin-
drical specimen was prepared for a simple comparative analysis purpose to provide a
direct conversion reference (fc,cyl = 0.8 · fc,cube) in accordance with the testing norm.
The tests were conducted on a universal testing machine, speci�cally con�gured for
uniaxial compression. All specimens were loaded continuously at a constant loading
rate of 0.6 MPa/s until failure. The maximum load attained by each specimen was
recorded.
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4.3. Three-Point Bending Tests

Obtained results for the cubic specimens are summarized in Table 4.6.

Table 4.6: Compressive strength and density results for 150×150×150 mm cubic
specimens at 28 days

Cube ID Area (mm2) Force (kN) Compressive Strength (MPa) Density (kg/m3)

1 22290.10 1180.40 52.96 2338.9
2 22514.90 1313.80 58.35 2334.7
3 22604.90 1315.00 58.17 2312.3
4 22665.10 1186.80 52.36 2336.8

Mean Value � � 55.46 2330.7

The average compressive strength for the cubic specimens at 28 days was de-
termined to be 55.46 MPa, while the cylindrical specimen showed a compressive
strength of 49.91 MPa. These values were determined to be expected values of com-
pressive strength for the SCC mixture, and served as a baseline for characterization
of the concrete matrix, as well as essential for the subsequent numerical modeling
of FRC.

Once the foundational material properties established, the focus shifted to eval-
uating the mechanical behavior of the concrete, through three-point bending tests
and single �ber pull-out tests.

4.3 Three-Point Bending Tests

TPBT on notched beams were conducted as the primary experimental method to
evaluate the �exural and fracture behavior of FRC beams. These tests directly
assess the material's ability to resist crack propagation and carry load in the post-
cracked phase, and provide the force-displacement and CMOD data for developing
and validating the proposed numerical model.

All beams were subjected to displacement-controlled loading at a rate of 0.06mm/min

until failure. The displacement controlled method was chosen to capture any post-
peak softening behavior. This procedure followed the standard for determining the
�exural strength of hardened concrete specimens [108]. The recorded values dur-
ing the testing included vertical displacement, crack mouth opening displacement
(CMOD), and the applied force. Vertical displacement was measured by a LVDT
integrated into the testing machine's crosshead, while the CMOD was measured us-
ing a manually a�xed LVDT alongside the notch edge with an auxiliary plate, as
seen in Figure 4.2. Results obtained from TPBT of beams are presented in Section
4.5.1.
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4.3.1. Specimen Preparation

Figure 4.2: TPBT setup on an L-sized beam

4.3.1 Specimen Preparation

Specimens of three di�erent sizes were prepared: 40 × 40 × 160mm (referred to
as small-sized beams), 70 × 70 × 280mm (medium-sized beams), and 100 × 100 ×
400mm (large-sized beams). This range was chosen to enable the investigation of
potential size e�ects. For each size, four plain concrete beams (without �bers), four
beams with coarse surface �bers, and four beams with smooth surface �bers were
initially prepared. This amounted to a total of 12 plain concrete beams and 35
�ber-reinforced beams. However, one small-sized beam was damaged during the
demolding process, which resulted in a �nal total of 47 beams subjected to three-
point bending tests.

Typically, in the preparation of FRC mixtures, �bers are added during the mix-
ing of wet ingredients, which leads to their homogeneous yet random distribution
within the matrix. To eliminate the inherent uncertainty associated with random
�ber location and orientation, which is a signi�cant challenge in understanding and
modeling FRC fracture behavior, all �bers in this study were embedded at prede-
termined positions within the beam. This was achieved by �xing the �bers to a
narrow, ruler-like element, which was then placed in the molds prior to pouring the
concrete, a technique previously established in research such as that by Grbac [109].
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4.3.1. Specimen Preparation

Figure 4.3: Fibers positioned in the mold before concrete pouring

The ruler-like element consisted of two parts that clamped the �bers in place.
Shallow indexing dents on both clamping edges ensured the precise in-plane spacing
and angular alignment of each �ber, while a small amount of water-soluble adhesive
prevented �bers from slipping during casting. The element was positioned perpen-
dicularly to the mold, as shown in Figure 4.3, and held by simple supports. The
number of �bers crossing the midspan was scaled based on the beam size: large
beams contained 9 �bers, medium beams contained 6 �bers, and small beams con-
tained 3 �bers. Fibers were placed at the midspan of the beam, crossing the expected
crack plane, and vertically located at approximately 2/10 of the cross-section height
from the tension face (20mm for large beams, 10mm for medium beams, and 5mm

for small beams). This placement ensured that after cracking, the embedded length
of each �ber in either half of the concrete beam was equal to half of its total length,
as illustrated conceptually in Figure 4.4.
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4.3.1. Specimen Preparation

Figure 4.4: Fiber embedment scheme on L-sized beams: (Left) Cross-section showing
the vertical �ber position (ha) and notch depth. (Right) Plan view illustrating the
uniform spacing and embedment length across the crack plane.

Once the concrete hardened (after a minimum of 28 days),the auxiliary element
securing the �ber position was removed. As the element was made of an easily
destructible soft plastic and thoroughly greased before immersion in the concrete
mixture, its removal was done by controlled breaking and pulling which produced
a rectangular notch with �bers arranged in a straight line at known positions. The
notch dictated the crack location and orientation, which provided a deterministic
crack path and a controlled number of load-bearing �bers crossing the fracture plane.
This choice is central to the thesis hypothesis so that by �xing the �ber count, ori-
entation (0◦ relative to the pull-out axis), spacing, and embedment lengths, the
post-cracking response becomes a direct function of explicitly modeled parameters
(matrix law and �ber pull-out law), which is a necessary precondition for the in-
tended inverse analysis. The exampled outcomes of this controlled placement for all
three specimen sizes is visually shown in Figure 4.5.
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4.4. Single �ber pullout tests

(a) Large beam after failure
(9 �bers)

(b) Medium beam after fail-
ure (6 �bers)

(c) Small beam after failure
(3 �bers)

Figure 4.5: Visual con�rmation of deterministic �ber placement in the notch after
three-point bending testing of beams.

The TPBT con�guration with a notch and deliberately embedded, aligned �bers
removes two dominant sources of stochasticity in FRC: the randomly positioned
crack plane, and the random �ber orientation at the crack. Because of this, the
recorded force�CMOD and force�displacement curves can be interpreted as the re-
sponse of a system where the concrete matrix law and the �ber pull-out law are the
only governing mechanisms.

4.4 Single �ber pullout tests

Single �ber pull-out tests were conducted as a fundamental micro-scale investiga-
tion method for quantifying the bond-slip relation between the steel �bers and the
concrete matrix. Understanding this relationship is important because it directly
governs the crack-bridging e�ciency of the �bers and the post-cracking behavior and
overall toughness of the beams, observed in three-point bending tests [37]. Determin-
ing this interface property is crucial input for developing a deterministic numerical
model that realistically represents �ber action.

Eight specimens made of the same self-compacting concrete used for three-point
bending tests, with dimensions 40× 40× 40mm were tested. The steel �bers tested
in this study were the same type of �bers described earlier in section 4.1. The �bers
were manually embedded to half their length of 15mm in the geometric center of
each concrete specimen using a custom alignment jig, as seen in Figure 4.6. Five
specimens were prepared with coarse surface �bers and four with smooth surface
�bers. The concrete was poured in one layer, without vibrating and the specimens
were cured and treated as instructed by the EN 12390-2:2019 norm [110].
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4.4. Single �ber pullout tests

(a) Schematic cross-section showing �ber
embedment geometry.

(b) Example specimen with the �ber ex-
posed for testing.

Figure 4.6: Preparation of single �ber pull-out test specimens. (a) Systematic rep-
resentation of the �ber embedded to half its length in the geometric center. (b)
Example of a prepared specimen prior to testing.

The pullout tests were conducted using an electromechanical �ber pull-out ma-
chine compliant with the testing standard EN ISO 7500-1:2018 for static uniaxial
testing machines. The machine was equipped with a custom gripping mechanism
designed to clamp the exposed �ber end without inducing premature slippage or
damage. To ensure axial alignment between the �ber and the loading axis, the con-
crete prism was secured in a steel �xture bolted to the machine's base, shown in
Figure 4.7.

Figure 4.7: Single �ber pullout setup. Left) Prior to �ber pull-out; Right) After the
�ber pull-out
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All pull-out tests were performed in a displacement controlled environment, with
the displacement rate was set to 0.5 mm/min, as prescribed by the standard for
�ber pullout testing [111]. Data recorded during the tests were the pullout force
(via the load cell) and displacement (via the linear variable di�erential transformer)
at a sampling frequency of 50 Hz. Each test was performed until the �ber was
fully extracted from the prism. After each test, the prism and extracted �ber were
visually inspected to classify the failure mode, which showed that all testing samples
exhibited complete �ber pullout. Results obtained from single �ber pull-out tests
are presented in Section 4.5.2.

These tests provided a direct, micro-scale characterization of the bond�slip law
under a strictly controlled geometry with �xed �ber type, controlled embedment
length, axial alignment, and identical SCC matrix as in TPBT. Because the tests
were displacement-controlled and all specimens exhibited full pull-out, the resulting
force�slip curves can be used either to parameterize an analytical pull-out law with
hardening stage) or to validate the inverse identi�cation performed from TPBT data.

4.5 Results

The dispersion and di�erences in results are due to imperfections in the specimen
production and accuracy of the testing machines.

Table 4.7: Summary of Laboratory Test Samples

Test Type Prism Size Fibers/ Sample Fiber
Type

Samples

Three-
point

bending

L (100×100 9 No �ber 4
×400) 9 Coarse 4

9 Smooth 4

M (70×70 6 No �ber 4
×280) 6 Coarse 4

6 Smooth 4

S (40×40 3 No �ber 4
×160) 3 Coarse 4

3 Smooth 4

Fiber pullout
40×40 � Smooth 4
×40 � Coarse 4

34



4.5.1. Three-point bending test results

4.5.1 Three-point bending test results

4.5.1.1 Large sized beams

Figure 4.8: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized plain concrete beams

Figure 4.9: Crack Mouth Opening Displacement-Pseudo Time curves obtained from
three-point bending tests on large-sized plain concrete beams
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4.5.1. Three-point bending test results

Figure 4.10: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized concrete beams with coarse �bers

Figure 4.11: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on large-sized concrete beams with coarse �bers
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4.5.1. Three-point bending test results

Figure 4.12: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized concrete beams with smooth �bers

Figure 4.13: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on large-sized concrete beams with smooth �bers
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4.5.1.2 Medium sized beams

Figure 4.14: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized plain concrete beams

Figure 4.15: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized plain concrete beams
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4.5.1. Three-point bending test results

Figure 4.16: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized beams with coarse �bers

Figure 4.17: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized beams with coarse �bers
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4.5.1. Three-point bending test results

Figure 4.18: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized beams with smooth �bers

Figure 4.19: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized beams with smooth �bers
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4.5.1. Three-point bending test results

4.5.1.3 Small sized beams

Figure 4.20: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized plain concrete beams

Figure 4.21: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized plain concrete beams
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Figure 4.22: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized beams with smooth �bers

Figure 4.23: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized beams with smooth �bers
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4.5.1. Three-point bending test results

Figure 4.24: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized beams with coarse �bers

Figure 4.25: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized beams with coarse �bers

4.5.1.4 Interpretation of Three-Point Bending Test Results

Figure 4.26 shows the Force-CMOD curves obtained from testing on L-CF-1 and
L-SF-4, large-sized beams with integrated �bers, that were disregarded from further
analysis. These particular tests had anomalous behavior that was characterized
by severe, high-frequency oscillations in the force signal that started approximately
midway through the loading process, which was due to a badly positioned LIN-
EAR VARIABLE DIFFERENTIAL TRANSFORMER (LVDT). This extreme noise

43



4.5.1. Three-point bending test results

completely masked the post-peak softening behavior of the specimens, and made it
impossible to interpret the true mechanical response of the material. Due to the
inability of the recorded data to reliably represent the specimens' behavior under
loading, these test results were consequently excluded from all quantitative analyses.

(a) L-CF-1: Coarse Fibers (b) L-SF-4: Smooth Fibers

Figure 4.26: Force-Crack Mouth Opening Displacement curves obtained from beams
L-CF-1 and L-SF-4

The three-point bending tests on plain and �ber-reinforced concrete beams of
all three sizes exhibit several behavioral trends. The recorded force-displacement
and CMOD curves give insights into the �exural behavior of the materials and the
in�uence of �ber reinforcement.

� CMOD vs. Pseudo Time
The CMOD curves for plain concrete beams (Figures 4.9,4.15 and 4.21) con-
sistently show a sharp, linear increase until a the point where a �rst crack
is initiated, after which the curve becomes more vertical. This vertical slope
signi�es rapid crack propagation and failure of a higher magnitude, as there
are no �bers to bridge the crack and carry the load in the post-cracking phase.
This behavior is expected as plain concrete is categorized as brittle material.
On the other hand, the CMOD curves for FRC beams (Figures 4.11, 4.13, 4.17,
4.19, 4.23 and 4.25) show a more gradual change in behavior after the initial
elastic phase. After the initial cracking, the slope of the curve becomes signif-
icantly more gradual, which indicates that the �bers are e�ectively bridging
the crack and are providing a resistance to the crack propagation.

� Force-Displacement
The force-displacement curves show a similar trend. Plain concrete beams
(Figures 4.8, 4.14 and 4.20) exhibit a sharp peak that corresponds to the
ultimate �exural strength, followed by a sudden and steep drop to zero load
upon cracking. FRC beams (Figures 4.10, 4.12, 4.16, 4.18, 4.22 and 4.24),
however, demonstrate a more ductile response. After the initial cracking peak,
the force decreases but does not drop to zero, instead it enters a post-peak
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4.5.1. Three-point bending test results

softening phase where the load is sustained and carried by the �bers. This
behavior con�rms the existence of the transfer of tensile load from the concrete
matrix to the �bers, which is the fundamental mechanism of FRC.

The results show that the scale of the specimens has a direct impact on the
observed behavior. In general, CMOD curves for the large beams (Figures 4.9, 4.11
and 4.13) appear to be more detailed and gradual than those for the medium and
small beams (Figures 4.15, 4.17, 4.19, 4.21, 4.25, 4.23). This is due to the larger
number of �bers bridging the notch, so the post-crack response is the sum of more
individual pull-out events than in the medium and small beams. Higher absolute
forces and displacements found in large-sized specimens also improve the signal-to-
noise ratio recorded by the LVDT.

Discrepancies in the force-displacement curves due to minor variations in speci-
men production and testing machine accuracy are seen throughout the results, but
they are most notable in large-sized beams (Figures 4.8, 4.10 and 4.12). Not only
does the larger scale of the specimen amplify any imperfections, but any variations
in �ber positioning and alignment are also more prominent due to the larger �ber
count.

While the majority of the recorded data follows these general trends, a few
speci�c specimens exhibited unique characteristics that require attention. In the
force-displacement diagram for large beams with coarse �bers (Figure 4.10), beam
L-CF-3 does not exhibit the sharp initial peak followed by a drop that is character-
istic of concrete cracking, as seen in other FRC beams. This initial peak typically
represents the �exural strength of the plain concrete matrix. Once it's reached, a
crack forms, and the load is transferred from the matrix to the �bers, which causes
the force to drop before rising again as the �bers begin to carry the load. The
absence of this distinct peak in L-CF-3 suggests that the concrete's tensile strength
was compromised from the get-go, possibly due to a �aw in the casting or curing
process, or a localized air void in the concrete matrix.

The CMOD curve obtained for M-SF-4, seen in Figure 4.19, stands out with a
unique slope within its testing group, and for which it is marked as an outlier. This
result will be considered in the later inverse analysis, as it may re�ect a slight testing
error or an anomaly in the specimen's properties that could skew the results of the
parameter extraction.

Within the small-beam group (Figure 4.25), specimen S-CF-2 exhibits a slightly
distinct force�displacement and CMOD pro�le compared to S-CF-3 and S-CF-4,
as both the pre- and post-peak evolution di�er in shape and magnitude. This is
assumed to be due to either a test set-up or specimen preparation mishap. Due to
the small magnitude of di�erence, this dataset was not disregarded for any future
analysis. However, its application in the inverse analysis will be carefully handled
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to avoid propagating any assumed testing error into the obtained results.

4.5.2 Single Fiber Pullout Test Results

Figure 4.27 and 4.28 show obtained force�displacement diagrams from four tested
specimens. From these, a clear development of plastic hinges as the �ber undergoes
pull-out is evident. The observed shape corresponds to that of the �nal phase in the
three-point bending of �ber reinforced beams.

Figure 4.27: Force-displacement curves obtained from single �ber pull-out tests for
coarse surface steel �bers

Figure 4.28: Force-displacement curves obtained from single �ber pull-out tests for
smooth surface steel �bers
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4.5.2. Single Fiber Pullout Test Results

4.5.2.1 Interpretation of Single Fiber Pullout Test

Figures 4.27 and 4.28 show the measured force�displacement histories of single �bers
under displacement control, with full pullout observed in all specimens. The pull-
out response observed across all performed tests follows a clear sequence: an initial
increase in force as the interfacial bond is mobilized (pre-debonding phase), which
is followed by a maximum or threshold force that marks the beginning debonding.
In the post-peak stage, the force is governed by frictional sliding, and for hooked-
end �bers, an additional hardening appears due to the rotation and straightening
of the hook and the formation of a plastic hinges near the anchorage. The force
then gradually descends to zero as the �ber is fully pulled out. The development of
plastic hinges during pull-out is evident in the experimental results and is consistent
with the �nal post-cracking phase observed in the three-point bending tests on FRC
beams.

The observed shape of the force-displacement curves from the single �ber pullout
tests corresponds to the �nal, post-cracking phase of the three-point bending tests
on FRC beams. In both tests, the ductile behavior and load-carrying capacity after
initial cracking are governed by the same �ber bridging and pullout mechanisms.
This correlation shows that the �ber pullout behavior at the micro-scale dictates
the post-cracking toughness of the FRC beams at the macro-scale. This essentially
means that the force-displacement curve of a TPBT specimen is a cumulative re-
sponse that is roughly equivalent to the sum of the individual pullout responses of
all the �bers bridging the crack.

The two di�erent �ber surface �nishes sampled here were included to expand the
range of bond�slip responses. Coarse-surface �bers exhibit higher peak resistance
and a more pronounced post-peak steeps between plastic hinges, while smooth �bers
tend toward a lower peak and a �atter frictional plateau.

The data from the single �ber pullout tests exhibit good consistency within
each group, with the curves generally following a similar trend. This consistency is
important for the subsequent numerical modeling and inverse analysis, as it provides
a reliable and deterministic pullout law that can be used to accurately simulate
the behavior of the �ber-reinforced concrete. The results con�rm that all tested
samples experienced a complete �ber pullout failure mode, which makes the force-
displacement curves a reliable representation of the bond-slip law.

47



Chapter 5

Multiphase Deterministic Model for

Inverse TPBT Analysis

5.1 Novel Forward Model

The forward material model developed here is a deterministic, predictive model
that relates strains and stresses in the beam's cross section through constitutive
laws, and in turn simulates the internal and global response of the FRC beam under
three-point bending.

To represent the heterogeneous nature of FRC without introducing random-
ness, the classical �ber bundle model (FBM), that is typically stochastic [61], was
reformulated with strictly deterministic empirical parameters. Fibers and con-
crete were modeled as two interacting phases (as e.g.,in [37]), each with its own
force�displacement law. This simpli�es the model's concept while allowing it to
capture both pre-peak and post-peak behavior in bending. This deterministic foun-
dation is key because it guarantees the extracted parameters are physically inter-
pretable, as we££ as o�ers direct, practical advantages for engineering design and
optimization.

The concrete's force-displacement law is discretized as a three-phased piecewise
function representing loading until failure and is graphically presented in Figure 5.1
in red. The mathematical formulation of this tri-linear softening law is as follows:

fc(x) =


kc1 · x if kc1 · x ≤ fmax

c

fmax
c − Eb · x− kc2 · fmax

c if fmax
c ≥ fmax

c − Eb · x− kc2 · fmax
c > 0

0 if fmax
c − Eb · x− kc2 · fmax

c < 0

(5.1)

where fmax
c is the maximum loading force, kc1 and kc2 are the sti�nesses of the

beam during the loading and softening phases, respectively. These sti�ness terms
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5.1. Novel Forward Model

are calculated as kcn = EbI
LbLsn

, where Eb is the elasticity modulus of concrete, I is
the moment cross section's moment of inertia, Lb is the beam's length, and Lsn is a
scaling length factor that, in practice, acts as a calibration coe�cient that ensures
the slope of the simulated force-displacement curve matches the magnitude derived
from experimental data.

Figure 5.1: Modeled load-displacement law for concrete (red) �bers (blue)

The force-displacement law for the �bers, as given in Equation 5.2, is a piece-
wise function modi�ed from the equation for the force-displacement law established
in previous stochastic models ([37], [13], [61]), but with probabilistic parameters
replaced with deterministic ones. This modi�cation was done by directly adapt-
ing the mathematical formulation for the �ber force-displacement law based on the
approach developed by Parise [70], where the crack propagation phase manifests
as multiple plastic hinges on the force-displacement diagram. Additionally, this
modi�cation expands the existing formulation by integrating further �ber behavior
parameters, as listed after the equation, which directly in�uence the shape of the
piecewise function. The shape of the hinges is modeled to match those obtained from
single �ber pull-out tests while ensuring that the values align with those obtained
from three-point bending tests, one example of which is shown in Figure 6.2.

The full mathematical description of the �ber force-displacement law in tension
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5.1. Novel Forward Model

is formulated as follows:

f ta(x) =



EA · (x− d0) if x ≤ delastic

Fmax
a if delastic < x ≤ dp1

Fmax
a − EA · x−dp1

Ls2
if dp1 < x ≤ ds1

F 2
a if ds1 < x ≤ dp2

F 2
a − EA · x−dp2

Ls2
if dp2 < x ≤ ds2

F 3
a if ds2 < x ≤ dp3

F 3
a − EA · x−dp3

Ls2
if dp3 < x ≤ ds3

0 if x > ds3

(5.2)

where the key displacements de�ning the phases of bending and subsequent �ber
pullout are given by:

delastic = d0 +
Fmax
a · Ls2

EA

dp1 = delastic + dt1

ds1 = dp1 +
(Fmax

a − F 2
a ) · Ls2

EA

dp2 = ds1 + dt2

ds2 = dp2 +
(F 2

a − F 3
a ) · Ls2

EA

dp3 = ds2 + dt3

ds3 = dp3 +
F 3
a · Ls2

EA

The de�ned parameters: delastic is the yield displacement point until which the
beam bending is purely elastic, d0 is the displacement o�set or the magnitude at
which the �bers start contributing to load carrying, axial sti�ness (EA) is the com-
bined axial sti�ness of the �ber bundle, and Ls2 is the embedment length of the
�bers. Fmax

a , F 2
a , and F 3

a are the force thresholds de�ning the vertical components
of the pullout phases, while dt1, dt2, and dt3 are the corresponding displacement incre-
ments for the plateau regions during which the �bers are being pulled out. ds1, ds2,
and ds3 are cumulative total displacements that mark the end of each force-softening
phase.

Fmax
a is de�ned as a summation of the contribution of all the individual �bers

intersecting the observed crack, as:

Fmax
a =

nf∑
if=1

fmax
a (5.3)
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5.1. Novel Forward Model

which can be simpli�ed with explicit parameters:

Fmax
a = nfiber · f̄max

a (5.4)

where nfiber is the total number of �bers in the cross-section and f̄max
a the average

force threshold for a single �ber pull-out. An example force-displacement diagram
for a modeled �ber is represented on the right in Figure 5.1 in blue. f̄max

a can
also be expressed as a function of the embedment length of a single �ber, le, as an
expansion of the model. A common simpli�cation for this relationship assumes that
the force threshold is a product of the average interfacial bond strength, τ , and the
�ber's surface area calculated from the diameter and and embedment length [112],
as follows:

f̄max
a = τ · π ·∆a · le (5.5)

In this formulation, the average force threshold increases linearly with the embed-
ment length while assuming a constant average bond strength and �ber diameter.

The parameter E in Equation (5.2) is not the bulk steel modulus of an isolated
�ber, rather it is treated as an e�ective elasticity modulus of the �ber�matrix sys-
tem that captures the combined contribution of the �ber material, bond, partial
debonding, and local slip. While the model can accommodate a more thorough
description of sti�ness degradation phenomenon, not only through plastic hinges,
but by integrating di�erent E parameters during tension or loading, and during
unloading. However, for simplicity purposes, a singular parameter in tension, Ef,T ,
was used throughout this research. The e�ective sti�ness EA is then formulated as:

EA = fbundle · Ef,T · (∆a)2 · π
4
· nfiber (5.6)

Here, ∆a is the individual �ber diameter, and the term fbundle is an empirical
scaling factor introduced to connect properties of a single �ber with the collective
behavior of the �ber bundle. While the overall maximum force threshold, Fmax

a , is
simpli�ed as a summation of individual �ber contributions, in reality, the in�uence
of the �bers is not a simple linear relationship. The fbundle parameter accounts for
this non-linear, collective behavior and it serves an essential empirical parameter to
be evaluated during the later inverse analysis. Unlike models that would �x Ef,T to
the nominal steel modulus, this formulation makes room for both Ef,T and fbundle
to be exactly determined through the inverse analysis process.

Given that the equations and the associated material parameters describing the
two material phases are independent, concrete and �ber forces are coupled through
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5.1. Novel Forward Model

sectional equilibrium of a layered cross-section [14]:

F (ϵ, κ) = ∆h

layer∑
i=1

fc [(hi − ϵh) tan(κ)] + ∆af ta(ha − ϵh) = 0 (5.7)

M(ϵ, κ) = ∆h

layer∑
i=1

(hi − ϵh)fc [(hi − ϵh) tan(κ)] + ∆a(ha − ϵh)f ta(ha − ϵh) = 0 (5.8)

Here, ϵ represents the neutral axis position, κ is the inclination of the crack
opening, h is the height of the beam's cross-section, hi is the height of each layer,
ha represents the position of �bers, and fc and fa are given in equations 5.1 and
5.2, respectively. The layered model is based on previously established principles
presented in [113], with an example of cross-section geometry for a beam discretized
into eight layers given in Figure 5.2.

Figure 5.2: Diagram for the three-point bending of a layered FRC beam

Given the non-linear material constitutive laws de�ned in Equations 5.1 and
5.2, the equilibrium Equations 5.7 and 5.8 form a non-linear system that cannot be
solved analytically. To simulate the beam's response throughout the loading pro-
cess, mimicking the displacement-controlled experiments, a numerical path-following
approach was adapted using the vertical displacement dv (Eq. 5.9) as the control
parameter:

dv = −ϵ · h · tan(κ) (5.9)

At each step of the simulation, a target vertical displacement, dv,target, is pre-
scribed. A system of three equations is then solved numerically for three unknowns:
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5.1. Novel Forward Model

the neutral axis position, ϵ, the crack inclination, κ, and the external bending mo-
ment, Mext required to maintain equilibrium at that displacement level. Therefore,
the system that needs solving comprises of the following:

1. Force equilibrium equation 5.7: F (ϵ, κ) = 0

2. Moment equilibrium equation 5.8: Mint(ϵ, κ) = Mext

3. Prescribed displacement equation 5.9: dv,target = −ϵh tan(κ)

This non-linear system is solved iteratively using a numerical root-�nding algo-
rithm similar to the Newton-Raphson method integrated in Wolfram Mathematica's
FindRoot function. The solution from the previous displacement step is used as the
initial guess in the current step for preserving continuity and supporting convergence
along the solution path.

Successfully solving this system at successive increments of dv,target results with
the evolution of the state variables ϵ and κ, along with the corresponding equilibrium
moment Mext. From the obtained ϵ and κ, the Crack Mouth Opening Displacement
dcmod is calculated as:

dcmod = (1− ϵ) · h · tan(κ) (5.10)

The calculated external moment, Mext, can be related to the load P applied on
the mid span of the beam L/2, from which the load-CMOD and load-displacement
relationships can be obtained and compared to experimental data.

To simulate the beam's global behavior under three-point bending, the computed
Mext is related to the externally applied load P at mid-span through standard beam
theory:

P =
4 ·Mext

L
(5.11)

where L is the span of the supported beam. This relationship enables the connec-
tion between the obtained moment�curvature response with the force�displacement
response representative of the actual structural test. Although the vertical displace-
ment (dv), and crack mouth opening displacement, dcmod, are computed as sectional
quantities based on geometry their pairing with the global load, P , allows for the
construction of synthetic load-displacement and load�CMOD diagrams, which are
comparable to experimental data.
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5.2 Novel Inverse Model

5.2.1 Model Updating Framework

The inverse analysis in this research serves as a model updating procedure, where
parameters are iteratively adjusted to minimize the residual between simulated and
experimental CMOD data. This follows the general model updating expression:

mn = mn−1 +∆mn (5.12)

where mn−1 represents the parameter vector at iteration n − 1, and ∆mn is the
update computed via the Levenberg-Marquardt algorithm.

5.2.2 Levenberg-Marquardt Implementation

Taking into consideration that the newly formulated predictive model (detailed in
Chapter 5.1) is non-linear in nature and a direct inversion method could not be
successfully applied, the LEVENBERG-MARQUARDT (LM) algorithm was applied
for the inverse parameter analysis. This method iteratively adjusts a function's
parameter to minimize the error between predicted and actual data by alternating
between the Gauss-Newton algorithm and the method of gradient descent [114].

The method is formulated as a minimization problem of weighted residual. In
this research, the measured data consists of n crack mouth opening displacement
values, yi (where i = 1, ..., n), each corresponding to a speci�c state of the beam.
The forward model predicts a CMOD value, dcmodi(m), for each of these states
using a vector of model parameters m. The objective is to minimize the SUM OF
SQUARES (SS) of the di�erences between the measured and modeled CMOD values
as:

SS(m) =
n∑

i=1

(yi − dcmod i(m))2 (5.13)

The minimum of SS(m) occurs when its gradient with respect to each parameter
mj is zero. For the j-th parameter, this condition is:

∂SS

∂mj

= −2
n∑

i=1

(yi − dcmodi(m))

(
∂dcmod i(m)

∂mj

)
= 0 (5.14)

The partial derivatives
(

∂dcmodi
∂mj

)
form the elements of the Jacobian Matrix J that

has n × mp dimensions, where n is the number of measured data points (indexed
with i), and mp is the number of model parameters being estimated (indexed with

j). Every Ji,j =
(

∂dcmodi
∂mj

)
represents the sensitivity of the i-th model output to a
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5.2.2. Levenberg-Marquardt Implementation

change in the j-th parameter. The Levenberg-Marquardt algorithm solves this for
the parameter update vector ∆m through a damped least-squares approach:(

JTJ+ λI
)
∆m = JT (y − dcmod(m)) (5.15)

where y is the vector of measured CMOD values yi, dcmod(m) is the vector of
simulated CMOD using the current parameter vectorm, and I is the identity matrix.
Solving this system gives ∆m used to update the parameters in each iteration in
Equation (5.12).

For the case of estimating a single parameter m (scalar), the update ∆m can be
calculated using a simpli�ed form derived from the Gauss-Newton method adapted
by the Levenberg-Marquardt algorithm:

∆m =

∑n
i=1(yi − dcmod i(m))χm,i∑n

i=1 χ
2
m,i

(5.16)

In this formulation, χm,i =
∂dcmodi

∂m
is the sensitivity coe�cient of the i-th model

output with respect to the single parameter m. This equation is the basis for the
user-controlled iterative updates procedure for adjusting the parameter based on the
weighted error and its sensitivity.

The value for the model parameters in step n is calculated using equation 5.12.
Considering the calculation is iterative, the algorithm terminates when either:

� Convergence is reached and parameter changes between iterations become neg-
ligible (∥∆m∥ < 10−4). This speci�c threshold value is chosen to both ensure
numerical stability and maintain su�cient precision without unnecessary in-
creasing computational costs from marginal improvements;

� The residual SS falls below a tolerance threshold (ϵ = 10−6);

� A �xed maximum iteration count is reached.

The relationship between the forward and inverse model, and any parameter nA

and nB, is graphically presented in the �ow chart in Figure 5.3.
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Figure 5.3: Flow chart of forward and inverse model algorithms

5.2.3 Dual-Parameter Extraction Strategy

This inverse analysis framework becomes more complex when estimating multiple
parameters simultaneously, when vector m contains more than one element. In
the case of nonlinear behavior, as seen in FRC, di�erent combinations of param-
eters could result in the optimization function achieving the same minimum error
when �tting the measured data, which is a phenomenon known as solution non-
uniqueness. This ambiguity can make it challenging for reliable inverse parametric
characterization of FRC.

When possible, this issue can mitigated through the implementation of the
Tikhonov regularization through which unrealistic parameter combinations are dis-
regarded by adding a penalty term to the objective function:

SSreg(m) = SS(m) + α||m||2 (5.17)
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where SS(m) is the original sum of squares of residuals from Equation 5.13), α is
a user-de�ned regularization coe�cient that controls the strength of the penalty,
and ||m||22 is the squared L2-norm of the parameter vector. This regularization
term discourages unrealistically large or physically improbable parameter values,
and through this guiding the optimization towards a more stable and physically
possible solution, even in the presence of noisy data or parameter correlations.

However, in situations where this is not applicable, or more fundamentally, for
gaining a more comprehensive understanding of the parameter landscape and their
interdependencies, a dual-parameter extraction strategy can be used. This is partic-
ularly useful for identifying parameters that might be correlated, where the in�uence
of one parameter can be compensated by another, which can lead to potential solu-
tion non-uniqueness issues.

For this research, a systematic grid search method was used as the main dual-
parameter extraction strategy. This method exhaustively evaluates the objective
function's behavior across a prede�ned multi-dimensional solution space.

Through this method, the objective function's behavior is mapped across the
solution space by evaluating a prede�ned range of parameter combinations, which
thereby identi�es the optimal parameter set and showcases potential parameter cor-
relations. By systematically mapping the error associated with each parameter
combination, this approach identi�es the globally optimal parameter set within the
de�ned search bounds as well as provides a visual representation of potential pa-
rameter correlations and the overall sensitivity of the model to these parameters.
This direct mapping contrasts the Levenberg-Marquardt iterative optimization al-
gorithms, which, while e�cient, sometimes converges to local minima or struggles
to characterize the full extent of solution non-uniqueness without multiple starting
points.

The systematic grid search was implemented in following steps:

1. De�nition of parameter ranges based on prior knowledge, material characteris-
tics, and initial sensitivity analysis. Plausible minimum and maximum values
are established for the two parameters (A and B) that are under investigation.

2. Discretization of both preset ranges by dividing them into a �xed number of
discrete steps, which creates a nA × nB grid of unique parameter pairs.

3. Predictive model evaluation for each (A - B) pair within the de�ned grid,
across a set of κ values.

4. Error calculation (objective function evaluation) for each (A - B) combina-
tion by quantifying the discrepancy between the predicted CMOD data and
target CMOD data, following previously de�ned Equation 5.13, where for
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dual-parameter extraction, m = {A,B}, yi are the target CMOD values. High
error is assigned to cases where the predictive model fails to converge for spe-
ci�c parameter combinations, which e�ectively penalizes such regions in the
solution space.

The output of this process is a dense dataset that represents the error surface
in the parameter space. Such datasets subsequently form the basis for creating
contour maps, which are used for the interpretation and discussion of the inverse
analysis results in the later sections. Such visualizations directly highlight the global
minimum of the objective function, the sensitivity of the resulting CMOD curves
to changes in A and B , and the presence and nature of any interdependencies
or correlations between the two parameters, which is key in non-linear material
characterization.

5.3 Model Assumptions and Limitations

The integrity and computational e�ciency of this novel inverse framework are based
on several explicit assumptions and necessary analytical simpli�cations. Therefore,
this section outlines these limitations to clearly de�ne the boundary conditions under
which the model is to remain accurate and applicable.

The model is subject to several essential limitations that stem directly from its
formulation, and primarily concern the simpli�cation of inherently complex physics
in order to achieve computational speed (as per hypothesis 2). Concerning the mate-
rial constitutive laws, the approach applies a tri-linear softening law for the concrete
matrix and a piecewise function with discrete plastic hinges for the �ber pull-out.
This represents an abstract version of the physical reality (which involves a continu-
ous, non-linear function and micro-scale cracking) in favor of a more e�cient, deter-
ministic form that sacri�ces these accuracies for computational speed. Second, the
fundamental assumption of the model dictates a zero-degree �ber orientation that
is parallel to the pull-out axis and operates exclusively on a speci�c cross-sectional
basis. This simpli�cation was necessary in order to eliminate the major source of
stochastic variability in the experimental data but restricts the model's direct ap-
plicability to FRC beams that have random �ber alignment (̸= 0◦). Furthermore,
the model is limited to tracking only the kinematics at the crack plane (CMOD
and dv at midspan), which means it does not simulate the full moment-curvature
distribution along the entirety of the beam's span.

In addition to these formulation constraints, the inverse analysis is subject to
several limitations regarding data accuracy and algorithmic application. The numer-
ical stability veri�ed in this study depends directly on having tested only a single
material family (steel �bers in an SCC matrix).
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This means applying the extracted coe�cients to vastly di�erent materials (like
polymer �bers or conventional vibrated concrete) requires re-calibration and re-
validation. Crucially, the optimization algorithm is mathematically designed to
converge even from physically impossible starting points (e.g. negative parameter
values). Therefore, the �nal parameter estimate requires the user to discard non-
physical numerical solutions, with con�dence depending on the bounds de�ned by
the Basin of Attraction values and the maintenance of physical plausibility to ensure
the results are meaningful.
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Chapter 6

Veri�cation and Validation

Framework

A systematic process of veri�cation and validation process (V&V) was conducted in
order to ensure that the newly formulated models meet all requirements for reliabil-
ity, accuracy, and conceptual validity.

The veri�cation processes addressed whether the numerical algorithm correctly
solves the underlying mathematical model, with a focus on the accuracy of the code's
implementation. On the other hand, validation of the model was done to evaluate its
ability to simulate and estimate parameters from real data, through a comparative
analysis of simulated versus experimentally obtained data.

6.1 Validation of the Predictive Model

The validation of the predictive numerical model was done to con�rm its ability
to accurately represent the real behavior of �ber-reinforced concrete beams under
three-point bending. This involved simulating the experimental results obtained
from all three beam sizes and con�gurations tested in the laboratory, as detailed in
Chapter 4.3.

The input parameters for the predictive model were �rst de�ned based on the
geometric con�gurations and material properties of the speci�c beams selected for
simulation. These con�gurations (all sizes and �ber types) correspond directly to
those tested in the laboratory, as described in Chapter 4. The values for the con-
crete and �ber constitutive laws within the numerical model were derived from a
combination of laboratory material testing (compressive strength, single �ber pull-
out tests) and speci�cations provided by the manufacturer [105]. Speci�cally, the
force-displacement curves representing the constitutive behavior of the concrete ma-
trix (controlled by Equation 5.1) and steel �bers (Equation 5.2) were implemented

60



6.1. Validation of the Predictive Model

within the predictive model. The parameters controlling these constitutive laws
were calibrated by aligning the shapes of the simulated force-displacement curves
with the corresponding experimental curves obtained from the respective three-point
bending tests, as seen on the left hand side in Figures 6.1, 6.3 and 6.6.

The input parameters for the predictive model were �rst de�ned based on the
geometric con�gurations and material properties of the speci�c beams selected for
simulation. These con�gurations (all sizes and �ber types) correspond directly to
those tested in the laboratory, as described in Chapter 4. The values for the concrete
and �ber constitutive laws within the numerical model were derived from a com-
bination of laboratory material testing (compressive strength, single �ber pull-out
tests) and speci�cations provided by the manufacturer [105]. The combined sti�ness
parameter during loading, Ef,T , was initially assumed to be 210000N/mm2 for con-
venience, equating it with the provided elasticity modulus of the �ber. Speci�cally,
the force-displacement curves representing the constitutive behavior of the concrete
matrix (controlled by Equation 5.1) and steel �bers (Equation 5.2) were implemented
within the predictive model. The parameters controlling these constitutive laws were
calibrated by aligning the shapes of the simulated force-displacement curves with the
corresponding experimental curves obtained from the respective three-point bending
tests, as seen on the left hand side in Figures 6.1, 6.3 and 6.6.

Figure 6.1: Predictive Model data overlayed with experimentally obtained data
for large-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.2: Predictive Model data overlayed with experimentally obtained data
for large-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

Figure 6.3: Predictive Model data overlayed with experimentally obtained data for
medium-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

Figure 6.4: Predictive Model data overlayed with experimentally obtained data for
medium-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.5: Predictive Model data overlayed with experimentally obtained data
for small-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

Figure 6.6: Predictive Model data overlayed with experimentally obtained data
for small-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

The resultant CMOD curves (right hand side in the Figures 6.1, 6.3 and 6.6)
were analyzed for the purpose of validating the predictive model. An overall visual
qualitative assessment of the overall pro�le of the resulting CMOD curves was done.
This included the inspection of initial sti�ness, peak load (if presenting in the CMOD
curve), and post-peak softening behavior, as well as comparison of the simulated
curves to the experimentally obtained ones. The quantitative accuracy evaluation
was done by calculating the root mean square error (RMSE) between the simulated
and average experimental CMOD values, which provides a measure of the average
magnitude of the errors by quantifying the di�erence between the predicted and
observed CMOD values across the entire curve. It is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yexp,i − ysim,i)2 (6.1)

where yexp,i is the i-th experimental CMOD value, ysim,i is the i-th simulated CMOD
value, and n is the total number of data points. As a right hand rule, the lower the
RMSE score the better the accuracy.
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A RMSE score of zero would indicate a perfect �t, as it would mean the predicted
values align perfectly with actual values [115]. However, such �t is rarely achieved
in practice due to data variability and model limitations.

Since RMSE is scale dependent, the normalized root mean square error (NRMSE)
was also calculated to enable a more objective comparison of obtained results across
di�erent beam sizes, as NRMSE provides a relative measure of error, independent
of the raw data's magnitude. This speci�c normalization was calculated by dividing
previously obtained RMSE with the range of the observed CMOD data:

NRMSE =
RMSE

max(yexp)−min(yexp)
× 100% (6.2)

NRMSE was expressed as a percentage in order to directly indicate the model's
error relative to the total variability of experimentally obtained data. For the context
of this study, an NRMSE value below 10% is generally evaluated as excellent, while
values between 10% and 20% are considered a good �t. This assessment criteria is
consistent with �ndings in literature for similar materials, where NRMSE values up
to 18% are often valued as satisfactory [116, 117].

To provide a more widely accepted measure of the model's predictive capability,
the Coe�cient of Determination (R2) was calculated. R2 quanti�es the proportion of
the variance in the experimental data that is predictable from the numerical model.
R2 ranges from 0 to 1, where a value closer to 1.0 indicates a near-perfect �t between
the simulated and observed data. It is calculated as:

R2 = 1−
∑n

i=1(yexp,i − ysim,i)
2∑n

i=1(yexp,i − ȳexp)2
(6.3)

Additionally, the relative squared residual (RSR) was calculated as a goodness-
of-�t indicator to provide a standardized measure of the average magnitude of the
errors, normalized by the standard deviation (SD) of the observed data. RSR is
calculated as the ratio of the RMSE to the standard deviation of the observed data
(σexp):

RSR =
RMSE
σexp

=

√
1
n

∑n
i=1(yexp,i − ysim,i)2√

1
n

∑n
i=1(yexp,i − ȳexp)2

(6.4)

An RSR value of 0 indicates a perfect model �t. According to common criteria in
literature, RSR values less than 0.50 are typically considered to indicate a "very
good" model �t, while values between 0.50 and 0.60 represent a "good" �t ([118]).

The calculated RMSE, NRMSE, RSR and R2) for all simulated beam con�gu-
rations are summarized in Table 6.1. These metrics provide a precise evaluation of
the predictive model's accuracy against the average experimental CMOD curves.
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Table 6.1: Summary of Predictive Model Validation Results (RMSE, NRMSE, RSR,
and R2) for Various Beam Con�gurations

Beam Size Type RMSE [mm] NRMSE [%] RSR R2 Performance

rating

Large FRC 1.053 9.94 0.324 0.895 Very good �t
Large Plain 0.014 12.35 0.431 0.814 Very good �t
Medium FRC 0.302 5.65 0.169 0.971 Very good �t
Medium Plain 0.030 10.97 0.312 0.903 Very good �t
Small FRC 0.840 10.45 0.341 0.884 Very good �t
Small Plain 0.028 15.10 0.384 0.852 Very good �t

By observing the simulated CMOD curve for large-sized beams with and without
�bers in Figures 6.8 and 6.7, respectively, it consistently falls well within the ±2

standard deviation band, and largely within the ±1 standard deviation band.

Figure 6.7: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for large-sized plain concrete beams
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Figure 6.8: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for large-sized FRC beams

Figures 6.9 shows that the simulated CMOD curve for a plain medium-sized
beam exhibits the characteristic non-linear, accelerating increase, which is consistent
with the experimental data. However, a discrepancy in the steepness of the CMOD
progression is present between the simulated and experimental results, particularly
around the crack initiation phase. Nevertheless, despite these local deviations, the
simulated curve largely remains within the±2 standard deviation band. Considering
the overall small magnitude of these deviations (e.g., an NRMSE of 10.97% and
absolute deviations typically below 0.05mm), the model is considered to provide a
good �t to the experimental data. The CMOD result (Figure 6.10) for the same
model with activated �ber parameters almost entirely falls within the ±1 standard
deviation band of the experimentally obtained data.

Figure 6.9: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for medium-sized plain concrete beams
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Figure 6.10: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for medium-sized FRC beams

Similarily, resulting CMOD curves for plain and FRC beams, shown respectively
in Figures 6.11 and 6.12, exhibit the same consistent behavior. Both results fall
within the ±2 standard deviation band of their respective experimental data.

Figure 6.11: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for small-sized plain concrete beams
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Figure 6.12: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for small-sized FRC beams

All simulated CMOD curves e�ectively capture the overall behavior of experi-
mental ones, and is a good representative of the scattered experimentally obtained
data.

Through this validation process of the predictive model against experimental
three-point bending data for all three beam sizes and con�gurations, the model
consistently demonstrated its capability to simulate the crack mouth opening dis-
placement progression. The consistently low RMSE values, NRMSE values mostly
falling within the "excellent" (below 10%) and "very good" (10-20%) ranges, and
RSR and R2 values consistently showed "very good" �ts (all below 0.50 and above
0.81, respectively), con�rmed the model's predictive accuracy. Visual inspection of
the simulated curves further con�rmed this, as it showed a strong agreement with
the average experimental responses and consistently falling within the observed ex-
perimental variability bands.

6.2 Comparison with Stochastic Model's Results

This chapter focuses on the veri�cation of the presented novel deterministic compu-
tational model through direct comparison with data generated using an established
stochastic model for the three-point bending of �ber-reinforced concrete beams. The
stochastic model used for this comparison was developed by Koºar et al. [13, 14, 61].
It was speci�cally chosen due to its fundamental similarities with the model devel-
oped in this thesis, particularly in its adoption of a layered beam discretization and
Newton's procedure for solving the system of nonlinear equilibrium equations [61].
This commonality allows for a direct comparison of how the handling of material
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variability e�ects the simulated behavior, rather than comparing the di�erences in
fundamental modeling approaches. Furthermore, this speci�c stochastic model was
chosen as it serves as an ideal benchmark because it is a well-established and well-
documented model, and was developed independently by my research collaborators.

The primary goal of this comparison was to verify the predictive capabilities of
the deterministic model and to inspect its suitability as a foundation for inverse
analysis, which directly addresses the core of the thesis hypothesis. While Koºar
et al. (2021) rightfully state that deterministic models inherently "don't explain

variations in experimental data" [61], a key aspect of this thesis's hypothesis is that
a well-posed, robust, and simpli�ed deterministic model can e�ectively compensate
for this during the inverse analysis. This means that such a model should be capa-
ble of adequately extracting necessary material parameters even when dealing with
randomness present in measured experimental results. Therefore, establishing the
deterministic model's predictive accuracy against a validated stochastic counterpart,
known for its ability to represent experimental variability, is an important prelim-
inary step before proceeding with the deterministic model's own inverse extraction
capabilities in subsequent chapters.

The stochastic model by Koºar et al. (2021) is based on the Fiber Bundle Model
(FBM) concept, where stochastic parameters such as the �ber peak tension load and
the �ber area are described by a Gaussian probability distribution. While individ-
ual �bers possess slightly di�erent material or geometric properties, the collective
behavior of the �ber bundle, is simpli�ed and represented by a non-linear stochas-
tic function. For the purpose of forward modeling in three-point bending, Koºar
et al. (2021) generalized this FBM into a simpler, microplane-like material model
described by a two-parameter exponential equation (f(x,A,B) = A ·x ·Exp(−B ·x))
that represents the global force-displacement relationship. This exponential mate-
rial model is applied to describe both the concrete matrix and the �bers within the
layered beam model [61].

The comparison process involved generating mechanical responses from both
models under simulated three-point bending tests. For the novel deterministic
model, the simulations done in Chapter 6.1 were directly adapted here as well.
For the stochastic model, key material parameters ('A' and 'B' of the exponential
load-displacement law for both the concrete matrix and the �bers) were treated
as random variables [61]. These parameters were set to follow a Gaussian proba-
bility distribution, with their mean values matching the corresponding parameters
established in the deterministic model, where direct equivalents existed. It has to
be noted that due to di�ering model formulations between the deterministic model
developed herein and the stochastic model, not all parameters have their direct,
one-to-one equivalents. In order to e�ectively visualize the model's behavior and
the impact of randomness, small standard deviations were assigned to these random
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parameters to ensure a controlled spread of results.

A Monte Carlo Simulation approach, involving 50 independent iterations, was
adopted. In each iteration, a unique set of random material parameters was sampled
from their previously de�ned probability distributions. The equilibrium equations
were solved across the full range of curvatures for each sampled set, which resulted
with a random CMOD sample.

This collection of stochastic CMOD responses provided a comprehensive com-
parison with the predicted CMOD curve generated by the deterministic model. The
choice of 50 simulations was a pragmatic decision done in order to balance the com-
putational intensity required to solve the equilibrium equations for each iteration
and the requirement for a su�ciently solid number of samples that would capture
the statistical distribution of the stochastic model's output.

The main aim of this comparison is to determine if the simpli�ed deterministic
model, despite its lack of randomness, can accurately capture the average behavioral
trends and the overall responses predicted by an established model with a di�erent
approach. Based on the results, the validation of the model's suitability as basis for
the subsequent inverse analysis was assessed.

The results of the comparative analysis for di�erent beam sizes is presented in
Figures 6.13, 6.14, and 6.15, respectively.

Figure 6.13: Comparison of deterministic and stochastic model CMOD responses
for small beams
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Figure 6.14: Comparison of deterministic and stochastic model CMOD responses
for medium beams

Figure 6.15: Comparison of deterministic and stochastic model CMOD responses
for large beams

For all three beam sizes, the deterministic model's resulting CMOD curve gen-
erally aligns with the mean trend of the stochastic simulations, particularly in pre-
cracking and early post-cracking phases. This alignment can mostly be observed in
Figure 6.13 (small beam), where the deterministic model gives a good average repre-
sentation of the stochastic outcomes. As the crack opening increases and �bers get
pulled out the spread of the stochastic model's results becomes more pronounced,
which re�ects the variability in �ber distribution.

An observation made for all results is the distinct in�ection point in both the
deterministic and stochastic curves, which corresponds with the the onset of sig-
ni�cant cracking and the activation of �ber bridging mechanisms. The timing and

71



6.3. Sensitivity analysis

magnitude of this in deterministic model's results is in line with stochastic results.
The slope of the deterministic CMOD curve in the post-cracking phase generally
follows the average slope of the stochastic ones. While the relative behavior of two
result types remains consistent, the absolute values of both displacement and pseudo
time posses a certain level of expected discrepancy, which is due to di�erences in
fundamental mathematical backgrounds of the two models.

The correspondence between the deterministic model and the mean behavior of
the stochastic simulations indicates that, in terms of this veri�cation criteria, the
simpli�ed and optimized deterministic formulations can successfully replicate the
average three-point bending test results. The observation that the novel model's
results consistently fall within the range of variability predicted by the stochastic
model indicate it to be a suitable contender for a successful inverse model imple-
mentation and analysis. Which means that while the deterministic model doesn't
explicitly take into account the random variations in parameter values, its predic-
tive accuracy for the mean response makes it a reliable tool for extracting material
parameters.

6.3 Sensitivity analysis

In order to systematically quantify the in�uence of parameters that govern the be-
havior of �ber-reinforced concrete beams in bending, a sensitivity analysis was con-
ducted. This analysis evaluates the hierarchical importance of parameters on crack
mouth opening displacement in both pre-fractured and post-fractured state. It is
meant to identify which parameters have the strongest impact on the bending be-
havior of the beam, as well as quantify parameter inter-dependencies that may a�ect
damage evolution.

Key application of sensitivity analysis is for guiding the search process in inverse
modeling, especially in cases where the initial guess for the parameters is lacking.
Furthermore, if certain parameters are found to have only a negligible in�uence on
the model's predictions, they will �xed to a reasonable value or excluded from the
inverse optimization process altogether. This e�ectively reduces the dimensionality
of the parameter space that needs to be explored and makes the optimization prob-
lem more tractable. Contrarily, parameters that show high sensitivity are those that
need to be estimated with greater accuracy, and the search for their optimal values
is to be prioritized and focused on their most plausible ranges.

The sensitivity analysis for any MODEL parameter P is done by running the
forward model with P = Ptrue and a slightly perturbed value, P = Ptrue+dP , where
dP is a relatively small increment. For this research, the analysis was performed on
medium-sized beams, but the general results are applicable for all beam sizes. The
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behavioral patterns would follow a similar trend across other beam sizes since they're
directly tied to the model's formulation, regardless of the specimen's scale. The
following parameters were systematically varied within a de�ned range to generate
CMOD output, while all other parameters were kept at constant values:

� The �bers' threshold force, Fmax
a

� Fiber diameter, ∆a

� Maximum load capacity of concrete, Fmax
c

� Fiber position in the cross-section, ha

� Combined �ber-matrix system's e�ective elasticity modulus during loading,
Ef,T

� Fiber bundle in�uence, fbundle

� Number of �bers, nfiber

The resulting CMOD versus Pseudo Time curves were then plotted to visually eval-
uate the sensitivity of the beam's response to changes in each parameter.

The sensitivity analysis, as presented in Figures 6.16 through 6.22, show distinct
in�uences of each parameter on the CMOD-Pseudo Time response of the FRC beam.
It is generally that parameters that model the pre-peak, post-peak, or both phases
of the materials' input force-displacement diagram have a corresponding in�uence
on those same phases of the resulting crack mouth opening displacement.

Figure 6.16: In�uence of parameter Fmax
a on CMOD-Pseudo Time response
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Figure 6.16 demonstrates the signi�cant in�uence of Fmax
a on the post-fracture

behavior of the beam. A higher Fmax
a leads to a steeper CMOD curve in the post-

peak region, which suggest an improved crack bridging capacity and greater resis-
tance to crack propagation and opening after the initial fracture. This parameter
mostly dictates the maximum force that individual �bers can bear before pull-out,
which directly a�ects the ductility and residual strength of the FRC beam overall.
This parameter's impact on the post-peak behavior indicates that Fmax

a is a critical
for characterizing the toughening e�ect of �bers and will require precise estimation
in inverse analysis.

Figure 6.17: In�uence of parameter ∆a on CMOD-Pseudo Time response

As seen in Figure 6.17, the individual �ber diameter, ∆a has in�uence on the
entire CMOD-Pseudo Time curve, and it a�ects both pre and post-preak phases.
Larger �ber diameters generally lead to a sti�er response and higher displacement
for a same observed pseudo time step. This can be attributed to the larger cross-
sectional area of individual �bers contributing to a greater load transfer capacity
of the entire �ber. This parameter scales the contribution of individual �bers to
the overall collective behavior which makes it valuable for an accurate parameter
identi�cation.

74



6.3. Sensitivity analysis

Figure 6.18: In�uence of parameter fmax
c on CMOD-Pseudo Time response

The in�uence of fmax
c is shown in 6.18, where it's demonstrated that the maxi-

mum load capacity of the concrete matrix alone, has minimal e�ect during the initial
loading phase as all curves follow a nearly identical path until the onset of cracking.
However, in the post-peak phase, once the micro-cracking occurs, �ber bridging is
activated and becomes the dominant load bearing mechanism, and fmax

c 's in�uence
on the displacement becomes more noticeable. This is due to concrete, even though
secondary, still plays a role in load bearing alongside the �bers. The contribution of
concrete in this phase of loading is mainly governed by the value of this parameter.

Figure 6.19: In�uence of parameter ha on CMOD-Pseudo Time response
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The role of role of �ber position in the cross-section, ha, during beam bending
is shown on Figure 6.19. The vertical placement of �bers signi�cantly impacts all
phases of bending and impacts the overall evolution of CMOD. Varying the ha values
noticeable impacts the beam's �exural response. Fibers closer to the tension face
(higher ha values) cause the �ber bridging mechanism to be activated earlier and
an overall les brittle response from the beam. This parameter is fundamental to
the structural e�ciency of the �ber reinforcement and its accurate determination is
vital in optimization procedures.

Figure 6.20: In�uence of parameter Ef,T on CMOD-Pseudo Time response

Figure 6.20 presents the results of the sensitivity analysis performed for the �ber-
matrix combined e�ective modulus during loading, Ef,T . It's observed how this
parameter particularly a�ects the sti�ness of the beam, as higher values correspond
with a more sti�er response from the beam, especially in the pre-peak phase, while
beams with �ber with signi�cantly low Ef,T basically behave like regular concrete
beams with no added reinforcement. This reiterates that the elastic properties of the
individual �bers play a role in the overall deformation behavior of the FRC beam.
This parameter directly governs how much load the �bers carry elastically before
breaking or getting pull-out.
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Figure 6.21: In�uence of parameter fbundle on CMOD-Pseudo Time response

Figure 6.21 shows the in�uence of parameter fbundle that links the properties
of a singular �ber with the observed bundle in the cross section. This parameter
appears to explicitly in�uence the pre-peak stage and has little to no in�uence after
�ber pull-out. A higher fbundle value results in a sti�er response and a greater
load-carrying capacity. The main takeaway is how this parameter is a�ecting the
transitional phase from concrete-dominated to �ber-dominated behaviour, and its
impact suggests it playing a role in calibrating the overall e�ectiveness of the �ber
reinforcement.

Figure 6.22: In�uence of parameter nfiber on CMOD-Pseudo Time response

The sensitivity analysis of nfiber, in Figure 6.22, shows that the number of �bers
has an pronounced e�ect on the sti�ness of the beam and compeltel pullout time. A
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greater number of �bers generally leads to a much sti�er and more ductile response
in the post-peak regime, which lets the beam to sustain higher CMOD values with
increased resistance. This is expected, as more �bers in the beam means more
to more crack bridging elements, which directly the composite's ability to resist
crack propagation and maintain load transfer. The beam's response shows a great
sensitivity to this particular parameter.

The conducted sensitivity analysis provides an insights into the importance and
interdependencies of the governing parameters of the FRC beam's bending behav-
ior. It systematically quanti�es how changes in material and geometric properties
in�uence the CMOD response, and con�rmed that parameters that a�ect the pre-
peak properties primarily govern the initial response, while those related to �ber
contribution are ones having a critical role in the post-peak phase where the ductile
behavior is present. Parameters such as Fmax

a , ∆a, Ef,T , ha, fbundle, and nfiber show
signi�cant sensitivity,which highlighting their importance for accurately describing
the characteristics of FRC, while Fmax

c manly a�ects the pre-cracking regime.

This analysis will serve as a tool for the subsequent and any future inverse
analysis. Parameters showing high sensitivity will be prioritized for estimation,
and their search space will be based on their observed in�uence. On the other
hand, parameters with little to no in�uence will be extracted with the purpose of
validating the inverse model, but in any future parametric analysis they may be
treated as �xed. This systematic understanding of parameter sensitivity is crucial
for planning an e�cient inverse optimization strategy, especially in cases where a
global minimum might not be clearly presenting.

6.4 Veri�cation using Synthetic Data

This section presents the process and the results of the veri�cation of the developed
inverse analysis procedure through the use of "synthetic" experimental data. The
inverse model's accuracy and robustness was tested using data crack mouth opening
displacement data generated by the predictive model where all model parameters
are de�ned as deterministic and are known beforehand. This helps ensuring that
the model implementation is without errors and works as intended from a tech-
nical standpoint, before its it is applied to more noisy and uncertain laboratory
experimental data.

The analysis involves several preparatory steps necessary establish a controlled
environment for testing the model's capability of parameter extraction. A "true"
numerical model is �rst de�ned by selecting a speci�c, physically realistic value for
the chosen parameter Ptrue that is intended to be extracted via the inverse procedure.
All other material and geometric parameters in the predictive model are assiged to
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�xed, known values, which remain as such throughout the analysis. This de�ned,
"true" model, is then used to generate synthetic target data for the crack mouth
opening displacement, which serves as an idealistic experimental reference.

The use of synthetic data is crucial at this stage, because it allows for an un-
ambiguous validation of the inverse procedure's algorithmic integrity. Since the
synthetic data is generated using the exact same predictive model formulations as
in inverse model, the implemented inverse algorithm is correct only if the extracted
Ptrue exhibits zero error, thereby con�rming that the equations, algorithms, and code
for the inverse process are accurately implemented according to the conceptual and
mathematical model before its application to noisy and uncertain actual laboratory
experimental data.

After the generation of target data, a visual sensitivity of the model's CMOD
output to variations in the parameter P is performed. The inverse analysis for each
parameter begins with de�ning a plausible range of initial guesses (P0). This range
is not arbitrary, but is established by referencing the known physical constraints of
the materials. For instance, the nominal diameter of the steel �bers is 0.55 mm,
which is a value that provides a realistic center point. Similarly, the elasticity
modulus is bounded by known values for typical �bers (e.g., Ef,T ranging from low-
sti�ness polypropylene to high-sti�ness carbon). This reliance on physically sound
initialization is key to solving the inverse problem e�ciently and ensuring that the
�nal convergence is physically meaningful, even when starting far from the true
value. The results are presented as lists that include values below, above, close
to, and further from Ptrue, while also considering the physically plausible range for
tested P . The speci�c range chosen for each parameter is aimed to understand the
algorithm's behavior with both good and relatively poor starting estimates.

After this, the perturbation value dP used for the numerical calculation of sen-
sitivity coe�cients, is de�ned. Its value is set to a small (1 − 3%) fraction of the
assumed magnitude of Ptrue. Furthermore, a maximum number of iterations is set to
prevent inde�nite execution if convergence is not achieved, and a tolerance criterion
for the change in the parameter estimate |∆P | is de�ned to signal convergence.

The iterative inverse analysis procedure is performed for each selected initial
guess of the parameter P , as detailed in the subsequent sections for each speci�c
parameter investigated. In addition to the �nal converged values, the performance of
the inverse algorithm was further assessed and quanti�ed by determining the basin
of attraction (BoA). The BoA represents the range of initial guesses from which the
algorithm will successfully converge to the true parameter value, where a wider BoA
indicates a more robust and a less guess-dependent model.
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6.4.1 Inverse Extraction of Synthetic ∆a

This subsection showcases results of the inverse analysis of the parameter ∆a, rep-
resenting a single �ber's cross section diameter. The inverse procedure was tested
across all three beam sizes and a wide range of initial guesses, and the results are
summarized in Tables 6.2, 6.3 and 6.4.

Table 6.2: Summary of Inverse Iteration Results for Estimating ∆a on Large-Sized
Samples

True ∆a Value Initial Guess Iterations Final Result BoA Range
(∆a) (∆a0) (k) (∆ak+1) (% of true value)

0.1

0.03 8 0.1

2470
0.2 4 0.1
0.35 3 0.1
0.5 6 0.1
2.5 8 0.1

0.2

0.06 9 0.2

1220
0.1 5 0.2
0.35 4 0.2
0.5 4 0.2
2.5 8 0.2

0.35

0.11 7 0.35

683
0.2 4 0.35
0.5 3 0.35
2.5 6 0.35

0.5

0.15 6 0.5

470
0.2 5 0.5
0.35 3 0.5
2.5 5 0.5
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Table 6.3: Summary of Inverse Iteration Results for Estimating ∆a on Medium-
Sized Samples

True ∆a Value Initial Guess Iterations Final Result BoA Range
(∆a) (∆a0) (k) (∆ak+1) (% of true value)

0.1

0.03 9 0.1

2070
0.05 7 0.1
0.2 5 0.1
0.5 7 0.1
2.1 9 0.1

0.2

0.06 8 0.2

720

0.07 8 0.2
0.1 6 0.2
0.15 4 0.2
0.25 4 0.2
0.5 5 0.2
0.7 6 0.2
1.5 7 0.2

0.35

0.13 6 0.35

985
0.15 6 0.35
0.25 4 0.35
0.4 3 0.35
2.1 5 0.35

0.5

0.17 5 0.5

551

0.2 6 0.5
0.3 4 0.5
0.4 3 0.5
0.5 3 0.5
0.6 3 0.5
0.7 4 0.5
0.8 4 0.5
0.9 5 0.5
1.1 4 0.5
1.2 5 0.5
1.3 5 0.5
2.1 5 0.5
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Table 6.4: Summary of Inverse Iteration Results for Estimating ∆a on Small-Sized
Samples

True ∆a Value Initial Guess Iterations Final Result BoA Range
(∆a) (∆a0) (k) (∆ak+1) (% of true value)

0.1

0.04 6 0.1

890

0.09 2 0.1
0.11 2 0.1
0.2 5 0.1
0.35 6 0.1
0.5 6 0.1
0.93 7 0.1

0.2

0.08 6 0.2

850
0.1 5 0.2
0.35 4 0.2
0.5 5 0.2
0.93 6 0.2

0.35

0.11 6 0.35

410
0.2 3 0.35
0.5 4 0.35
0.93 5 0.35

0.5

0.14 5 0.5

226
0.2 4 0.5
0.35 3 0.5
0.93 4 0.5

The results show that the method is generally capable of converging to the true
∆a value for a wide range of initial guesses, with convergence achieved on average
within 5 iterations. Initial guesses closer to the true value converged most rapidly,
while those further away required more steps for the algorithm to correct the initial
deviation. The convergence accuracy is 100% when a solution is reached, which
ful�lls the primary objective of this veri�cation stage and con�rms the technical
integrity of the inverse algorithm for ∆a.

A limitation was observed for guesses too lower from the true one, as those
produced an extremely large update step in the �rst iteration, which calculated the
next guess to be extremely high. With such overly in�ated value, entirely outside
any physically plausible ranges for realistic �ber dimensions, the predictive part
of the inverse model failed to compute a CMOD curve in any subsequent iteration.
This failure seen only in values lower than the true one can be attributed to the non-
linear relationship between ∆a and the CMOD, and the behavior of the sensitivity
term χ∆a,i =

∂dCMOD i

∂∆a
.
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These relatively too low guesses leads to a low sensitivity χ∆a,i, and therefore a
very small sum of squared sensitivities,

∑n
i=1 χ

2
∆a,i. When a potentially large error

term,
∑n

i=1(yi − dCMOD i(∆a)) · χ∆a,i, is divided by this very small denominator in
the update equation:

∆(∆a) =

∑n
i=1(yi − dCMOD i(∆a)) · χ∆a,i∑n

i=1 χ
2
∆a,i

(6.5)

a disproportionately large update step can occur. This "overshoot" pushes the
parameter estimate into a region where the forward model becomes numerically
unstable or the parameter value physically unrealistic. In contrast, for an initial
guess like∆a = 1.3 in case of true∆a = 0.5, while the initial error (yi−dCMOD i(∆a))

is also large, the model's sensitivity to changes in ∆a in that higher range appears
to be more substantial. This results in a more appropriately scaled update step, and
allows a more stable convergence towards the true value.

A distinct relationship between the BoA range and the magnitude of the true ∆a

value was observed. For all beam sizes, as the true value of ∆a increases, the BoA
range as a percentage of the true value decreases. This is only relative to the true
∆a, as the absolute range of guesses within which a successful convergence occur is
pretty much stable across all true ∆a.

However, a trend in the BoA range appears to be correlated with the beam size.
For a given true ∆a value, the BoA range is largest for the large beams and smallest
for the small beams. This suggests that the model's sensitivity and the complexity
of the error surface are functions of the beam's geometry. In smaller beams, where
geometric e�ects are more pronounced, the inverse algorithm seems to have a more
constrained and complex search space, which limitis the model's robustness to a
wide range of initial guesses. This observation also provides a partial explanation
for why inverse analysis might be more challenging to perform on smaller specimens
with real experimental data.

6.4.2 Inverse Extraction of Synthetic ha

The inverse analysis for the synthetically generated �ber position parameter, ha, was
done for all three beam sizes. The results are summarized in Tables 6.5, 6.6, and
6.7, and show consistent and rapid convergence to the true values for a wide range of
initial guesses. The iterative procedure consistently converged to the true value for
ha with 100% accuracy and ful�lled the primary objective of this veri�cation stage.
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Table 6.5: Summary of Inverse Iteration Results for Estimating ha on Large-Sized
Samples

True ha Value Initial Guess Iterations Final Result BoA Range
(ha) (ha0) (k) (hak+1

) (% of true value)

0.05

-1.7 4 0.05

8200

0.01 2 0.05
0.2 2 0.05
0.5 3 0.05
0.8 3 0.05
0.95 3 0.05
1.5 3 0.05
2.4 5 0.05

0.5

-1.7 4 0.5

820

0.05 2 0.5
0.8 2 0.5
0.95 3 0.5
1.5 4 0.5
2.4 4 0.5

0.8

-1.7 4 0.8

512

0.05 3 0.8
0.5 3 0.8
0.95 2 0.8
2 3 0.8
2.4 4 0.8

0.95

-1.7 4 0.95

432

0.05 3 0.95
0.5 4 0.95
0.8 3 0.95
1.5 3 0.95
2 3 0.95
2.4 4 0.95
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Table 6.6: Summary of Inverse Iteration Results for Estimating ha on Medium-Sized
Samples

True ha Value Initial Guess Iterations Final Result BoA Range
(ha) (ha0) (k) (hak+1

) (% of true value)

0.1

-2.5 5 0.1

5000

0.05 2 0.1
0.35 3 0.1
0.5 3 0.1
0.8 3 0.1
2.5 4 0.1

0.35

-2.5 5 0.35

1686

-2 4 0.35
0.05 3 0.35
0.65 3 0.35
0.8 3 0.35
3.4 4 0.35

0.5

-2.5 5 0.5

1180

0.05 3 0.5
0.1 3 0.5
0.65 2 0.5
0.8 2 0.5
3.4 4 0.5

0.65

-2.5 5 0.65

908

0.05 3 0.65
0.1 3 0.65
0.35 3 0.65
0.5 2 0.65
0.8 2 0.65
3.4 4 0.65
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Table 6.7: Summary of Inverse Iteration Results for Estimating ha on Small-Sized
Samples

True ha Value Initial Guess Iterations Final Result BoA Range
(ha) (ha0) (k) (hak+1

) (% of true value)

0.01

-3.7 5 0.01

87000

0.15 2 0.01
0.3 3 0.01
0.39 3 0.01
0.8 3 0.01
5 4 0.01

0.15

-3.7 5 0.15

5800

0.01 2 0.15
0.3 2 0.15
0.39 3 0.15
0.8 3 0.15
5 4 0.15

0.3

-3.7 5 0.3

2900

0.01 3 0.3
0.15 2 0.3
0.39 2 0.3
0.8 3 0.3
5 4 0.3

0.39

-3.7 4 0.39

2231

0.01 3 0.39
0.15 2 0.39
0.3 2 0.39
0.8 3 0.39
5 4 0.39

The most striking observation from the analysis is the relatively large range of
values for which the model converged successfully. This is quantitatively seen by
the BoA ranges, which were 4.1 cm, 5.0 cm and 8.7 cm for large, medium, and small
beams, respectively. When expressed as a percentage of the true value, this resulted
in a BoA range as high as 87,000% for small-sized beams with a true ha of 0.01 cm.
It is found that the BoA range is largest for smaller beam sizes, which suggests that
the model's sensitivity and the complexity of the search space are functions of the
specimen's geometry.

As seen in the presented tables, the iterative procedure successfully converged to
the true value for ha even when initial guesses were outside the physical boundaries
of the beam (h_a < 0 or ha > h). This is due to the mathematical formulation of
the predictive model and the nature of gradient-based optimization. The equations
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de�ning the �ber's contribution to force and moment are mathematically de�ned for
any numerical value of ha. The inverse algorithm does not inherently "know" nor is
written to take in account values only within the physical bounds of the beam, and
therefore does not disregard initial guesses that are physically unrealistic. As long
as the �ber constitutive law is de�ned such that it still produces a calculable force
and a non-zero sensitivity (χha = ∂CMOD

∂ha
) in that region, the algorithm can still

determine the direction in which to adjust ha. If the target CMOD data (measured
data) indicates a �ber contribution, the error term will be sizable even when the
guessed ha places �bers ine�ectively. The optimizer iteratively adjusts the initially
guessed value, which is guided by the sensitivity, to bring the �ber position to a
location that gets it to contribute to the beam's behavior and thus minimizes the
error, even when starting from a non-physical location.

The algorithm's ability to converge from such physically unrealistic starting
points shows that the error surface in the parameter space contains gradients that
e�ectively navigate the solution towards a physically correct minimum.

6.4.3 Inverse Extraction of Synthetic Ef,T

This section details the veri�cation of the inverse model for the �ber-matrix com-
bined e�ective elasticity modulus during loading, Ef,T. The procedure was tested
across all three beam sizes (Tables 6.8, 6.9, and 6.10) and a wide range of values
to represent di�erent �ber types, from less sti� glass and polypropylene (PP) �bers
(as low as 5000 N/mm2) to sti� basalt and carbon �bers (up to 300000 N/mm2)

In this chapter, the inverse model's veri�cation was conducted by extracting the
�ber-matrix combined e�ective elasticity modulus during loading� Ef,T), on medium-
sized samples. The testing covered a range from minimum to maximum converged
values, along with plausible values representing commercially available steel �bers.
Furthermore, its performance was assessed for less sti� �bers, including glass and
polypropylene (PP) �bers, by extracting preset Ef,T values within the range of 5 to
75 GPa (or approximately 500 to 7500 kp/mm2). In the same manner, Ef,T was set
to 100000 and 300000 kp/mm2 to generate synthetic data, which was then used to
extract these same values for cases involving basalt and carbon �bers, respectively.
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Table 6.8: Summary of Inverse Iteration Results for Estimating Ef,T on Large-Sized
Samples

True Ef,T Value Initial Guess Iterations Final Result BoA Range
(N/mm2) (N/mm2) (k) (N/mm2) (% of true value)

5000

1 3 5000

960
2500 3 5000
10000 3 5000
25000 3 5000
48000 5 5000

75000

1 4 75000

807

5000 4 75000
100000 3 75000
210000 4 75000
300000 4 75000
605000 6 75000

100000

1 4 100000

645

5000 4 100000
75000 3 100000
210000 3 100000
300000 4 100000
645000 5 100000

210000

1 4 210000

730

5000 4 210000
75000 5 210000
100000 5 210000
300000 4 210000
730000 7 210000

300000

1 4 100000

438
5000 5 300000
210000 4 300000
500000 3 300000
920000 8 300000
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Table 6.9: Summary of Inverse Iteration Results for Estimating Ef,T on Medium-
Sized Samples

True Ef,T Value Initial Guess Iterations Final Result BoA Range
(N/mm2) (N/mm2) (k) (N/mm2) (% of true value)

5000

1 3 5000

3200
2500 3 5000
75000 4 5000
160000 4 5000

75000

1 4 75000

593
70000 3 75000
210000 4 75000
445000 5 75000

100000

1 4 100000

500
5000 4 100000
75000 3 100000
210000 4 100000
500000 5 100010

210000

1 5 210000

405

150000 4 210000
200000 3 210000
250000 3 210000
400000 4 210000
850000 6 210000

300000

1 5 100000

492

75000 4 100000
100000 4 100000
210000 4 300000
400000 4 300000
1475000 5 300000
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Table 6.10: Summary of Inverse Iteration Results for Estimating Ef,T on Small-Sized
Samples

True Ef,T Value Initial Guess Iterations Final Result BoA Range
(N/mm2) (N/mm2) (k) (N/mm2) (% of true value)

5000

1 2 500

4600
75000 3 5000
210000 3 5000
230000 3 5000

75000

1 3 75000

400
5000 3 75000
210000 3 75000
300000 4 75000

100000

1 4 100000

750
75000 3 100000
210000 3 100000
300000 4 100000
810000 5 100000

210000

1 4 210000

1002
75000 3 210000
100000 3 210000
300000 4 210000
2105000 4 210000

300000

1 5 300000

702

5000 4 300000
75000 4 300000
210000 4 300000
350000 3 300000
2105000 5 300000

The results demonstrated that the inverse model consistently and accurately
converged to the true Ef,T value for a vast range of initial guesses, with a 100% ac-
curacy in all successful convergence cases. This con�rms that the model's stability
and ability to handle parameters is applicable to a broad spectrum of physical mag-
nitudes. The convergence was also consistently fast, with the algorithm typically
requiring only 3 to 5 iterations to reach the solution.

A trend was observed in the tables is the inverse relationship between the mag-
nitude of the true Ef,T and the value of the BoA range. For all beam sizes, the BoA
range, both at its absolute value and as a percentage of the true value, is largest for a
low modulus and decreases as the modulus increases. For instance, in medium-sized
beams, a true Ef,T of 5000 N/mm2 has a BoA of 160000 or 3200%, while a true
Ef,T of 210000 N/mm2 has a BoA of 850000 or 405%. This means that for less sti�
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beams, the inverse algorithm has a much broader and more forgiving search space,
which likely comes from the model's sensitivity to this parameter in di�erent regions
of the CMOD curve.

Furthermore, a distinct size e�ect is also evident in the BoA ranges. For the same
true Ef,T, the BoA range is largest for smaller beams and decreases as the beam size
increases. This suggests that the complexity of the error surface for this parameter
is more constrained in larger specimens, which leads to a narrower range of initial
guesses that can successfully guide the algorithm to the correct solution. However,
an exception to the convergence pattern occurred with a true value o f5000 N/mm2

when an initial guess of 75000 N/mm2 failed to converge for large beams, as seen in
A.46. Despite the initial guess being well within the BoA of other cases, this failure
con�rms how non-linear optimization is not only dependent on the distance of the
initial guess from the true value, but also on the speci�c shape of the error surface.
In this instance, a much higher initial guess predicts an overall much sti�er beam
than the target, and the algorithm had to optimize with overly aggressive update
steps that lead to computational failure.

6.4.4 Inverse Extraction of Synthetic fbundle

This subsection presents the results of the veri�cation of the inverse model for the
empirical scaling parameter, for all three beam sizes and a wide range of initial
guesses. The results are summarized in Tables 6.11, 6.12, and 6.13.
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Table 6.11: Summary of Inverse Iteration Results for Estimating fbundle on Large-
Sized Samples

True fbundle Value Initial Guess Iteration Final Result BoA Range
� � (k) � (% of true value)

0.000001

0.0000001 4 0.000001

990
0.000001 4 0.000001
0.000005 5 0.000001
0.00001 8 0.000001

0.00005
0.000001 6 0.00005

1980.00004 4 0.00005
0.0001 4 0.00005

0.000095
0.000001 7 0.000095

990.000005 7 0.000095
0.0001 2 0.000095

0.0001

0.0000001 8 0.0001

100.9

0.000001 8 0.0001
0.00001 8 0.0001
0.00005 5 0.0001
0.000095 3 0.0001
0.000101 2 0.0001
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Table 6.12: Summary of Inverse Iteration Results for Estimating fbundle on Medium-
Sized Samples

True fbundle Value Initial Guess Iteration Final Result BoA Range
� � (k) � (% of true value)

0.00001

0.000001 4 0.00001

390
0.000005 4 0.00001
0.000015 4 0.00001
0.00004 5 0.00001

0.00005
0.000001 5 0.00005

1980.00004 3 0.00005
0.0001 3 0.00005

0.000095

0.000001 5 0.000095

103
0.000085 3 0.000095
0.0001 3 0.000095
0.000104 3 0.000095

0.0001

0.00000001 5 0.000095

90
0.000001 5 0.0001
0.000005 5 0.0001
0.00005 4 0.0001
0.00009 3 0.0001
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Table 6.13: Summary of Inverse Iteration Results for Estimating fbundle on Small-
Sized Samples

True fbundle Value Initial Guess Iteration Final Result BoA Range
� � (k) � (% of true value)

0.000001

0.0000001 2 0.000001

9990
0.000005 3 0.000001
0.00005 4 0.000001
0.0001 4 0.000001

0.00001

0.0000001 4 0.000001

999
0.000001 3 0.00001
0.00005 3 0.00001
0.0001 3 0.00001

0.00005

0.0000001 4 0.00005

200
0.000001 4 0.00005
0.00001 3 0.00005
0.0001 3 0.00005

0.0001

0.0000001 4 0.0001

50
0.000001 3 0.0001
0.00001 3 0.0001
0.00005 3 0.0001

The results show that the inverse model consistently and accurately converged
to the true fbundle value for a wide range of initial guesses, with 100% accuracy in
all successful convergence cases. The convergence was also consistently fast, with
the algorithm typically requiring only 2 to 8 iterations to reach the �nal solution.

The BoA range, when expressed as a percentage of the true value appears as
variable, but its absolute value remains consistently between 0.00005 and 0.0001
across all beam sizes, without any apparent trend. This suggests that the stability
of the model is tied to a speci�c magnitude of this empirical parameter. The analysis
of the BoA range shows that the model is numerically stable as long as the search
space for fbundle does not exceed a certain absolute boundary, regardless of the
specimen's size. Furthermore, for a given absolute BoA, the relative percentage
range is signi�cantly larger for a smaller beam (e.g., BoA range of 9990% for a true
value of 1× 10−6 in small beams) and decreases as the beam size increases. This is
a direct consequence of dividing a constant absolute BoA by a smaller true value,
and it provides insight into how the parameter's magnitude a�ects the perception
of the algorithm's search space.

It was determined that inverse analysis for extracting fbundle does not work for
negative values of initial guesses, as well as an initial guess that equals zero. However,
the model was tested for initial guesses as low as fbundle = 1 × 10−6, and it was
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concluded that no matter how small the initial guess for fbundle is the inverse model
will be able to preform the iteration as long as the initial guess is a non-zero, non-
negative value. This shows the numerical stability of the algorithm even for values
that approach a singularity in the optimization space.

It is observed that crack mouth opening displacement generated with values
higher than fbundle ≈ 0.000105 would contain non-physical negative values, which
leads to the model not being able to properly capture the post-cracking behavior.
This is an important boundary of the model's applicability on inverse identi�cation
of fbundle, as there is a clear range of values where it can be applied that are de�ned
by the model's numerical stability limits and physical realism boundaries. Knowing
this limitation will come in handy for interpreting results when the model is applied
to real experimental data.

6.4.5 Inverse Extraction of Synthetic fmax
c

This subsection veri�cation of the inverse model for the concrete threshold force,
fmax
c , which governs the pre-cracking behavior of the beam is shown. The analysis
was done across three beam sizes (Tables 6.14, 6.15, and 6.16) and a wide range of
initial guesses.
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Table 6.14: Summary of Inverse Iteration Results for Estimating fmax
c on Large-

Sized Samples

True fmax
c Value Initial Guess Iterations Final Result BoA Range

(kN/mm2) (kN/mm2) (k) (kN/mm2) (% of true value)

1

0.01 4 1.0

809

0.5 3 1.0
2.0 4 1.0
3.0 4 1.0
4.5 4 1.0
8.1 5 1.0

2

0.01 4 2.0

420

1.0 3 2.0
1.5 2 2.0
3.0 3 2.0
4.5 4 2.0
8.4 4 2.0

3

0.01 5 3

450

1.0 3 3.0
2.0 3 3.0
2.5 3 3.0
4.5 3 3.0
9.0 5 3.0

4.5

0.01 5 4.5

356

1.0 3 4.5
2.0 3 4.5
3.0 2 4.5
5.0 3 4.5
10.7 5 4.5
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Table 6.15: Summary of Inverse Iteration Results for Estimating fmax
c on Medium-

Sized Samples

True fmax
c Value Initial Guess Iterations Final Result BoA Range

(kN/mm2) (kN/mm2) (k) (kN/mm2) (% of true value)

1.5

0.0 4 1.5

380
2.0 3 1.5
3.0 3 1.5
4.5 4 1.5
5.7 5 1.5

2

0.0 3 2

300

1.5 2 2
2.25 2 2
3.0 3 2
4.0 3 2
6.0 5 2

3

0.0 4 3

250

1.5 3 3
2.0 3 3
3.25 2 3
4.5 3 3
7.5 6 3

4

0.0 5 4.5

323

1.5 4 4.5
2.0 4 4.5
3.0 3 4.5
5.0 3 4.5
9.7 6 4.5

97



6.4.5. Inverse Extraction of Synthetic fmax
c

Table 6.16: Summary of Inverse Iteration Results for Estimating fmax
c on Small-

Sized Samples

True fmax
c Value Initial Guess Iterations Final Result BoA Range

(N/mm2) (N/mm2) (k) (N/mm2) (% of true value)

0.4

0 4 0.4

750

0.3 2 0.4
0.6 3 0.4
0.8 3 0.4
1.5 4 0.4
3.0 4 0.4

0.6

0.01 4 0.6

815
0.4 2 0.6
0.8 4 0.6
1.5 4 0.6
4.9 4 0.6

0.8

0.01 3 0.8

624
0.4 3 0.8
0.6 3 0.8
1.5 3 0.8
5.0 4 0.8

1.5

0 4 1.5

488

0.4 3 1.5
0.6 3 1.5
1.25 2 1.5
2.0 2 1.5
3.9 5 1.5

2

0 4 2

267

0.4 3 2
0.6 3 2
0.8 3 2
1.5 3 2
4.0 4 2

The results show that the inverse model consistently and accurately converged
to the true fmax

c value for a vast range of initial guesses, with 100% accuracy in all
successful convergence cases. This con�rms the model's ability to handle parameters
that de�ne the concrete matrix itself. The algorithm typically requiring only 2 to 5
iterations to reach the �nal solution.

It was observed that the BoA range values and the magnitude of the true fmax
c

have an inverse relationship in all beam sizes.

The BoA range as a percentage of the true value is largest for a low fmax
c and
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decreases as the true value increases. This implies that when the concrete's con-
tribution to the overall sti�ness is less dominant, the inverse algorithm has a much
broader and more forgiving search space.

Furthermore, as in previous cases, a size e�ect is evident in the BoA ranges. The
percentage BoA range is consistently largest for the smallest beams and smallest
for the largest beams. Since this is a recurring trend, it can be concluded that the
model's behavior and the complexity of the error surface are in�uenced by the spec-
imen's scale. The algorithm's search space is more constrained in smaller specimens
where a parameter's in�uence is more localized.

6.4.6 Inverse Extraction of Synthetic nfiber

This subsection presents the results of the veri�cation of the inverse model for the
�ber count parameter, nfiber. The procedure was tested across all three beam sizes
and a wide range of initial guesses, with the results summarized in Tables 6.17, 6.18,
and 6.19.

Table 6.17: Summary of Inverse Iteration Results for Estimating nfiber on Large-
Sized Samples

True nfiber Value Initial Guess Iterations Final Result BoA Range
� � (k) � (% of true value)

1
2 3 1

4004 4 1
6 4 1

9

1 4 9

344
5 4 9
12 3 9
20 4 9
32 5 9

12

1 7 12

367
9 4 12
15 3 12
20 4 12
45 7 12

20

1 5 20

390
9 4 20
15 4 20
30 4 20
79 6 20
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Table 6.18: Summary of Inverse Iteration Results for Estimating nfiber on Medium-
Sized Samples

True nfiber Value Initial Guess Iterations Final Result BoA Range
� � (k) � (% of true value)

1
2 3 1

4005 5 1
6 1 1

5

1 5 5

280
3 4 5
6 4 5
9 4 5
15 5 5

9

1 5 9

156
4 3 9
6 3 9
15 4 9

15

1 6 15

87
5 5 15
9 5 15
14 4 15
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Table 6.19: Summary of Inverse Iteration Results for Estimating nfiber on Small-
Sized Samples

True nfiber Value Initial Guess Iterations Final Result BoA Range
� � (k) � (% of true value)

1
2 3 1

7005 3 1
9 4 1

5

1 3 5

980
4 3 5
6 3 5
10 3 5
50 4 5

15

1 4 15

327
5 4 15
12 3 15
20 3 15
50 4 15

30

1 4 30

163
5 3 30
20 3 30
50 3 30

50

1 4 50

58
5 5 50
20 3 50
30 3 50

The results show that the inverse model is generally successful in converging to
the true nfiber value, with convergence achieved on average within 3 to 7 iterations.

An inverse relationship trend can be observed between the magnitude of the
true nfiber value and the BoA range expressed in percentage of the true value, even
though in absolute values the BoA range is proportional with the number of �bers.
This means that when the �ber contribution to the overall sti�ness is less dominant,
the inverse algorithm has a much broader and more forgiving search space.

The distinct size e�ect is evident in the BoA ranges for this parameter, as well,
as te percentage BoA range is consistently largest for the smallest beams for small
true values. This con�rms that the algorithm's search space is more constrained in
smaller specimens where a parameter's in�uence is more localized.
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6.4.7 Main Findings from Synthetic Data Veri�cation

The inverse analysis procedure was successfully veri�ed using synthetic data, and
demonstrated a 100% accuracy in recovering the true parameter values for a wide
Band of Attraction (BoA) for all tested parameters (∆a, ha, Ef,T, fbundle, fmax

c , and
nfiber). Convergence was consistently rapid, and it typically requiring less than 8
iterations. An inverse relationship trend was observed between parameter magnitude
and the BoA (as a percentage of the true value), and a clear trend where the BoA
was generally larger for smaller beam sizes, which suggests a more complex error
surface in larger specimens. This veri�cation con�rms the algorithmic integrity and
stability of the inverse procedure before its application to real data that include
noise.

6.5 Validation using Real Data

In this chapter the �nal stage of model veri�cation was done by performing the
inverse analysis of real experimental data obtained from three-point bending tests
on various FRC beams. The objective was to validate the predictive capabilities
of the new computational model by through (successfully) extracting physically
meaningful parameters and to demonstrate the stability of the inverse identi�cation
process in a real-world scenario with experimental data that has inherent variability.

6.5.1 Inverse Parameter Identi�cation Methodology

As described in section 5.2, the core of the inverse analysis relies on the Levenberg-
Marquardt optimization algorithm to minimize the di�erence between the model's
predicted CMOD response and the measured experimental data. The method was
initially implemented for this task due to its recognized e�ciency in handling nonlin-
ear least-squares problems, which posed true for problems dealing with real synthetic
obtained. However, during the implementation on experimental data some practical
challenges were observed.

It was observed that when the initial guess for the parameters was far from the
true values, the residual sum of squares (RSS) changed very slowly with respect to
the parameter estimation. This led to a very �at residual landscape with extremely
small gradients, which in turn resulted in negligible parameter updates in each step
and caused the inverse algorithm to stagnate. This meant that without a reasonable
starting point near the global minimum the algorithm frequently converged to a local
minima.

It is important to note that these convergence pathologies do not originate in un-
controlled material randomness. Because the beams were cast with self-compacting
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concrete to avoid vibration-induced variability, and because �bers were embedded at
known number, location, and orientation along a pre-de�ned crack path, the exper-
imental setup was deliberately deterministic, as seen in Chapter 4. Consequently,
the observed �at residual landscapes arise primarily from algorithmic sensitivity,
rather than from stochastic scatter in �ber response.

To overcome these issues and ensure a reliable convergence, a preliminary grid
search was introduced within the inverse process. This hybrid approach works so
that it �rst performs a global search across the chosen range of initial guesses of
the observed model parameter m, m ∈ [0, 30], and evaluates the objective function,
which produces a coarse landscape of RSS values.

RSS(m) =
N∑
i=1

(
yi − α(m) dcmod,i(m)

)2

, (6.6)

where, similarily to Equation 5.13, yi is the experimental CMOD data, dcmod,i(m)

is the simulated CMOD for the assumed parameter m value, and α(m) is a scaling
factor used to align the peak magnitude of the model response with the experimental
data:

α(m) =
max

(
yi
)

max
(
dcmod,i(m

) . (6.7)

This generates a vector of RSS values corresponding to each candidate for m,
which constructs a discrete residual landscape. By plotting and observing RSS(m)

against b, the global minimum can be identi�ed without relying solely on local
derivatives. The most stable range of values from this grid search is then used
for assuming the initial guess for the LM algorithm, which signi�cantly improves
convergence reliability.

Experimental
CMOD data

{yi}Ni=1

De�ne parameter range
m ∈ [mmin, mmax]

Global grid search:
evaluate RSS(m) =∑

i

(
yi − α(m) dcmod,i(m)

)2
Select best candidates
near argminRSS(m)

Initialize LM with
m0 from grid

Levenberg�Marquardt:
solve (J⊤J + λI)∆m =

J⊤(y − dcmod)

Stopping criteria:
∥∆m∥ < ε or

∆RSS < ε or max iter

Outputs:
m∗, �tted CMOD,

RMSE/NRMSE/RSR/R2

Figure 6.23: Hybrid inverse work�ow for parameter identi�cation

This hybrid approach (Figure 6.23) consisting of a global grid search followed by
local Levenberg-Marquardt sifting ensures that the inverse analysis is both stable
to poor initial guesses and e�cient in achieving an accurate parameter estimation.
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6.5.2 Results of Inverse Extraction

A total of 47 experimental CMOD curves that encompassed various beam sizes and
�ber reinforcement types were analyzed. To manage this dataset and provide a
structured validation, the data was grouped based on the experimental design. This
grouping strategy allows for a meaningful comparison of model performance across
di�erent material types and geometries, as per the objectives of this thesis.

6.5.3 Parameter Values obtained from Large-Sized Samples

The inverse analysis results for large-sized beams are presented through a sequence
of diagnostic �gures and a summary table. Figures 6.24 through 6.26 showcase the
inverse estimation process for the number of �bers (n�ber), �ber position (ha), and
�ber diameter (∆a), respectively. In each �gure, the left-hand plot illustrates the
coarse grid search which guides the initial guess, while the right-hand plot shows
the Levenberg-Marquardt iteration paths as they converge to the optimal solution
from multiple starting points. The �nal converged values and their statistical char-
acterization for large samples are summarized in Table 6.20.

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.24: Final results of inverse analysis of parameter nfiber from large-sized
samples
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(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.25: Final results of inverse analysis of parameter ha from large-sized samples

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.26: Final results of inverse analysis of parameter ∆a from large-sized sam-
ples
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Table 6.20: Final converged values of parameters with their statistical characteris-
tics.

Parameter Converged
Values

Mean (µ)
Standard
Deviation

(σ)

Coe�cient of
Variation (CV)

Di�erence
(%)

nfiber = 9

11

13 2.65 19.72% 33.09

14
13
16
17
10

ha = 0.80

0.69

0.62 0.08 12.20% 30.08

0.68
0.49
0.57
0.62
0.64

∆a = 0.55

0.47

0.54 0.03 6.36% 2.77

0.55
0.55
0.55
0.56
0.53

The inverse analysis of ha was also performed on a randomly chosen single exper-
imental dataset by adjusting the initial load-displacement curve so it would �t the
chosen dataset better. Figure 6.27 presents the �tted model input data for sample
L-SF-1, while Figure 6.28 displays the corresponding inverse extraction process.
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Figure 6.27: Input data for inverse extraction of ha from sample L-SF-1

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.28: Final results of inverse analysis of parameter ha from sample L-SF-1

6.5.4 Parameter Values obtained from Medium-Sized Sam-

ples

The results of the inverse identi�cation for medium-sized specimens follow the same
structure as the large beams. Figures 6.29, 6.30, and 6.31 illustrate the inverse
convergence paths for the parameters n�ber, ha, and ∆a, respectively. The overall
stability and converged values for this group are showcased in Table 6.21.
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(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.29: Final results of inverse analysis of parameter nfiber from medium-sized
samples

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.30: Final results o�t inverse analysis of parameter ha from medium-sized
samples

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.31: Final results of inverse analysis of parameter ∆a from medium-sized
samples
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Table 6.21: Final converged values of parameters with their statistical characteris-
tics.

Parameter Converged
Values

Mean (µ)
Standard
Deviation

(σ)

Coe�cient of
Variation (CV)

Di�erence
(%)

nfiber = 6

8

7 1.87 28.58% 8.38

6
5
4
9
5
8
8

ha = 0.6

0.29

0.38 0.14 35.84% 57.17

0.39
0.49
0.60
0.28
0.51
0.24
0.25

∆a = 0.55

0.46

0.42 0.06 13.25% 30.18

0.44
0.40
0.30
0.46
0.40
0.46
0.46

The inverse analysis of ha was also performed on a randomly chosen single ex-
perimental dataset by adjusting the initial load-displacement curve so it would �t
the chosen dataset better. Figure 6.32 and Figure 6.33 illustrate the input data and
the resulting inverse estimation for sample M-SF-3.
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Figure 6.32: Input data for inverse extraction of ha from sample M-SF-3

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.33: Final results of inverse analysis of parameter ha from sample M-SF-3

6.5.5 Parameter Values obtained from Small-Sized Samples

The inverse extraction process for the smallest beam size (40×40×160mm), which
represents the most constrained geometry, is shown in Figures 6.34 through 6.36.
These �gures con�rm the previously observed search pattern trends for n�ber, ha,
and ∆a. The �nal converged values that have higher variability due to size e�ects
are summarized in Table 6.22.
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(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.34: Final results of inverse analysis of parameter nfiber from small-sized
samples

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.35: Final results o�t inverse analysis of parameter ha from small-sized
samples

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.36: Final results of inverse analysis of parameter ∆a from small-sized
samples
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Table 6.22: Final converged values of parameters with their statistical characteris-
tics.

Parameter Converged
Values

Mean (µ)
Standard
Deviation

(σ)

Coe�cient of
Variation (CV)

Di�erence
(%)

nfiber = 3

2

4 4.42 103.23%

3
2
2
2
14
5

a0 = 0.45

0.39

0.41 0.06 13.89% 10.31
0.41
0.46
0.46
0.32

∆a = 0.55

0.39

0.44 0.07 17.06% 25.12

0.42
0.42
0.41
0.59
0.40

The inverse analysis of ∆a was also performed on a randomly chosen single
experimental dataset by adjusting the initial load-displacement curve so it would
�t the chosen dataset better. Figure 6.37 presents the �tted model input data
for sample S-SF-3, while Figure 6.38 displays the corresponding inverse extraction
process.
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Figure 6.37: Input data for inverse extraction of ∆a from sample S-SF-3

(a) Initial Guess Candidates (b) Iteration Paths

Figure 6.38: Final results of inverse analysis of parameter ∆a from sample S-SF-3

6.5.6 Cross�Size Synthesis of Inverse Estimates

The inverse analysis done with real experimental data as input provided a compre-
hensive validation of the model's capabilities and stability in a practical application.
Unlike the veri�cation using synthetic data that was designed to converge to a known
value with 100% accuracy, the experimental data predictably converged to a range
of results due to the inherent variability of the physical specimens. Therefore, the
statistical characterization of these results, in form of the mean, standard deviation,
and coe�cient of variation (Tables 6.20 - 6.22), is a direct measure of the model's
ability to handle scatter in real-world data.

For easier interpretation of results, a summary of the obtained coe�cient of
variation (CV%) across all three beam sizes is presented in Table 6.23. Lower CV
indicates more stable/identi�able parameters.
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Table 6.23: Coe�cient of variation (CV%) from inverse identi�cation

Parameter Large beams Medium beams Small beams

n�ber 19.72 28.58 103.23
ha 12.20 35.84 13.89
∆a 6.36 13.25 17.06

The observations are the following:

1. Size clearly impacts parameter identi�ability, as large beams consistently ex-
hibit low scatter for all extracted parameters (CV ≈ 6�20%). In contrast,
the small beams show a very high CV for n�ber (> 100%) that indicates that
the e�ective �ber count is much harder to pin down on short span sections,
where the CMOD signal carries less information about the full bridging �ber
population, which can be seen when comparing iteration paths for large beams
in Figure 6.24) versus those for small beams in Figure 6.34). This size e�ect
is precisely what would be expected as with fewer engaged �bers the inverse
problem becomes more sensitive to individual variations, which makes it harder
to constrain to a single, stable solution.

2. ∆a is comparatively robust as it stays within CV 6�17% across di�erent beam
sizes, which is visually supported by the tight clusters of convergence paths
for both large beams in Figure 6.26 and small beams in Figure 6.36. This
indicates that the post-peak softening behavior, which is directly in�uenced by
the e�ective �ber diameter in the model, is reliably captured by the simulated
CMOD data even when other parameters vary.

3. As the CV for ha is lower for large and small beams (12�14%) and slightly
higher for medium beams (36%), it is concluded how extracting the �ber posi-
tion parameter is a less stable process in medium beams. This is consistently
observed in the iteration path �gures for medium beams in Figure 6.30b which
show a wider band to which the convergence occurs, when compared to those
for large and small beams in Figures 6.25b and 6.35b, respectively.

The initial guess candidates graphs visualize the coarse residual surface that is
sampled by the grid search while the the iteration paths graphs show the subsequent
Levenberg�Marquardt updates fr di�erent seta of measured data from the same
starting points. Observing the two together, they indicate the following:

� Large beams: For all analyzed parameters the iteration paths monotonically
collapse to a single optimum regardless of the tested dataset, as seen in Figures
6.24b, 6.25b and 6.26b. This points to a broad basin of attraction and strong
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parameter observability, which is also in line with the low CV values in Table
6.23.

� Medium beams: Convergence remains reliable after the hybrid optimization is
initialized, but the paths for ha in Figure 6.30b occasionally require more steps
and show mild curvature that signi�es local �atness in the residual surface.
This explains the elevated CV for ha in Table 6.23.

� Small beams: The iteration paths for all three parameters (Figures 6.34 to
6.36) are overall stable after candidates search is introduced, but exhibit sen-
sitivity to the the di�erent levels of scatter in di�erent target data. This is
especially seen for n�ber, which matches its very high CV and underscores a
genuine identi�ability limit for this parameter on both small specimens and
highly scattered laboratory data.

Because the laboratory tests used self-compacting concrete with no vibration
and deterministic �ber embedding was enforced, variability due to random �ber
placement was intentionally suppressed (see Chapter 4). Therefore, the cross-size
CV trends above, in large, do not re�ect uncontrolled physical randomness, but
rather the identi�ability of parameters from the information contained in measured
CMOD curves and the shape of the optimization landscape. From here, two out-
comes support the hypothesis: (i) for su�ciently informative tests (large beams)
the deterministic forward model plus the hybrid inverse scheme recovers parame-
ters with low scatter, and (ii) even where scatter of measured data increases (small
beams) the hybrid grid⇒LM procedure separates algorithmic sensitivity from ma-
terial randomness.

6.6 Engineering Applicability and Chapter Conclu-

sion

The validation and veri�cation framework successfully validated the deterministic
model, and extends it beyond mere numerical accuracy to establish its direct appli-
cability for engineering practice.

The thesis establishes a dual-stage validation framework that stands as a stable
foundation for the model's credibility. This approach �rst involves veri�cation using
synthetic data (Section 6.4), which con�rms the algorithmic integrity and 100%
accuracy of the inverse procedure against a known numerical data. This is followed
by validation using real experimental data (Section 6.5), where the model's stability
and coe�cient of variation are evaluated against real-world scattered data. This two-
step methodology isolates numerical errors from physical variability and provide a
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basis for the model's overall trustworthiness and reliability for structural analysis.

The inverse analysis framework proves its capacity to distinguish the mechan-
ical e�ects of di�erent �ber types through the successful and stable extraction of
the composite parameters Ef,T and fbundle. As demonstrated in the synthetic veri-
�cation sections, the model accurately recovers target Ef,T values that range from
low-sti�ness polymer �bers to high-sti�ness metallic or carbon �bers. This function-
ality potentially allows engineers to use the inverse model on �eld data to quickly
and reliably characterize the performance of di�erent FRC mixtures and predict
post-cracking toughness without extensive and costly laboratory studies for every
new �ber product.

Furthermore, the established CV trends provide a quantitative basis for improv-
ing the reliability of parameter identi�cation on di�erent structural scales. The
consistent �nding that parameter scatter is lowest in larger beams con�rms that
this inverse model results with stable values when the testing specimen provides
su�cient structural information. This con�dence in parameter stability is essential
for integrating the model's output into any structural optimization and design codes.

In conclusion, the validation process con�rms that the model is not only mathe-
matically correct but also a practical and stable tool for extracting physically mean-
ingful parameters (like ∆a and ha), as well as material performance parameters (Ef,T

and fbundle) under real-world experimental variability.
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Chapter 7

Inverse Analysis and Parameter

Identi�cation

This chapter represents the core experimental-numerical outcome of this thesis: the
identi�cation and extraction of real, physically meaningful FRC material parame-
ters using the developed inverse analysis framework. After the validation of both
forward and inverse models in the previous chapters, in this section the validated
methodology is applied to experimentally obtained (real-world) data, which in turn
provides solution to the challenges of FRC characterization.

7.1 Extraction of Parameter Pairs

This section explores how di�erent pairs of parameters can be uniquely identi�ed by
mapping the CMOD error surface. It distinguishes between well-posed problems that
are characterized by isolated minima, and deterministically non-unique problems,
which can be identi�ed by elongated minima or ridges in the parameter space.

A dual-parameter extraction was conducted to simultaneously obtain two param-
eter values with di�erent in�uences identi�ed through sensitivity studies, in order
to address an inherent limitation of single-parameter extraction in �ber-reinforced
concrete modeling. This approach directly deals with the issue of non-uniqueness in
FRC simulations, where di�erent combinations of parameters can produce identical
crack mouth opening displacement responses, which comes from the physical inter-
dependence of material properties. For instance, where an increase in one parameter
can cause a decrease in the other while maintaining the same or similar structural
response.

Certain cases of single-parameter extraction methods introduce signi�cant bias
by requiring a �xed assumption about values for secondary parameters. For example,
assuming an incorrect e�ective loading modulus, Ef,T, could force compensatory
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adjustments to the �ber threshold pullout force, Fmax
a , during the optimization

process to match the experimental CMOD data. These compensatory errors then
further propagate through the model and distort parameter values, all the while
reducing the model's predictive accuracy.

Therefore, to resolve this, a dual-parameter inverse analysis methodology was de-
veloped to systematically map and analyze the interdependence between two chosen
parameters. This parametric analysis was primarily conducted using data generated
by the predictive numerical model itself. Reasons for using synthetic data over ex-
perimental were several. Such data provides a control environment with precisely
known "true" input parameters, which allows for an unambiguous analysis as the
extracted parameters can be directly compared against their known counterparts.
Furthermore, to reiterate, certain parameters of high interest for this study (such
as fbundle) have no means of being physically measurable, which makes collected
experimental data irrelevant to use in this case. What's more, by eliminating ex-
perimental noise and uncontrolled variability, using synthetic data enables a more
isolated and focused study of inherent characteristics of the parameter space, in
this case - interdependence and non-uniqueness. This ensures that any encountered
challenges and/or successes are attributed solely to the algorithm's performance and
the mathematical formulation of three-point bending.

The process included varying the values of two selected parameters over a chosen
range, while keeping all other model parameters �xed. All tested parameter pair
combinations are summarized in Table 7.1. For each combination of these two
parameters, the predictive numerical model was used to generate a corresponding
CMOD curve. The �t error between this simulated CMOD curve and a target
synthetic CMOD curve was then quantitatively evaluated. This process generated
a two-dimensional error surface across the parameter space, represented by contour
plots. Each contour line represents a speci�c �t error (value expressed as a sum of
square di�erence for easier interpretation and readability) that would be achieved by
any corresponding parameter pair combination on the grid. The lower the contour
value the better the �t. The optimal parameter pair, corresponding to the global
minimum of this error surface, is identi�ed by the inverse analysis algorithm. This
approach provides an insight into multiple pairs of parameters' a�ect on the beam
behavior that has potential for an improvement in design optimization but also a
less biased approach in certain single parameter extraction cases.
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Table 7.1: Analyzed dual-parameter pairs and their physical interdependence

Parameter pair Physical relation

Ef,T vs ha E�ective elasticity modulus vs �ber vertical position
n�ber vs fbundle Fiber count vs empirical bundle scaling factor
n�ber vs Fmax

a Fiber count vs maximum pullout force per �ber
∆a vs fmax

c Fiber cross section diameter vs concrete matrix strength
fbundle vs fmax

c Bundle scaling factor vs concrete matrix strength
Fmax
a vs fbundle Maximum pullout force per �ber vs bundle scaling factor

n�ber vs Ef,T Fiber count vs e�ective elasticity modulus
∆a vs fmax

c Fiber cross section diameter vs concrete matrix strength

7.1.1 Explanation of Contour Plots and Results

The results of the dual-parameter extraction inverse analysis are presented as error
contour plots in Figures 7.1, to 7.3. Each plot maps the �t error in a two-dimensional
parameter space, where contour lines connect combinations of the two varied pa-
rameters that resulted with an identical level of �t error (presented in µm2).

To interpret these graphs e�ectively:

� Contour Lines

Each line represents a di�erent level of constant �t error. Contour values that
are decreasing indicate a better match between the simulated CMOD curve
and the target CMOD curve, while higher contour values indicate a higher
discrepancy between target and simulated data.

� Global Minimum

The red marker found in each plot shows the parameter pair that represents the
best �t achieved by the inverse analysis algorithm for that speci�c parameter
combination. Ideally it would indicate the "true" parameter values for the
observed data.

� Shape of Contours

� Circular or isolated - roughly circular contours that converge sharply
to a single point indicate a well-de�ned, unique minimum. This means
that the model has a higher sensitivity to the precise values of both
parameters in combination, and there is less ambiguity in their correct
extraction.

� Elongated or valleys-shaped - elongated contours that form a narrow
"valley" or "ridge" signify a degree of non-uniqueness or strong interde-
pendence between the two observed parameters. In such cases, multiple
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combinations of the parameters along the same ridge produce almost
identical �t errors. This directly re�ects the physical interdependencies
where an increase in one parameter's value can be compensated by a
change in the other to produce a comparable structural response. The
orientation of a ridge indicates the nature of the compensatory relation
between the parameters.

(a) Ef,T vs ha (b) nfiber vs fbundle

(c) nfiber vs Fmax
a (d) nfiber vs fmax

c

Figure 7.1: Error Contour Plot for Dual-Parameter Extraction � Part 1 (L-size
beams).
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(e) fbundle vs f
max
c (f) Fmax

a vs fbundle

(g) nfiber vs Ef,T (h) ∆a vs fmax
c

Figure 7.1: Error Contour Plot for Dual-Parameter Extraction � Part 2 (L-size
beams).

From these results, parameter interdependence in large beams is easily inter-
pretable, with clear elongated ridges that suggest high interdependence and well
de�ned isolated minima for pairs with little to no interdependence. Even in less pre-
cisely de�ned minimas, for ∆a and fmax

c , the dual plot serves as a valuable guidance
for searching for the most optimal solution.
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(a) Ef,T vs ha (b) nfiber vs fbundle

(c) nfiber vs Fmax
a (d) nfiber vs fmax

c

Figure 7.2: Error Contour Plot for Dual-Parameter Extraction � Part 1 (M-size
beams).
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(e) fbundle vs f
max
c (f) Fmax

a vs fbundle

(g) nfiber vs Ef,T (h) ∆a vs fmax
c

Figure 7.2: Error Contour Plot for Dual-Parameter Extraction � Part 2 (M-size
beams).

These results show that medium-sized beams provide the sharpest, most pro-
nounced global minima for the majority of parameter pairs with no interdepen-
dancies. This also indicates that the numerical model is optimally tuned for the
geometric proportions of the medium beams, which means analysis done on these
beams will result in the lowest ambiguity during parameter identi�cation.
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(a) Ef,T vs ha (b) nfiber vs fbundle

(c) nfiber vs Fmax
a (d) ∆a vs fmax

c

Figure 7.3: Error Contour Plot for Dual-Parameter Extraction � Part 1 (S-size
beams).
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(e) fbundle vs f
max
c (f) Fmax

a vs fbundle

(g) nfiber vs Ef,T (h) ∆a vs fmax
c

Figure 7.3: Error Contour Plot for Dual-Parameter Extraction � Part 2 (S-size
beams).

From these results it can be determined how small specimens consistently exhibit
the highest degree of non-uniqueness, which is characterized by a greater degree of
elongated residual valleys when compared to results for medium and large beams.
This means that the identi�ability of certain parameters is signi�cantly constrained
by the limited geometrical information provided by smaller test volumes.
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7.1.2 Interpretation of Results

The results of the dual-parameter extraction inverse analysis are presented as error
contour plots in Figures 7.1 to 7.3. To reiterate section 7.1.1, each plot maps the �t
error in a two-dimensional parameter space, where contour lines connect combina-
tions of the two varied parameters that give an identical level of �t error (measured
in µm2). The red marker in each plot indicates the parameter pair that corresponds
to the global minimum of the error surface, and represents the best �t achieved by
this type of inverse analysis for the developed algorithm.

A general observation across all three beam sizes is the relative consistency of all
parameter interdependence. However, a notable trend is present among the shape
of the minima with respect to beam size. The clear and isolated minima showing in
medium and larger sized beams tend to obtain a more elongated or form in smaller
sized beams. This indicates a higher degree of parameter interdependence for the
same parameter pairs when applied to smaller beam geometries. This phenomenon
is a strong indicator of size e�ect on identi�ability of parameter and suggest that
the scale of the specimen in�uences the uniqueness of optimal parameter pair com-
binations. The relative in�uence of individual �bers in smaller beams and their
precise location becomes more dominant and their complex to uniquely separate
and identify.

The most pronounced sharp minima are found in the analyses for medium-sized
beams (Figures 7.2). This is due to the numerical model being calibrated and
�ne-tuned primarily using experimental results from medium-sized beams during its
development. Therefore the model's formulations are most optimized and provide
the most distinct parameter identi�cation for these dimensions. However, this does
not imply a lack of reliability for larger or smaller beams but rather emphasizes
that the model's in this stage of development achieves it peak precision within the
experimental data range it was initially designed to �t.

The dual-parameter combinations that were consistently characterized by elon-
gated contours, meaning they exhibited non-uniqueness, were Ef,T and a0 and nfiber

and fbundle. This indicates that the �ber-matrix combined e�ective elasticity mod-
ulus during loading and the position od said �bers, as well as number of the �bers
and scaling fbundle, have a mutually high compensatory relationship, meaning each
or both can be adjusted in order to achieve the same response of the beam during
bending. For instance, in the case of Ef,T and a0, the undesirable in�uence of a de-
creased e�ective elasticity modulus can be compensated by positioning said �bers in
a cross-section zone closer to the tension face of the beam. Likewise, it's a guideline
for any future research on the existence and exact identi�cation of fbundle parameter,
as its value is strongly tied to the number of �bers places in the beam.
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Example Analysis of Figure 7.3 (c) - Speci�c Case of nfiber and Fmax
a for

Small Beams As an illustrative example on Figure 7.3 (c), which plots the �t
error for the number of �bers, nfiber, and the �ber's maximum threshold force Fmax

a

for small beams, a discrepancy in the optimization process was observed. With
true values set for the synthetic data nfiber = 5 and Fmax

a = 1.6kN , the algorithm
converged at nfiber = 3 and Fmax

a = 2.47kN . However, a visual inspection of
the contour plots shows that this extracted best-�t solution corresponds to a local
minimum, not the visually apparent global minimum of the error surface, which
appears to be signi�cantly close to the true values. This di�erence is mainly due
to the resolution of the parameter grid (20 × 20 in this case) used for calculating
the error surface. The discrete sampling points failed to adequately capture the
region of the true global minimum which led the grid search to identify the lowest
error only within the sampled points rather than the absolute global optimum of
the whole observed error space. This explicitly points out the e�ect of grid density
in grid-based optimization approaches as well as it emphasizes the importance of
visual inspection and of not accepting the obtained results uncritically.

7.1.2.1 Implications of the Dual Parameter Extraction Results for In-

verse Modeling

The results the dual-parameter extraction analysis presented in the previous chapter
has valuable guidelines for the subsequent inverse analysis.

Firstly, the observed interdependencies visually con�rm the challenge of non-
uniqueness that dual-parameter extraction aimed to evaluate and address. This
veri�es the initial hypothesis that single parameter extraction methods can be prone
to bias and inaccuracies if the potential of the existence of parameter interdepen-
dacies is overlooked. The dual extraction approach maps these relationships and
provides a more holistic understanding of the parameter space and a more re�ned
strategy for exact extraction.

Secondly, the successful identi�cation and quanti�cation of optimal parameter
pairs for the majority of the tested combinations validates the stability of the deter-
ministic predictive model and its ability to generate CMOD responses that enable
the successful recovery of input parameters, despite the complexity of FRC formu-
lation and behavior. This indicates that the model's mathematical formulations are
indeed "simpli�ed enough that it could be utilized in an inverse analysis, yet pre-

cise so it would accurately predict �ber-reinforced concrete beam behavior", as stated
previously.

Furthermore, the review of the resulting sharpness of global minima and the
presence of size e�ects directly aids the strategy for using the Levenberg-Marquardt
algorithm in the later inverse analysis with experimental data as input.
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In case of parameter pairs that have a very apparent minima, the algorithm is
expected to converge e�ciently and more accurately for both parameters. However,
for parameters within more elongated ridges (especially found in smaller beams),
additional strategies may be considered, such as:

� Constraining the search space for speci�c parameters to a more narrow one by
using prior knowledge from observing both the dual parameters results and
the sensitivity analysis;

� Multi-objective optimization by trying to achieve several optimal results at
once, rather than just one. For instance, aiming for the smallest possible
di�erence between the model's predictions and the actual test results while
also prioritizing other possible goals such as a physically realistic parameter
values withing the observed range;

� Utilizing the sensitivity analysis for the initial guess assumption by leveraging
the sensitivity maps to estimate better initial guesses for the iterative algo-
rithm.

The observation regarding the grid resolution's impact (Figure 7.3 (c)) also high-
lights the impact of choosing an appropriate optimization method. Simple grid
searches simply can be proved to not be advanced enough for such complicated ma-
terials and algorithms, and gradient-based algorithms like Levenberg-Marquardt are
a better option as they're designed to navigate such optimizations more e�ectively.

7.2 Extraction of Experimental Parameters

The hypothesis of this thesis is that a well-posed deterministic forward model, paired
with a disciplined inverse routine, can recover physically meaningful FRC parameters
from structural tests even when experimental data contain scatter. With that in
mind, after successfully validating the forward and inverse model, both are used to
extract the previously unknown bundle scaling factor fbundle and the e�ective elastic
modulus in tension Ef,T from real three-point bending data.

In the force-displacement law of the �ber-matrix, de�ned by Equation 5.6, the
pre-peak sti�ness is determined by the product EA = fbundle×Ef,T ×n�ber× (∆a)2.
Since the empirical scaling factor fbundle and the e�ective elasticity modulus Ef,T

both contribute to the bending sti�ness, a change in one can be compensated for
by a change in the other while maintaining a similar CMOD response. The dual-
parameter maps in Figure 7.4 con�rm this relationship by showing elongated valleys
for the pair (fbundle, Ef,T ). This interdependence makes the simultaneous extraction
of both parameters from a single CMOD curve deterministically non-unique, so the
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hierarchical identi�cation approach described below is designed to minimize this
issue.One parameter is temporarily �xed to a physically plausible reference value,
while the other is identi�ed. Once the �rst parameter is reasonably stabilized, the
�xed assumption is released and the second parameter is extracted. This staged
procedure collapses the otherwise �at residual ridge into a well-posed direction at
each step, which bypasses the issue of deterministic non-uniqueness. What is crucial
is that the validity of the approach depends on the forward model being robust
enough to withstand the temporary inaccuracy of the �xed parameter, so that on
the second stage re�t the released parameter converges to physically plausible values
without compromising the overall �t quality.

The extraction of both parameters was conducted in the following steps:

1. Fixing known parameters by using familiar geometry and material character-
istics as inputs.

2. Hierarchical identi�cation

(a) Useing the hybrid coarse grid search→ Levenberg�Marquardt re�nement
described in Section 5.2 for fbundle to impose limits where the forward
model becomes non-physical.

(b) Estimating Ef,T primarily from the pre-crack slope and early CMOD
evolution, which are most sensitive to the elastic bundle sti�ness.

3. Validating the obtained LM minimum for each dataset by a constrained global
search using Wolfram Mathematica's integrated function NMinimize (Simu-
lated Annealing) over the same bounds, and recording the relative di�erence
to con�rm that LM reached a near-global minimum.

4. Due to computational cost of repeated equilibrium solves, the analysis was
done on representative random subsets for each beam size. After that, the
central tendency and scatter (mean, standard deviation, coe�cient of varia-
tion, CV) was summarized across each subset.
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(a) Small-Sized Samples (b) Medium-Sized Samples

(c) Large-Sized Samples

Figure 7.4: Error Contour Plot for Dual-Parameter Extraction of Ef,T vs fbundle.

The dual-parameter extraction maps (shown in Figure 7.4) were generated and
used to both decide the order of estimation, and to set physically plausible search
windows that avoid numerically unstable zones, as well as to have a sense of when the
optimization method might stagnate (�at residuals along a ridge) so that a coarse
grid initialization should precede Levenberg�Marquardt. The sensitivity analysis
from Section 6.3 served as a guide for where to place weight in the objective (early
CMOD for Ef,T ) and how tight the bounds for fbundle must be to prevent non-
physical forward responses.

Throughout the thesis and speci�cally in the �rst pass of fbundle extraction, Ef,T

was �xed to Ef,T = 210,000 N/mm2. This choice does not assert that the e�ec-
tive modulus of the �ber bundle is exactly equal to that of bulk steel, rather it
serves as a neutral, physically plausible reference point to resolve the interdepen-
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dence between fbundle and Ef,T , while calibrating fbundle. This two-stage approach
was adopted to address the issue of non-uniqueness. By temporarily �xing Ef,T , the
inverse problem collapses the search space of the interdependent (fbundle, Ef,T ) pair
into a single direction for fbundle, and therefore prevents the algorithm from drifting
along the compensatory ridge. Importantly, this prior is explicitly removed in the
second stage when Ef,T itself is estimated. The results showed that releasing this
prior and re-�tting Ef,T did not compromise the goodness-of-�t. The �nal reported
Ef,T values were consistent with the e�ective bundle sti�ness in real steel-�ber sys-
tems. Therefore, the initial 210, 000 N/mm2 value is used strictly as a temporary
regularization to stabilize the identi�cation of fbundle; the �nal reported Ef,T value
re�ects the data, not the initial assumption.

The previous cross-size summary of the coe�cient of variation shows that large
beams consistently exhibit lower scatter in the extracted values for both fbundle and
Ef,T , while small beams show higher CVs. Given the deterministic nature of the
experimental setup, these trends are best understood as di�erences in parameter
identi�ability. Larger sections provide richer and more stable information on the
collective �ber behavior, which leads to better-conditioned inverse problems. In
contrast, smaller sections, with their lower �ber count and smaller total area give
�atter residual landscapes along the interdependent (fbundle, Ef,T ) ridge. This be-
havior was entirely anticipated from observing the dual-parameter maps and the
initial sensitivity analysis.
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7.2.1 Extraction of Experimental fbundle

7.2.1.1 Extraction of Experimental fbundle from Small-Sized Samples

Figure 7.5: Initial Guess Candidates

Figure 7.6: Results of Extraction of fbundle from Small-Sized Samples
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Table 7.2: Final Converged Values of fbundle from Small-Sized Samples

Parameter
Final
Values

Mean
(µ)

Standard
Deviation

(σ)

Coe�cient
of

Variation
(CV)

Nminimize
Di�erence

(%)

fbundle
S-CF-2

0.0002780

0.00002780 0.0000000 0.00% 0.0000278 0.00

0.0000278
0.0000278
0.0000278
0.0000278
0.0000278
0.0000278

fbundle
S-CF-3

0.00003113

0.00003108 0.0000012 0.38% 0.0000311 0.0558

0.00003113
0.00003084
0.00003113
0.00003113
0.00003113

fbundle
S-CF-2

0.0011947

0.00012070 0.0000610 5.06% 0.00013085 8.4121
0.0001199
0.0001255
0.0001271
0.0001116

fbundle
S-CF-3

0.00003434

0.0000343 0.0000020 0.59% 0.0000343 0.2466

0.00003434
0.00003385
0.00003434
0.00003435
0.00003435

Average obtained fbundle from small-sized samples has a value of 0.0005346.

7.2.1.2 Extraction of Experimental fbundle from Medium-Sized Samples

The results of fbundle extraction shown as following: rang of candidates for the initial
guess in 7.7, results of the extraction in Figure. 7.8.
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Figure 7.7: Initial Guess Candidates

Figure 7.8: Results of Extraction of fbundle from Medium-Sized Samples
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Table 7.3: Final Converged Values of fbundle from Medium-Sized Samples

Parameter
Final
Values

Mean
(µ)

Standard
Deviation

(σ)

Coe�cient
of

Variation
(CV)

Nminimize
Di�erence

(%)

fbundle
M-SF-1

0.00008364

0.00008432 0.0000075 0.89% 0.00008894 5.49

0.00008364
0.00008364
0.00008501
0.00008501
0.00008501

fbundle
M-SF-3

0.00005031

0.00005669 0.0000384 6.77% 0.00005631 0.6831

0.00005352
0.00005905
0.00005909
0.00005909
0.00005909

fbundle
M-CF-1

0.00008315

0.00008036 0.0000388 4.83% 0.00006552 18.4650
0.00008322
0.00008322
0.00007611
0.00007611

fbundle
M-CF-3

0.00006455

0.00006458 0.0000002 0.04% 0.00006552 1.4681

0.00006455
0.00006455
0.00006460
0.00006460
0.00006460
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7.2.1.3 Extraction of Experimental fbundle from Large-Sized Samples

Figure 7.9: Initial Guess Candidates

Figure 7.10: Results of Extraction of fbundle from Large-Sized Samples
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Table 7.4: Final Converged Values of fbundle from Large-Sized Samples

Parameter
Final
Values

Mean
(µ)

Standard
Deviation

(σ)

Coe�cient
of

Variation
(CV)

Nminimize
Di�erence

(%)

fbundle
L-CF-2

0.00003984

0.00003980 0.0000005 0.13% 0.0000398395 0.11

0.00003976
0.00003976
0.00003976
0.00003986
0.00003985
0.00003976

fbundle
L-CF-4

0.00007295

0.00007131 0.0000415 5.82% 0.000074805 4.9082

0.00006599
0.00007431
0.00007430
0.00007430
0.00006598

fbundle
L-SF-1

0.00005157

0.00005208 0.0000078 1.50% 0.000181725 248.904

0.00005310
0.00005159
0.00005310
0.00005157
0.00005159

fbundle
L-SF-3

0.00007110

0.00007799 0.00001119 14.35% 0.0013122 68.256

0.00009710
0.00007110
0.00007110
0.00008643
0.00007110

7.2.1.4 Interpretation of fbundle Extraction Results

The Levenberg�Marquardt iteration paths demonstrated quick stabilization for all
beam sizes, typically settlingby iteration 3�4. This fast convergence, coupled with
the generally low within-dataset scatter of the converged fbundle values, con�rms
good local identi�ability when the parameter Ef,T is held �xed. However, the agree-
ment with NMinimize varies by size and �ber type, which indicates where the resid-
ual landscape stays �at due to any existing interdependence. The low scatter in
these results also aligns with the expectation that larger beams provide more sta-
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ble retrieval of information on the overall �ber behavior, which is a trend that is
anticipated from the initial sensitivity and dual-parameter mapping (Figure 7.4).

For most small-beam datasets, the LM paths stabilized to a narrow band around
3�3.5 × 10−5 (Figure 7.6). This aligns with the very small scatter seen in Table
7.2 (CV ≤ 0.4% for S�CF�3 specimen) and the equality between the LM solution
and the NMinimize global check. This con�rms that fbundle is well identi�ed when
the residual landscape is well conditioned. S�CF�2 dataset systematically returned
a larger fbundle and a slightly higher discrepancy (about 8%), which is a di�erence
that coincides with the unique force�displacement shape of that particular speci-
men reported in 4.5. This demonstrates how the inverse algorithm compensates for
individual any specimens deviations by shifting the fbundle when Ef,T is held �xed.

The extraction process for medium-sized beams consistently showed stable con-
vergence, with iteration paths converging to a speci�c fbundle values, as seen in Figure
7.8. The coe�cients of variation for the group are mostly low, which points to high
consistency in the extracted parameter values.

Despite having a greater scatter in the experimental force-displacement curves,
large-sized beams had the most stable parameter extraction results for fbundle. Fig-
ure 7.10 illustrates the convergence paths for these specimens. The coe�cient of
variation for the outlier L-CF-2 dataset was low at 0.13%, which con�rms that the
deterministic experimental setup on larger specimens leads to more easily identi�able
parameters. The larger number of �bers and a greater total area in these specimens
provide a stable collective response, which leads to a �atter residual landscape along
the compensatory ridge.

Average obtained values for fbundle across all specimen sizes are summarized in
Table 7.5.

Table 7.5: Cross-size synthesis for bundle scaling factor (fbundle) results

Metric Small beams Medium beams Large beams

Mean (µ) 0.00004959 0.00007208 0.00005947
Average CV 2.71% 3.58% 5.20%
Average SD (σ) 0.0000161 0.0000212 0.0000405

7.2.2 Extraction of Experimental Ef,T

This parameter was extracted last due to it's high interedependancy on fbundle.
Without knowing a more precise fbundle value, Ef,T extraction was just a shot in
the dark. Therefore, in this section, fbundle from section 7.2.1 was used as a �xed
input parameter while Ef,T was extracted.
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7.2.2.1 Extraction of Experimental Ef,T from Small-Sized Samples

Figure 7.11: Initial Guess Candidates

Figure 7.12: Results of Extraction of Ef,T from Small-Sized Samples

These results show that the Levenberg-Marquardt algorithm demonstrates stable
local convergence and rapidly settles to a solution from a wide range of initial guesses.
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Table 7.6: Final Converged Values of Ef,T from Small-Sized Samples

Parameter

Final
Con-
verged
Values

Mean
(µ)

Standard
Devia-
tion (σ)

Coe�cient
of

Variation
Nminimize

Di�erence
(%)

Ef,T

S-CF-2

108382.1

108383.6 0.28 0.00% 108436.3 0.05

108382.1
108389.2
108382.1
108382.1
108383.8

Ef,T

S-CF-3

124409.4

126370.7 479.06 3.79% 124471.6 1.50

124403.1
124443.5
136149.5
124409.1
124409.4

Ef,T

S-CF-2

226018.4

223219.4 836.60 3.75% 225910.6 1.21

206291.7
227878.3
225421.3
225712.1
227994.7

Ef,T

S-CF-3

126214.0

126044.8 30.52 0.24% 126278.3 0.19

126214.0
126271.8
126265.0
125654.7
125649.4
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7.2.2.2 Extraction of Experimental Ef,T from Medium-Sized Samples

Figure 7.13: Initial Guess Candidates

Figure 7.14: Results of Extraction of Ef,T from Medium-Sized Samples

These results demonstrate that the extraction procedure maintains high stability
across the medium-sized samples, and achieve consistent convergence paths for Ef,T .
The candidate plots show a well-de�ned minima, which validates the strategy of
sequential parameter �xing to resolve the initial interdependence issue.

141



7.2.2. Extraction of Experimental Ef,T

Table 7.7: Final Converged Values of Ef,T from Medium-Sized Beams

Parameter

Final
Con-
verged
Values

Mean
(µ)

Standard
Devia-
tion (σ)

Coe�cient
of

Variation
Nminimize

Di�erence
(%)

Ef,T

M-SF-1

267879.17

273195.58 3050.6925 1.12% 275411.74 0.81
273687.00
275200.70
274003.55
275207.51

Ef,T

M-SF-2

197028.01

197088.48 45.48 0.02% 197157.45 0.04

197068.27
197076.57
197142.72
197142.72
197072.57

Ef,T

M-CF-1

198695.91

200001.42 3138.72 1.57% 206511.11 3.25

198695.91
198727.52
198785.38
206407.92
198695.91

Ef,T

M-CF-3

201069.99

207125.66 6633.60 3.20% 205048.45 1.00

201070.08
201070.08
213168.58
213169.31
213205.89
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7.2.2.3 Extraction of Experimental Ef,T from Large-Sized Samples

Figure 7.15: Initial Guess Candidates

Figure 7.16: Results of Extraction of Ef,T from Large-Sized Samples

These iteration results show that the inverse model remains stable for the largest
specimens, and the process is characterized by rapid convergence to values consis-
tent with the expected e�ective steel modulus. These results also underscores the
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principle that increased size and �ber engagement provide richer, more constrained
data, which leads to a more precise parameter identi�ability.

Table 7.8: Final Converged Values of Ef,T from Large-Sized Samples

Parameter
Final
Values

Mean
(µ)

Standard
Devia-
tion (σ)

Coe�cient
of

Variation
Nminimize

Di�erence
(%)

Ef,T

L-CF-2

204205.08

204247.58 58.20 0.03% 205220.0 0.48
204311.35
204205.08
204311.32
204205.08

Ef,T

L-CF-4

252537.69

254292.13 2942.43 1.16% 258120.0 1.51

252537.82
252015.70
252497.24
258110.46
258053.84

Ef,T

L-CF-1

171718.21

182810.77 14146.15 7.74% 180660.0 1.18

180621.06
184541.77
171534.67
178699.67
209749.23

Ef,T

L-CF-3

190480.62

194390.61 5676.16 2.92% 291230.0 49.82

190479.36
194743.94
190480.74
205097.93
195061.10

7.2.2.4 Interpretation of Ef,T Extraction Results

The extraction of the e�ective elastic modulus in tension, Ef,T , was conducted as
the second stage of the inverse analysis, after the bundle scaling factor, fbundle, was
determined. Overall, the analysis demonstrates a stable extraction process.
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The initial guess candidates and convergence paths for the small-sized beams are
shown in Figures 7.11 and 7.12. The results in Table 7.6 show that the extraction for
most small-sized specimens was stable and converged with a very low coe�cient of
variation. Two clustered results are apparent: one around 1.25×105�1.26×105N/mm2

and another near 2.23×105N/mm2. These twin clusters likely and correctly re�ects
�ber-type or batch di�erences rather than size e�ects. Coe�cient of variation for this
testing group remains low, S-CF-2 shows a CV of 0.00% and a minimal di�erence of
0.05% from the NMinimize check, while some samples, like S-CF-3, show a slightly
higher CV (3.79%), which suggests more variability but still in ranges.

The convergence paths for the medium-sized beams (Figure 7.14) show a sta-
ble and well-behaved extraction process, with rapid plateaus and low to moder-
ate scatter. Iteration paths again converge in two distinct clusters: one around
2.13×105�1.26×105N/mm2 and another one around 2.7×105N/mm2. The results
in Table 7.7 further con�rm the stability of this optimization process, with most
datasets showing a low CV. For instance, M-SF-2 has a CV of just 0.02% and a
NMinimize di�erence of 0.04%, while the highest CV, seen in the specimen S-CF-3,
is only 3.20%.

Most large-sized beam datasets con�rm that more engaged �bers improve Ef,T

identi�ability. The two cases that stand out have di�erent signatures, as L�CF�1
shows a wide within-block spread, while L�CF�3 �ts well locally but has a distant
minimum for the same error surface under NMinimize. Notably, L�CF�3 is also
the specimen whose TPBT force�displacement lacked a clear �rst peak, so the early
CMOD window that anchors Ef,T is less informative in this case, when that is
precisely the condition that can create a �at landscape.

Across all beams, the identi�ed Ef,T spans roughly 1.08×105 to 2.75×105MPa
depending on �ber set and beam size, with within-type CVs typically ≤ 3% and
LM�global gaps ≤ 1.5% in well-conditioned cases. Such magnitudes are consistent
with steel �ber e�ective sti�ness and with the bundle-scale picture established in
Section 7.2.1.4. Ef,T parameter is largely governed by the initial CMOD growth
and is not size-dependent per se, since observed di�erences due to size re�ect data
informativeness rather than a physical size e�ect on the modulus.

Average obtained values for Ef,T across all specimen sizes are summarized in
Table 7.9.

Table 7.9: Cross-size synthesis for e�ective modulus (Ef,T) results

Metric Small beams Medium beams Large beams

Mean (µ) [N/mm2] 146000 219600 208900
Average CV 1.95% 1.49% 3.06%
Average SD (σ) 336.61852 3217.12440 5705.73650
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The most signi�cant engineering implication of this analysis is the creation of
a reliable and quanti�ed dataset for FRC characterization. The �nal converged
mean values (µ) for the e�ective modulus (Ef,T) and the �ber bundle scaling factor
(fbundle) paired with their quanti�ed scatter (CV), can be directly used as calibrated
input parameters for various FRC engineering models, such as FEM simulations or
standardized design code formulations. This allows structural engineers to predict
the post-cracking behavior of FRC elements with parameters derived from a con-
trolled experimental study, which can improve the accuracy of engineering models
compared to relying only on manufacturer speci�cations.
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Chapter 8

Discussion

This thesis was formed on the basis of asking a question whether a simple, well-posed
deterministic forward model, coupled with a strategically chosen inverse algorithm,
can recover physical and material parameters of �ber reinforced concrete beams
from three-point bending tests. The collective results from veri�cation and param-
eter extraction processes proved the viability of the developed inverse method for
translating simpli�ed modeling into real-world applications despite heterogeneity.

8.1 Recapitulation of Findings

The thesis was formed on the basis of asking a question whether a simple, well-posed
deterministic forward model, coupled with a strategically chosen inverse algorithm,
could recover physical and material parameters of �ber reinforced concrete beams
from three-point bending tests. The collective results from veri�cation and param-
eter extraction processes showed the potentiality of the developed inverse method
for translating simpli�ed modeling into real-world applications despite the inherent
heterogeneity.

The forward model successfully reproduced crack mouth opening displacement
for all beam sizes and various �ber con�gurations with low relative errors (NRMSE
typically ≤ 20%, RSR < 0.5 and and R2 > 0.81). These simulated curves consis-
tently fell within the experimental variability bands of±1σ to ±2σ, which con�rmed
that the model's constitutive components and numerical solution are su�ciently ac-
curate enough for deriving results from structural responses. For an inverse identi�-
cation to be valid, the accuracy of the simpli�ed forward model is essential because
otherwise any parameter estimates would be compromised by model error.

A direct comparison with an established complex stochastic �ber bundle model
showed that the deterministic approach successfully replicates the average behavior.
Divergence only appeared in the regions where �ber variability is highest. This kind
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of stability in the predictability of the relationship between parameters and the
average structural response is a prerequisite for the inverse identi�cation procedure.
This being successful validates using the simpli�ed deterministic representation as a
tool for parameter estimation, as it .enables the extraction of material signals from
structural data, even without providing an explanation for the measured data's
inherent scatter.

The technical reliability of the inverse model can be categorized as established
and technically sound. The Levenberg�Marquardt optimizer successfully recovered
the true values of all seven parameters with 100% accuracy from synthetic data,
while typically converging within 3 to 7 iterations. The bound-of-attraction (BoA)
analysis further quanti�ed the solution's stability and identi�ed numerical limits and
speci�c failure modes for di�erent parameters. Through the process of validation
it was con�rmed that if real data fails to converge clearly, it can be con�dently at-
tributed to either the quality of the measured data, wrongly �xed input parameters,
or the problem of non-uniqueness, rather than a malfunctioning algorithm.

The dual-parameter extraction analysis mapped error surfaces in two-dimensional
parameter spaces in order to highlight both unique and non-unique cases of identi�a-
bility. This systematic mapping addressed the central challenge of the deterministic
inverse analysis, which is the danger of a biased extractions when parameters are
treated independently. As an example, the parameter pair (Ef,T , fbundle) consistently
produced maps with elongated valleys that re�ect their compensatory relationship
in governing the pre-peak bundle sti�ness. By explicitly characterizing there inter-
dependencies, the dual-parameter analysis establishes a guideline for a hierarchi-
cal identi�cation strategy, as long as the formulated deterministic model is robust
enough to compensate for the temporary assumption error.

Sensitivity scans and BoA analyses indicated that the size of the beam in�uences
identi�ability, but not in a monotonic fashion.

� Small beams are greatly a�ected by the localized placement of individual �bers,
which makes the overall parameter extraction results jumpy and unpredictable.
In practice, this led some datasets to near-perfect convergence (CV ≈ 0%),
but in others, scatter increased signi�cantly (CV up to 5% for fbundle, and
3�4% for Ef,T ).

� Medium beams proved the most consistently well-conditioned. Their coe�-
cients of variation for inverse parameter estimation were generally lowest. This
re�ects both the balance between �ber count, material characteristics and the
experimental measurement resolution, but also the fact that the model was
originally calibrated using medium-sized specimens.

148



8.2. Original Scienti�c Contributions

� Large beams give the most reliable and stable information about how the �bers
are working because large beam sections have average out the randomness to
a greater degree. However, these beams are also the most vulnerable to er-
rors that propagate from experimental irregularities which are also greater in
magnitude simply due to the scale of the beams being greater. For example,
this is seen in the specimen lacking a clear �rst peak in the load�displacement
response (L�CF�3), which ended up showing in�ated scatter and larger dis-
crepancies between LM and global optimization.

Therefore, size of beams a�ects how well parameters can be identi�ed by in�uenc-
ing how much useful information the data signal contains, rather than by following
a predictable pattern.

This has direct implications for experimental design. If the goal is parameter
identi�cation and not just �exural strength testing, beam geometry should be chosen
so it best averages the mechanisms of interest. Medium beams are the most reliable
geometry for FRC CMOD-based identi�cation, while large beams are advantageous
for that purpose but demand stable and clean experimental signals, and small beams
should be used cautiously due to their sensitivity to local �ber e�ects.

The extraction procedure successfully recovered both fbundle and Ef,T from ex-
perimental data. The two-stage approach where, �rst, fbundle was constrained under
a �xed Ef,T , then released prior to extractiong Ef,T proved to be e�ective in navi-
gating the compensatory ridge observed in dual-parameter maps.

The obtained values of fbundle (≈ 5 × 10−4 to 7 × 10−4) align with physically
plausible scaling of bundle sti�ness, while the extracted Ef,T values spanned 1.08×
105 ≤ Ef,T ≤ 2.75×105N/mm2, and showed recognition of two di�erent �ber systems
(coarse and smooth). Importantly, all these values were obtained with low within-
group scatter and with good agreement between LM and global checks, except in
cases where individual experimental irregularities produced �at error landscapes.

Overall, these �ndings support the hypothesis that a simpli�ed deterministic
model, despite its abstraction, is capable of extracting meaningful FRC parameters
even when experimental data includes scatter.

8.2 Original Scienti�c Contributions

The �ndings of this thesis contribute to the �eld of FRC modeling and inverse
analysis in several ways:

1. Novel deterministic model

149



8.3. Practical Implications and Future Work

This research developes a simpli�ed yet physically consistent deterministic
model that connects micro-level inputs (�ber bond�slip law) with macro-level
outputs (beam's crack mouth opening displacement response), and achieves
functional multiscale coupling without a need for computationally extensive
explicit multiscale frameworks.

2. Inverse analysis strategy
The study demonstrates how a multi-staged parameter identi�cation strategy
can resolve deterministic non-uniqueness,and o�er a structured methodology
for dealing with interdependent parameters.

3. Guidelines for experimental design
By systematically comparing parameter identi�ability for di�erent specimen
sizes, the study establishes how geometry in�uences and conditions the infor-
mation content of CMOD tests. This can provide researchers with practical
guidance when selecting specimen con�gurations for parameter extraction, un-
like purely strength-based assessments.

4. Deterministic modeling under variability
The research shows that deterministic formulations paired with sensitivity-
informed inverse routines, can be e�ective simulation and extraction methods
even when experimental data contain scatter. In doing so, it demonstrates
how deterministic models can complement and, in some contexts, substitute
stochastic approaches in material characterization.

8.3 Practical Implications and Future Work

From an engineering perspective, the ability to identify parameters that cannot be
physically measured has direct relevance to structural design and material optimiza-
tion. Models like this can be used to calibrate design parameters more e�ciently and
reduce reliance on expensive and time-consuming experimental programs. And in
speci�c cases of maintenance and inspection of FRC structures, they also provide a
systematic path for excluding unsuitable �ber types by ruling out parameter ranges
inconsistent with observed behavior.

Future work may extend this research by:

� Extending the forward model beyond the CMOD based response by incorpo-
rating moment�curvature distributions along the beam span. This would make
it possible to recover full load�de�ection pro�les and deformation shapes, and
link local crack-opening behavior to the structural response along the whole
beam, not just the observed cross-section.
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8.4. Summary

� Establishing experimental procedures for producing and testing beams with
controlled �ber orientations (̸= 0◦) and distributions. With such protocols
are in place, the current framework can be extended to quantify the e�ects of
non-random or preferential �ber alignment on CMOD behavior and to overall
better characterize FRC as an engineering material.

� Expanding the experimental database to include di�erent �ber types, contents,
and beam geometries. With such a richer dataset strengthen the validation
of parameter ranges and broader spectrum of what the model can capture,
beyond FRC behaviors.

� Coupling the current analytical framework with �nite element modeling, to
integrate di�erent material heterogeneity zones, and more complex boundary
conditions. This would signi�cantly broaden the applicability of the model to
real structural con�gurations.

� Investigating multi-objective optimization strategies. Beyond minimizing resid-
ual error, these approaches could balance additional goals such as ensuring the
physical plausibility of analyzed parameters while maintaining stability under
experimental noise, which would improve parameter identi�cation.

8.4 Summary

In summary, this discussion establishes that the proposed deterministic framework,
though simpli�ed, is technically sound, physically meaningful, and practically useful.
It extracts parameters that are not directly measurable, demonstrates robustness
against experimental variability, and provides clear insights into how experimental
design (notably specimen size) shapes identi�ability. The thesis therefore makes
both a methodological and a practical contribution as it advances scienti�c insights
into deterministic modeling of heterogeneous composites, while also o�ering a foun-
dation for developing future engineering guidelines for e�cient and reliable FRC
characterization.
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Chapter 9

Conclusion

This dissertation successfully addressed the challenge of e�cient and reliable inverse
material parameter identi�cation in Fiber-Reinforced Concrete using a novel deter-
ministic modeling framework. The research validates a methodology that connects
micro-scale material behavior (bond-slip law and �ber properties) with macro-scale
structural response (CMOD) in order to extract physically meaningful, but unmea-
surable parameters.

The central problem that was addressed was the historical di�culty in imple-
menting complex deterministic FRC models for an inverse analysis due to computa-
tional cost and di�culty to handle experimental data scatter. This thesis proposed
three primary hypotheses, all of which are con�rmed by the results:

1. The simpli�ed and analytical deterministic model, built on the layered beam
approach and piecewise pullout formulation, successfully replicated three-point
bending test results. The model achieved a high quantitative �t with exper-
imental data, which is also demonstrated by a Coe�cient of Determination
(R2) consistently above 0.81 for all beam sizes and material con�gurations.

2. The formulation of the forward model's algorithm provided a suitable founda-
tion for the inverse procedure. Computational quanti�cation showed that the
Levenberg-Marquardt iterations, initialized by a grid search, consistently con-
verged to the optimal solution within 7 iteration steps, which con�rmed that
the approach e�ectively resolves the issue of excessive computational time in-
herent in more complex models.

3. The deterministic model proved capable of compensating for experimental
scatter during inverse analysis, which con�rms it as well-posed and robust.
The hybrid grid → LM procedure reliably extracted material parameters from
noisy data, and demonstrated that the observed scatter primarily re�ects pa-
rameter identi�ability limits due to specimen geometry (size e�ects) rather
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than any algorithmic issues.

These �ndings advance scienti�c insights into heterogeneous composites and com-
putational modeling of FRC by demonstrating that deterministic formulations can
reliably extract and quantify material performance parameters like Ef,T and fbundle.
The extracted (µ) and quanti�ed scatter (CV) can be directly used as calibrated
input data for structural engineering models and design codes. The thesis, there-
fore, provides a strong foundation for developing future engineering guidelines for
e�cient FRC characterization.

Future research extending this framework aims to focus on three primary di-
rections. First, it is necessary to develop experimental procedures that allow for
testing and extension of the current model to include the e�ects of controlled �ber
orientations, that would extend beyond only unilateral �ber orientation. Second,
the forward model is to be extended to incorporate moment�curvature distributions
along the beam span, which is essential for recovering complete load�de�ection pro-
�les and validating the model against the structural response across the entire beam.
Finally, the analytical framework should be integrated with more complex compu-
tational models (like FEM) to investigate stress distribution under more complex
boundary conditions and load transfer in heterogeneous sections.
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Appendix A

Appendix A:Inverse Analysis

Iteration Summaries for Synthetic

Data

Small-Sized Samples ha

Table A.1: Iteration Summary for Estimating Synthetic ha = 0.01cm with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-3.70

1 -3.70 2.16 -1.54
2 -1.54 1.32 -0.22
3 -0.22 0.15 -0.06
4 -0.06 0.07 0.01
5 0.01 0.00 0.01 Converged

0.15
1 0.15 -0.14 0.01
2 0.01 0.00 0.01 Converged

0.30
1 0.30 -0.28 0.02
2 0.02 -0.01 0.01
3 0.01 0.00 0.01 Converged

0.39
1 0.39 -0.36 0.03
2 0.03 -0.02 0.01
3 0.01 0.00 0.01 Converged

0.80
1 0.80 -0.81 -0.01
2 -0.01 0.02 0.01
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3 0.01 0.00 0.01 Converged

5.00

1 5.00 -4.14 0.86
2 0.86 -0.88 -0.02
3 -0.02 0.03 0.01
4 0.01 0.00 0.01 Converged

Table A.2: Iteration Summary for Estimating Synthetic ha = 0.15cm with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-3.70

1 -3.70 2.22 -1.48
2 -1.48 1.36 -0.11
3 -0.11 0.25 0.14
4 0.14 0.01 0.15
5 0.15 0.00 0.15 Converged

0.01
1 0.01 0.14 0.15
2 0.15 0.00 0.15 Converged

0.30
1 0.30 -0.15 0.15
2 0.15 0.00 0.15 Converged

0.39
1 0.39 -0.23 0.16
2 0.39 -0.23 0.16
3 0.15 0.00 0.15 Converged

0.80
1 0.80 -0.67 0.13
2 0.13 0.02 0.15
3 0.15 0.00 0.15 Converged

5.00

1 5.00 -4.03 0.97
2 0.97 -0.86 0.11
3 0.11 0.04 0.15
4 0.15 0.00 0.15 Converged

Table A.3: Iteration Summary for Estimating Synthetic ha = 0.30cm with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)
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-3.70

1 -3.70 2.28 -1.42
2 -1.42 1.43 0.01
3 0.01 0.28 0.29
4 0.29 0.01 0.30
5 0.30 0.00 0.30 Converged

0.01
1 0.01 0.28 0.29
2 0.29 0.01 0.30
3 0.30 0.00 0.30 Converged

0.15
1 0.15 0.15 0.30
2 0.30 0.00 0.30 Converged

0.39
1 0.39 -0.09 0.30
2 0.30 0.00 0.30 Converged

0.80
1 0.80 -0.52 0.28
2 0.28 0.02 0.30
3 0.30 0.00 0.30 Converged

5.00

1 5.00 -3.91 1.09
2 1.09 -0.86 0.23
3 0.23 0.07 0.30
4 0.30 0.00 0.30 Converged

Table A.4: Iteration Summary for Estimating Synthetic ha = 0.39cm with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-3.70

1 -3.70 2.31 -1.39
2 -1.39 1.48 0.09
3 0.09 0.30 0.39
4 0.39 0.00 0.39 Converged

0.01
1 0.01 0.37 0.38
2 0.38 0.01 0.39
3 0.39 0.00 0.39 Converged

0.15
1 0.15 0.24 0.39
2 0.39 0.00 0.39 Converged

0.30
1 0.30 0.09 0.39
2 0.39 0.00 0.39 Converged
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0.80
1 0.80 -0.42 0.38
2 0.38 0.01 0.39
3 0.39 0.00 0.39 Converged

5.00

1 5.00 -3.83 1.17
2 1.17 -0.85 0.32
2 0.32 0.07 0.39
3 0.39 0.00 0.39 Converged

∆a

Table A.5: Iteration Summary for Estimating Synthetic ∆a = 0.10 with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.04

1 0.04 0.38 0.42
2 0.42 -0.18 0.24
3 0.24 -0.09 0.15
4 0.15 -0.03 0.12
5 0.12 -0.02 0.10
6 0.10 0.00 0.10 Converged

0.09
1 0.09 0.01 0.10
2 0.10 0.00 0.10 Converged

0.11
1 0.11 -0.01 0.10
2 0.10 0.00 0.10 Converged

0.20

1 0.20 -0.06 0.14
2 0.14 -0.03 0.11
3 0.11 -0.01 0.10
4 0.10 0.00 0.10
5 0.10 0.00 0.10 Converged

0.35

1 0.35 -0.14 0.21
2 0.21 -0.07 0.14
3 0.14 -0.03 0.12
4 0.12 -0.01 0.10
5 0.10 0.00 0.10
6 0.10 0.00 0.10 Converged

0.50

1 0.50 -0.18 0.32
2 0.32 -0.12 0.20
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3 0.20 -0.06 0.14
4 0.14 -0.03 0.11
5 0.11 -0.01 0.10
6 0.10 0.00 0.10 Converged

0.93

1 0.93 -0.40 0.53
2 0.53 -0.17 0.35
3 0.35 -0.14 0.22
4 0.22 -0.07 0.14
5 0.14 -0.03 0.12
6 0.12 -0.01 0.10
8 0.10 0.00 0.10 Converged

Table A.6: Iteration Summary for Estimating Synthetic ∆a = 0.20 with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.08

1 0.08 0.68 0.76
2 0.76 -0.30 0.46
3 0.46 -0.16 0.30
4 0.30 -0.08 0.22
5 0.22 -0.02 0.20
6 0.20 0.00 0.20 Converged

0.10

1 0.10 0.33 0.43
2 0.43 -0.15 0.28
3 0.28 -0.07 0.21
4 0.21 -0.01 0.20
5 0.20 0.00 0.20 Converged

0.35

1 0.35 -0.11 0.24
2 0.24 -0.04 0.20
3 0.20 0.00 0.20
4 0.20 0.00 0.20 Converged

0.50

1 0.50 -0.17 0.33
2 0.33 -0.10 0.24
3 0.24 -0.03 0.20
4 0.20 0.00 0.20
5 0.20 0.00 0.20 Converged
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0.93

1 0.93 -0.39 0.54
2 0.54 -0.18 0.36
3 0.36 -0.11 0.25
4 0.25 -0.04 0.20
5 0.20 0.00 0.20
6 0.20 0.00 0.20 Converged

Table A.7: Iteration Summary for Estimating Synthetic ∆a = 0.35 with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.11

1 0.11 0.81 0.92
2 0.92 -0.35 0.57
3 0.57 -0.14 0.43
4 0.43 -0.06 0.37
5 0.37 -0.01 0.35
6 0.35 0.00 0.35 Converged

0.20
1 0.20 0.16 0.36
2 0.36 -0.01 0.35
3 0.35 0.00 0.35 Converged

0.50

1 0.50 -0.10 0.40
2 0.40 -0.04 0.36
3 0.36 -0.01 0.35
4 0.35 0.00 0.35 Converged

0.93

1 0.93 -0.35 0.58
2 0.58 -0.14 0.44
3 0.44 -0.07 0.37
4 0.37 -0.02 0.35
5 0.35 0.00 0.35 Converged

Table A.8: Iteration Summary for Estimating Synthetic ∆a = 0.50 with Di�erent
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.14

1 0.14 0.67 0.81
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2 0.81 -0.23 0.58
3 0.58 -0.07 0.52
4 0.52 -0.01 0.50
5 0.50 0.00 0.50 Converged

0.20

1 0.20 0.34 0.54
2 0.54 -0.04 0.50
3 0.50 0.00 0.50 Converged

0.35
1 0.35 0.14 0.49
2 0.49 0.01 0.50
3 0.50 0.00 0.50 Converged

0.93

1 0.93 -0.29 0.64
2 0.64 -0.10 0.53
3 0.53 -0.03 0.50
4 0.50 0.00 0.50 Converged

Ef,T

Table A.9: Iteration Summary for Estimating Synthetic Ef,T = 500N/mm2 with
Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1
1 1 499 500
2 500 0 500 Converged

7500
1 7500 -7174 326
2 326 174 500
3 500 0 500 Converged

21000
1 21000 -20802 198
2 198 302 500
3 500 0 500 Converged

23000
1 23000 -22971 29
2 29 471 500
3 500 0 500 Converged

30000
1 30000 -31555 -1555 Negative value of the update step
2 -1555 � � Model failed at this guess
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Table A.10: Iteration Summary for Estimating Synthetic Ef,T = 7500N/mm2 with
Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1
1 1 7218 7219
2 7219 281 7500
3 7500 0 7500 Converged

500
1 500 6728 7228
2 7228 272 7500
3 7500 0 7500 Converged

21000
1 21000 -13548 7452
2 7452 48 7500
3 7500 0 7500 Converged

30000

1 30000 -23773 6227
2 6227 1235 7462
3 7462 38 7500
4 7500 0 7500 Converged

75000

1 75000 -74985 15
2 15 7204 7219
3 7219 281 7501
4 7501 -1 7500

80000
1 80000 -82438 -2438 Negative value of the update step
2 -2438 � � Model failed at this guess

Table A.11: Iteration Summary for Estimating Synthetic Ef,T = 10 000N/mm2 with
Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 9496 9497
2 9497 506 10002
3 10002 -2 10000
4 10000 0 10000 Converged

7500
1 7500 2472 9972
2 9972 28 10000
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Table A.11: Iteration Summary for Estimating Synthetic Ef,T = 10 000N/mm2 with
Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

3 10000 0 10000 Converged

21000
1 21000 -11071 9929
2 9929 71 10000
3 10000 0 10000 Converged

30000

1 30000 -21125 8875
2 8875 1092 9967
3 9967 33 10000
4 10000 0 10000 Converged

81000

1 81000 -80431 569
2 569 8941 9511
3 9511 492 10002
4 10002 -2 10000
5 10000 0 10000 Converged

Table A.12: Combined Iteration Summary for Estimating Synthetic Ef,T =
21 000N/mm2 with Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 19596 19597
2 19597 1397 20994
3 20994 6 21000
4 21000 0 21000 Converged

7500
1 7500 13320 20820
2 20820 180 21000
3 21000 0 21000 Converged

10000
1 10000 11055 21055
2 21055 -55 21000
3 21000 0 21000 Converged

30000

1 30000 -9340 20660
2 20660 336 20996
3 20996 4 21000
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4 21000 0 21000 Converged

210500

1 210500 -201607 8893
2 8893 12235 21128
3 21128 -128 21000
4 21000 0 21000 Converged

Table A.13: Combined Iteration Summary for Estimating Synthetic Ef,T =
30 000N/mm2 with Di�erent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 27594 27595
2 27595 1235 7462
3 7462 2387 29982
4 29982 18 30000
5 30000 0 30000 Converged

500

1 500 27132 27632
2 27632 2350 29982
3 29982 18 30000
4 30000 0 30000 Converged

7500

1 7500 21819 29319
2 27632 677 29996
3 29996 4 30000
4 30000 0 30000 Converged

21000

1 21000 8739 29739
2 29739 257 29996
3 29996 4 30000
4 30000 0 30000 Converged

35000
1 35000 -5074 29925
2 29925 75 30000
3 30000 0 30000 Converged

210500

1 210500 -190152 20348
2 20348 9262 29611
3 29611 386 29996
4 29996 4 30000
5 30000 0 30000 Converged
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fmax
c

Table A.14: Iteration Summary for Estimating Synthetic fmax
c = 0.40kN with Dif-

ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 0.60 0.60
2.00 0.60 -0.18 0.43
3.00 0.43 -0.02 0.40
4.00 0.40 0.00 0.40 Converged

0.30
1.00 0.30 0.10 0.40
2.00 0.40 0.00 0.40 Converged

0.60
1.00 0.60 -0.17 0.43
2.00 0.43 -0.02 0.40
3.00 0.40 0.00 0.40 Converged

0.80
1.00 0.80 -0.34 0.46
2.00 0.46 -0.06 0.40
3.00 0.40 0.00 0.40 Converged

1.50

1.00 1.50 -0.86 0.64
2.00 0.64 -0.21 0.43
3.00 0.43 -0.03 0.40
4.00 0.40 0.00 0.40 Converged

3.00

1.00 3.00 -2.87 0.13
2.00 0.13 0.27 0.41
3.00 0.41 -0.01 0.40
4.00 0.40 0.00 0.40 Converged

Table A.15: Iteration Summary for Estimating Synthetic fmax
c = 0.60kN with Dif-

ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01

1.00 0.01 0.72 0.73
2.00 0.73 -0.12 0.61
3.00 0.61 -0.01 0.60
4.00 0.60 0.00 0.60 Converged
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0.40
1.00 0.40 0.20 0.60
2.00 0.60 0.00 0.60 Converged

0.80

1.00 0.80 -0.18 0.62
2.00 0.62 -0.02 0.60
3.00 0.60 0.00 0.60 Converged
4.00 0.60 0.00 0.60 Converged

1.50

1.00 1.50 -0.75 0.75
2.00 0.75 -0.14 0.61
3.00 0.61 -0.01 0.60
4.00 0.60 0.00 0.60 Converged

4.90

1.00 4.90 -4.84 0.06
2.00 0.06 0.53 0.59
3.00 0.59 0.01 0.60
4.00 0.60 0.00 0.60 Converged

Table A.16: Iteration Summary for Estimating Synthetic fmax
c = 0.80kN with Dif-

ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01
1.00 0.01 0.72 0.73
2.00 0.73 0.07 0.80
3.00 0.80 0.00 0.80 Converged

0.40
1.00 0.40 0.42 0.82
2.00 0.82 -0.02 0.80
3.00 0.80 0.00 0.80 Converged

0.60
1.00 0.60 0.21 0.81
2.00 0.81 -0.01 0.80
3.00 0.80 0.00 0.80 Converged

1.50
1.00 1.50 -0.62 0.88
2.00 0.88 -0.08 0.80
3.00 0.80 0.00 0.80 Converged

5.00

1.00 5.00 -4.99 0.01
2.00 0.01 0.74 0.76
3.00 0.76 0.04 0.80
4.00 0.80 0.00 0.80 Converged
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Table A.17: Iteration Summary for Estimating Synthetic fmax
c = 1.50kN with Dif-

ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 0.60 0.60
2.00 0.60 0.87 1.47
3.00 1.47 0.03 1.50
4.00 1.50 0.00 1.50 Converged

0.40
1.00 0.40 1.09 1.49
2.00 1.49 0.01 1.50
3.00 1.50 0.00 1.50 Converged

0.60
1.00 0.60 0.87 1.47
2.00 1.47 0.03 1.50
3.00 1.50 0.00 1.50 Converged

1.25
1.00 1.25 0.25 1.50
2.00 1.50 0.00 1.50 Converged

2.00
1.00 2.00 -0.50 1.50
2.00 1.50 0.00 1.50 Converged

3.90

1.00 3.90 -3.81 0.09
2.00 0.09 0.92 1.01
3.00 1.01 0.48 1.49
4.00 1.49 0.01 1.50
5.00 1.50 0.00 1.50 Converged

Table A.18: Iteration Summary for Estimating Synthetic fmax
c = 2.00kN with Dif-

ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 0.60 0.60
2.00 0.60 1.30 1.90
3.00 1.90 0.10 2.00
4.00 2.00 0.00 2.00 Converged

0.40
1.00 0.40 1.50 1.90
2.00 1.90 0.10 2.00
3.00 2.00 0.00 2.00 Converged
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0.60
1.00 0.60 1.30 1.90
2.00 1.90 0.10 2.00
3.00 2.00 0.00 2.00 Converged

0.80
1.00 0.80 1.12 1.92
2.00 1.92 0.08 2.00
3.00 2.00 0.00 2.00 Converged

1.50
1.00 1.50 0.48 1.98
2.00 1.98 0.02 2.00
3.00 2.00 0.00 2.00 Converged

4.00

1.00 4.00 -3.11 0.89
2.00 0.89 1.07 1.96
3.00 1.96 0.04 2.00
4.00 2.00 0.00 2.00 Converged

Medium-sized samples

ha

Table A.19: Iteration Summary for Estimating Synthetic ha = 0.10cm with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-2.50

1 -2.50 0.07 -1.28
2 -1.28 0.10 -0.28
3 -0.28 0.30 0.02
4 0.02 0.03 0.05
5 0.05 0.00 0.05 Converged

0.05
1 0.05 0.05 0.10
2 0.10 0.00 0.10 Converged

0.35
1 0.35 -0.26 0.09
2 0.09 0.01 0.10
3 0.10 0.00 0.10 Converged

0.50
1 0.50 -0.43 0.07
2 0.07 0.03 0.10
3 0.10 0.00 0.10 Converged

0.800
1 0.80 -0.74 0.06
2 0.06 0.04 0.10
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3 0.10 0.000 0.10 Converged

2.50

1 2.50 -2.74 -0.24
2 -0.24 0.29 0.05
3 0.05 0.05 0.10
4 0.10 0.00 0.10 Converged

3.40

1 3.40 -0.20 3.20
2 3.20 -3.21 -0.01
3 -0.01 0.11 0.10
4 0.10 0.00 0.10 Converged

8.00

1 8.00 0.36 8.36
2 8.36 0.34 8.70
3 8.70 0.43 9.13
4 9.13 � � Model failed at this guess

Table A.20: Iteration Summary for Estimating Synthetic ha = 0.35cm with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-2.50

1 -2.50 1.30 -1.20
2 -2.50 1.10 -0.10
3 -0.10 0.43 0.33
4 0.33 0.02 0.35
5 0.35 0.00 0.35 Converged

-2.00

1 -2.00 1.06 -0.94
2 -0.94 0.27 0.34
3 0.34 0.01 0.35
4 0.35 0.00 0.35 Converged

0.05
1 0.05 0.29 0.34
2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged

0.10
1 0.10 0.24 0.34
2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged

0.50
1 0.50 -0.16 0.34
2 0.34 0.01 0.35

179



3 0.35 0.00 0.35 Converged

0.65
1 0.65 -0.31 0.34
2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged

0.80
1 0.80 -0.46 0.34
2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged

3.40
1 3.40 -0.25 3.14
2 3.14 -2.78 0.35
3 0.35 0.00 0.35 Converged

8.00

1 8.00 0.19 8.19
2 8.19 0.15 8.34
3 8.34 0.20 8.54
4 8.54 0.13 8.67
5 8.67 0.30 8.97
6 8.97 � � Model failed at this guess

Table A.21: Iteration Summary for Estimating Synthetic ha = 0.5cm with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-2.50

1 -2.50 1.35 -1.15
2 -1.15 1.10 -0.05
3 -0.05 0.53 0.48
4 0.48 0.02 0.50
5 0.50 0.00 0.50 Converged

0.050
1 0.050 0.426 0.476
2 0.476 0.024 0.500
3 0.500 0.000 0.500 Converged

0.100
1 0.10 0.32 0.47
2 0.47 0.03 0.50
3 0.50 0.00 0.50 Converged

0.200
1 0.20 0.27 0.47
2 0.47 0.03 0.50
3 0.50 0.00 0.50 Converged
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0.65
1 0.65 -0.57 0.50
2 0.50 0.00 0.50 Converged

0.80
1 0.80 -0.30 0.50
2 0.50 0.00 0.50 Converged

3.40

1 3.40 -0.30 3.10
2 3.10 -2.57 0.52
3 0.52 -0.02 0.50
4 0.50 0.00 0.50 Converged

Table A.22: Iteration Summary for Estimating Synthetic ha = 0.65cm with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-2.50

1 -2.50 1.38 -1.11
2 -1.11 1.30 0.19
3 0.19 0.41 0.60
4 0.60 0.05 0.65
5 0.65 0.00 0.65 Converged

0.05
1 0.05 0.55 0.60
2 0.60 0.05 0.65
3 0.65 0.00 0.65 Converged

0.10
1 0.10 0.49 0.59
2 0.59 0.06 0.65
3 0.65 0.00 0.65 Converged

0.35
1 0.35 0.28 0.63
2 0.62 0.02 0.65
3 0.65 0.00 0.65 Converged

0.50
1 0.50 0.15 0.65
2 0.65 0.00 0.65 Converged

0.80
1 0.80 -0.15 0.65
2 0.65 0.00 0.65 Converged

3.40

1 3.40 -0.33 3.07
2 3.07 -2.37 0.70
3 0.70 -0.05 0.65
4 0.65 0.00 0.65 Converged
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∆a

Table A.23: Iteration Summary for Estimating Synthetic ∆a = 0.10 with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.03

1 0.03 0.91 0.94
2 0.94 -0.47 0.47
3 0.47 -0.20 0.27
4 0.27 -0.07 0.20
5 0.20 -0.05 0.15
6 0.15 -0.03 0.12
7 0.12 -0.01 0.11
8 0.11 -0.01 0.10
9 0.10 0.00 0.10 Converged

0.05

1 0.05 0.19 0.25
2 0.25 -0.06 0.19
3 0.19 -0.04 0.14
4 0.14 -0.03 0.12
5 0.12 -0.01 0.10
6 0.10 0.00 0.10
7 0.10 0.00 0.10 Converged

0.20

1 0.20 -0.05 0.15
2 0.15 -0.03 0.12
3 0.12 -0.02 0.11
4 0.11 -0.01 0.10
5 0.10 0.00 0.10 Converged

0.50

1 0.50 -0.22 0.28
2 0.28 -0.07 0.21
3 0.21 -0.05 0.16
4 0.16 -0.03 0.13
5 0.13 -0.02 0.11
6 0.11 -0.01 0.10
7 0.10 0.00 0.10 Converged

1.30

1 1.30 -0.67 0.63
2 0.63 -0.30 0.33
3 0.33 -0.08 0.25
4 0.25 -0.06 0.19
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5 0.19 -0.04 0.15
6 0.15 -0.03 0.12
7 0.12 -0.01 0.10
8 0.10 0.00 0.10
9 0.10 0.00 0.10 Converged

2.10

1 2.10 -1.02 1.08
2 1.08 -0.54 0.54
3 0.54 -0.25 0.29
4 0.29 -0.07 0.22
5 0.22 -0.05 0.17
6 0.17 -0.04 0.13
7 0.13 -0.02 0.11
8 0.11 -0.01 0.10
9 0.10 0.00 0.10 Converged

Table A.24: Iteration Summary for Estimating Synthetic ∆a = 0.20 with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.05
1 0.05 3.18 3.23 Low guess led to overshoot
2 3.23 � � Forward model failed

0.06

1 0.06 1.83 1.89
2 1.89 -1.03 0.86
3 0.86 -0.40 0.46
4 0.46 -0.19 0.27
5 0.27 -0.05 0.22
6 0.22 -0.02 0.20
7 0.20 -0.00 0.20
8 0.20 0.00 0.20 Converged

0.07

1 0.07 1.15 1.22
2 1.22 -0.53 0.68
3 0.68 -0.32 0.36
4 0.36 -0.11 0.25
5 0.25 -0.04 0.21
6 0.21 -0.01 0.20
7 0.20 -0.00 0.20
8 0.20 0.00 0.20 Converged
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0.10

1 0.10 0.37 0.47
2 0.47 -0.19 0.28
3 0.28 -0.05 0.23
4 0.23 -0.02 0.21
5 0.21 -0.01 0.20
6 0.20 0.00 0.20 Converged

0.15

1 0.15 0.08 0.23
2 0.23 -0.03 0.21
3 0.21 -0.01 0.20
4 0.20 0.00 0.20 Converged

0.25

1 0.25 -0.04 0.21
2 0.21 -0.01 0.20
3 0.20 -0.00 0.20
4 0.20 0.00 0.20 Converged

0.30

1 0.30 -0.06 0.24
2 0.24 -0.03 0.21
3 0.21 -0.01 0.20
4 0.20 -0.00 0.20
5 0.20 0.00 0.20 Converged

0.50

1 0.50 -0.22 0.28
2 0.28 -0.05 0.23
3 0.23 -0.02 0.21
4 0.21 -0.01 0.20
5 0.20 0.00 0.20 Converged

0.70

1 0.70 -0.31 0.39
2 0.39 -0.13 0.25
3 0.25 -0.04 0.22
4 0.22 -0.01 0.20
5 0.20 -0.00 0.20
6 0.20 0.00 0.20 Converged

1.00

1 1.00 -0.48 0.52
2 0.52 -0.23 0.29
3 0.29 -0.06 0.24
4 0.24 -0.03 0.21
5 0.21 -0.01 0.20
6 0.20 0.00 0.20 Converged

1.50

1 1.50 -0.72 0.78
2 0.78 -0.36 0.42
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3 0.42 -0.16 0.27
4 0.27 -0.05 0.22
5 0.22 -0.02 0.20
6 0.20 -0.00 0.20
7 0.20 0.00 0.20 Converged

>3.00 � � � � Computation failed

Table A.25: Iteration Summary for Estimating Synthetic ∆a = 0.35 with Di�erent
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.10
1 0.10 3.72 3.82 Large initial update, overshot
2 3.82 � � Forward model failed

0.13

1 0.13 1.67 1.80
2 1.80 -0.89 0.91
3 0.91 -0.40 0.51
4 0.51 -0.14 0.37
5 0.37 -0.02 0.35
6 0.35 0.00 0.35 Converged

0.15

1 0.15 1.07 1.22
2 1.22 -0.54 0.68
3 0.68 -0.26 0.42
4 0.42 -0.07 0.35
5 0.35 -0.00 0.35
6 0.35 0.00 0.35 Converged

0.20

1 0.20 0.42 0.62
2 0.62 -0.22 0.40
3 0.40 -0.05 0.35
4 0.35 0.00 0.35 Converged

0.25

1 0.25 0.18 0.43
2 0.43 -0.07 0.35
3 0.35 -0.00 0.35
4 0.35 0.00 0.35 Converged

0.30

1 0.30 0.06 0.36
2 0.36 -0.02 0.35
3 0.35 0.00 0.35
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4 0.35 0.00 0.35 Converged

0.40
1 0.40 -0.05 0.35
2 0.35 0.00 0.35
3 0.35 0.00 0.35 Converged

2.10

1 2.10 -1.00 1.10
2 1.10 -0.51 0.59
3 0.59 -0.20 0.39
4 0.39 -0.04 0.35
5 0.35 0.00 0.35 Converged

Table A.26: Iteration Summary for Estimating Synthetic ∆a = 0.5 with Di�erent
Initial Guesses

Initial Guess Iteration Guess ∆(∆A) Result Comment
(∆A0) (k) (δAk) (∆Ak+1)

0.10
1 0.10 8.44 8.54 Large initial step
2 8.54 � � Forward model failed

0.17

1 0.17 1.82 1.98
2 1.98 -0.91 1.07
3 1.07 -0.42 0.53
4 0.53 -0.03 0.50
5 0.50 0.00 0.50 Converged

0.20

1 0.20 1.01 1.21
2 1.21 -0.45 0.76
3 0.76 -0.21 0.55
4 0.55 -0.05 0.50
5 0.50 -0.00 0.50
6 0.50 0.00 0.50 Converged

0.30

1 0.30 0.24 0.54
2 0.54 -0.04 0.50
3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged

0.40
1 0.40 0.10 0.50
2 0.50 -0.00 0.50
3 0.50 0.00 0.50 Converged

0.45
1 0.45 0.05 0.50
2 0.50 -0.00 0.50
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3 0.50 0.00 0.50 Converged

0.55
1 0.55 -0.05 0.50
2 0.50 -0.00 0.50
3 0.50 0.00 0.50 Converged

0.60
1 0.60 -0.09 0.51
2 0.51 -0.01 0.50
3 0.50 0.00 0.50 Converged

0.70

1 0.70 -0.16 0.54
2 0.54 -0.04 0.50
3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged

0.80

1 0.80 -0.24 0.56
2 0.56 -0.06 0.50
3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged

0.90

1 0.90 -0.31 0.59
2 0.59 -0.09 0.51
3 0.51 -0.01 0.50
4 0.50 0.00 0.50 Converged

1.10

1 1.10 -0.43 0.67
2 0.67 -0.15 0.52
3 0.52 -0.02 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged

1.20

1 1.20 -0.45 0.75
2 0.75 -0.21 0.55
3 0.55 -0.05 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged

1.30

1 1.30 -0.51 0.79
2 0.79 -0.23 0.56
3 0.56 -0.05 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged

2.10

1 2.10 -0.96 1.13
2 1.13 -0.44 0.69
3 0.69 -0.16 0.53
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4 0.53 -0.03 0.50
5 0.50 0.00 0.50 Converged

Ef,T

Table A.27: Iteration Summary for Estimating Synthetic Ef,T = 500N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1
1 1 496 497
2 497 3 500
3 500 0 500 Converged

250
1 250 248 498
2 498 2 500
3 500 0 500 Converged

7500

1 7500 -7213 287
2 287 211 498
3 498 2 500
4 500 0 500 Converged

16000

1 16000 -15747 253
2 253 246 498
3 498 2 500
4 500 0 500 Converged

21000
1 21000 -23577 -2577 Negative value of the update step
2 -2577 � � Model failed at this guess

Table A.28: Iteration Summary for Estimating Synthetic Ef,T = 7500N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 6209 6210
2 6210 1300 7510
3 7510 -10 7500
4 7500 0 7500 Converged

7000
1 7000 505 7505
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Table A.28 � Continued

Initial Guess Iteration Guess ∆(δA) Result Comment
(δA0) (k) (δAk) (δAk+1)

2 7505 -5 7500
3 7500 0 7500 Converged

21000

1 21000 -14805 6195
2 6195 1314 7509
3 7509 -9 7500
4 7500 0 7500 Converged

44500

1 44500 -43771 729
2 729 5655 6385
3 6385 1126 7511
4 7511 -11 7500
5 7500 0 7500 Converged

45000
1 45000 -45490 -490 Negative value of the update step
2 -490 � � Model failed at this guess

Table A.29: Iteration Summary for Estimating Synthetic Ef,T = 10 000N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 7959 7960
2 7960 2006 9966
3 9966 34 10000
4 10000 0 10000 Converged

500

1 500 7669 8169
2 8169 1802 9971
3 9971 29 10000
4 10000 0 10000 Converged

7500
1 7500 2460 9960
2 9960 40 10000
3 10000 0 10000 Converged

21000

1 21000 -12082 8918
2 8918 1106 10024
3 10024 -24 10000

189



4 10000 0 10000 Converged

50000

1 50000 -49687 313
2 313 7663 7977
3 7977 1989 9966
4 9966 34 10000
5 10000 0 10000 Converged

55000
1 55000 -58247 -3247 Negative value of the update step
2 -3247 � � Model failed at this guess

Table A.30: Iteration Summary for Estimating Synthetic Ef,T = 21 000N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 15766 15767
2 15767 4782 20549
3 20549 441 20990
4 20990 10 21000
5 21000 0 21000 Converged

15000

1 15000 5568 20568
2 20568 422 20990
3 20990 10 21000
4 21000 0 21000 Converged

20000
1 20000 976 20976
2 20568 14 21000
3 21000 0 21000 Converged

25000
1 25000 -4025 20975
2 20975 25 21000
3 21000 0 21000 Converged

40000

1 40000 -19812 20188
2 20188 789 20977
3 20977 23 20977
4 21000 0 21000 Converged

85000

1 85000 -83019 1981
2 1981 15568 17548
3 17548 3283 20831
4 20831 160 20991
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Table A.30: Iteration Summary for Estimating Synthetic Ef,T = 21 000N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

5 20991 9 21000
6 21000 0 21000 Converged

350000
1 350000 -382940 -32940 Negative value of the update step
2 -32940 � � Model failed at this guess

Table A.31: Iteration Summary for Estimating Synthetic Ef,T = 30 000N/mm2 with
Di�erent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 20885 20885
2 20885 8202 29087
3 29087 905 29992
4 29992 8 30000
5 10000 0 10000 Converged

7500

1 7500 18761 26261
2 26261 3720 29981
3 29981 19 30000
4 10000 0 10000 Converged

10000

1 10000 16678 26678
2 26261 3320 30008
3 30008 -8 30000
4 10000 0 10000 Converged

21000

1 21000 8092 29092
2 29092 900 29992
3 29992 8 30000
4 30000 0 30000 Converged

40000

1 40000 -10401 29599
2 29599 401 30000
3 29992 401 30000
4 30000 0 30000 Converged

147500

1 147500 -145264 2236
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2 2236 21175 23411
3 23411 6171 29582
4 29582 418 30000
5 30000 0 30000 Converged

350000
1 350000 -371416 -21416 Negative value of the update step
2 -21416 � � Model failed at this guess

fmax
c

Table A.32: Iteration Summary for Estimating Synthetic fmax
c = 1.50kN with Dif-

ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 2.36 2.36
2.00 2.36 -0.81 1.54
3.00 1.54 -0.04 1.50
4.00 1.50 0.00 1.50 Converged

2.00
1.00 2.00 -0.47 1.53
2.00 1.53 -0.03 1.50
3.00 1.50 0.00 1.50 Converged

3.00
1.00 3.00 -1.39 1.61
2.00 1.61 -0.11 1.50
3.00 1.50 0.00 1.50 Converged

4.50
1.00 4.50 -3.32 1.18
2.00 1.18 0.32 1.51
3.00 1.51 -0.01 1.50
4.00 1.50 0.00 1.50 Converged

5.70

1.00 5.70 -5.54 0.16
2.00 0.16 0.95 1.11
3.00 1.11 0.40 1.51
4.00 1.51 -0.01 1.50
5.00 1.50 0.00 1.50 Converged
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Table A.33: Iteration Summary for Estimating Synthetic fmax
c = 2.00kN with Dif-

ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00
1.00 0.00 2.36 2.36
2.00 2.36 -0.35 2.00
3.00 2.00 0.00 2.00 Converged

1.50
1.00 1.50 0.50 2.00
2.00 2.00 0.00 2.00 Converged

2.25
1.00 2.25 -0.25 2.00
2.00 2.00 0.00 2.00 Converged

3.00
1.00 3.00 -0.96 2.04
2.00 2.04 -0.04 2.00
3.00 2.00 0.00 2.00 Converged

4.00
1.00 4.00 -2.04 1.96
2.00 1.96 0.04 2.00
3.00 2.00 0.00 2.00 Converged

6.00

1.00 6.00 -5.84 0.16
2.00 0.16 1.07 1.23
3.00 1.23 0.81 2.04
4.00 2.04 -0.04 2.00
5.00 2.00 0.00 2.00 Converged

Table A.34: Iteration Summary for Estimating Synthetic fmax
c = 3.00kN with Dif-

ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 2.36 2.36
2.00 2.36 0.63 2.99
3.00 2.99 0.01 3.00
4.00 3.00 0.00 3.00 Converged

1.50
1.00 1.50 1.45 2.95
2.00 2.95 0.05 3.00
3.00 3.00 0.00 3.00 Converged

2.00
1.00 2.00 0.95 2.95
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2.00 2.95 0.05 3.00
3.00 3.00 0.00 3.00 Converged

3.25
1.00 3.25 -0.25 3.00
2.00 3.00 0.00 3.00 Converged

4.50
1.00 4.50 -1.73 2.77
2.00 2.77 0.23 3.00
3.00 3.00 0.00 3.00 Converged

7.50

1.00 7.50 -7.48 0.02
2.00 0.02 5.35 5.37
3.00 5.37 -2.98 2.39
4.00 2.39 0.59 2.98
5.00 2.98 0.02 3.00
6.00 3.00 0.00 3.00 Converged

Table A.35: Iteration Summary for Estimating Synthetic fmax
c = 4.00kN with Dif-

ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.00

1.00 0.00 2.36 2.36
2.00 2.36 1.91 4.27
3.00 4.27 0.22 4.49
4.00 4.49 0.01 4.50
5.00 4.50 0.00 4.50 Converged

1.50

1.00 1.50 2.59 4.09
2.00 4.09 0.38 4.47
3.00 4.47 0.03 4.50
4.00 4.50 0.00 4.50 Converged

2.00

1.00 2.00 2.16 4.16
2.00 4.16 0.32 4.48
3.00 4.48 0.02 4.50
4.00 4.50 0.00 4.50 Converged

3.00
1.00 3.00 1.36 4.36
2.00 4.36 0.14 4.50
3.00 4.50 0.00 4.50 Converged

5.00
1.00 5.00 -0.52 4.48
2.00 4.48 0.02 4.50
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3.00 4.50 0.00 4.50 Converged

9.70

1.00 9.70 -9.67 0.03
2.00 0.03 7.34 7.38
3.00 7.38 -3.95 3.43
4.00 3.43 0.96 4.39
5.00 4.39 0.11 4.50
6.00 4.50 0.00 4.50 Converged

Large-sized samples

ha

Table A.36: Iteration Summary for Estimating Synthetic ha = 0.05cm with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-1.70

1 -1.70 1.37 -0.33
2 -0.33 0.16 -0.16
3 -0.16 0.21 0.05
4 0.05 0.00 0.05 Converged

0.01
1 0.01 0.04 0.05
2 0.05 0.00 0.05 Converged

0.2
1 0.2 -0.15 0.05
2 0.05 0.00 0.05 Converged

0.50
1 0.50 -0.34 0.16
2 0.16 -0.11 0.05
3 0.05 0.00 0.05 Converged

0.80
1 0.80 -0.78 0.02
2 0.02 -0.15 0.05
3 0.05 0.00 0.05 Converged

0.95
1 0.95 -0.96 -0.01
2 -0.01 0.06 0.05
3 0.05 0.00 0.05 Converged

1.50
1 1.50 -1.62 -0.12
2 -0.12 0.17 0.05
3 0.05 0.00 0.05 Converged

2.40

1 2.40 -0.14 2.26
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2 2.26 -1.18 1.08
3 1.08 -1.07 0.00
4 0.00 0.05 0.05
5 0.05 0.00 0.05 Converged

Table A.37: Iteration Summary for Estimating Synthetic ha = 0.5cm with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-1.70

1 -1.70 1.68 -0.02
2 -0.02 0.49 0.47
3 0.47 0.03 0.50
4 0.50 0.00 0.50 Converged

0.05
1 0.05 0.45 0.50
2 0.50 0.00 0.50 Converged

0.80
1 0.80 -0.30 0.50
2 0.50 0.00 0.50 Converged

0.95
1 0.95 -0.46 0.49
2 0.49 0.01 0.50
3 0.50 0.00 0.50 Converged

1.50

1 1.50 -1.07 0.43
2 0.43 0.06 0.49
3 0.49 0.01 0.50
4 0.50 0.00 0.50 Converged

2.40

1 2.40 -0.24 2.16
2 2.16 -1.76 0.40
3 0.40 0.10 0.50
4 0.50 0.00 0.50 Converged

Table A.38: Iteration Summary for Estimating Synthetic ha = 0.8cm with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-1.70

1 -1.70 1.87 0.17
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2 0.17 0.59 0.76
3 0.76 0.04 0.80
4 0.80 0.00 0.80 Converged

0.05
1 0.05 0.71 0.76
2 0.76 0.04 0.80
3 0.80 0.00 0.80 Converged

0.50
1 0.50 0.21 0.71
2 0.71 0.09 0.80
3 0.80 0.00 0.80 Converged

0.95
1 0.95 -0.15 0.80
2 0.80 0.00 0.80 Converged

2.00
1 2.00 -1.26 0.74
2 0.74 0.06 0.80
3 0.80 0.00 0.80 Converged

2.40

1 2.40 -0.27 2.13
2 2.13 -1.39 0.74
3 0.74 0.06 0.80
4 0.80 0.00 0.80 Converged

Table A.39: Iteration Summary for Estimating Synthetic ha = 0.95cm with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(ha0) (k) (hak) (∆ha) (hak+1

)

-1.70

1 -1.70 1.95 0.25
2 0.25 0.50 0.75
3 0.75 0.20 0.95
4 0.95 0.00 0.95 Converged

0.05
1 0.05 0.84 0.89
2 0.89 0.06 0.95
3 0.95 0.00 0.95 Converged

0.50

1 0.50 0.30 0.80
2 0.80 0.14 0.94
3 0.94 0.01 0.95
4 0.95 0.00 0.95 Converged

0.80

1 0.80 0.14 0.94
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2 0.94 0.01 0.95
3 0.95 0.00 0.95 Converged

1.50
1 1.50 -0.59 0.91
2 0.91 0.04 0.95
3 0.95 0.00 0.95 Converged

2.00
1 2.00 -1.09 0.91
2 0.91 0.04 0.95
3 0.95 0.00 0.95 Converged

2.40

1 2.40 -0.28 2.12
2 2.12 -1.22 0.90
3 0.90 0.05 0.95
4 0.95 0.00 0.95 Converged

∆a

Table A.40: Iteration Summary for Estimating Synthetic ∆a = 0.10 with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.03

1 0.03 0.91 0.94
2 0.94 -0.46 0.48
3 0.48 -0.23 0.25
4 0.25 -0.06 0.19
5 0.19 -0.04 0.15
6 0.15 -0.03 0.12
7 0.12 -0.02 0.10
8 0.10 0.00 0.10 Converged

0.20

1 0.20 -0.05 0.15
2 0.15 -0.03 0.12
3 0.12 -0.02 0.10
4 0.10 0.00 0.10 Converged

0.35
1 0.35 -0.13 0.12
2 0.12 -0.02 0.10
3 0.10 0.00 0.10 Converged

0.50

1 0.50 -0.24 0.26
2 0.26 -0.06 0.19
3 0.19 -0.05 0.15
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4 0.15 -0.03 0.12
5 0.12 -0.02 0.10
6 0.10 0.00 0.10 Converged

2.50

1 2.50 -1.33 1.17
2 1.17 -0.59 0.58
3 0.58 -0.29 0.29
4 0.29 -0.07 0.22
5 0.22 -0.05 0.17
6 0.17 -0.04 0.13
7 0.13 -0.03 0.10
8 0.10 0.00 0.10 Converged

Table A.41: Iteration Summary for Estimating Synthetic ∆a = 0.20 with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.06

1 0.06 1.83 1.89
2 1.89 -1.00 0.89
3 0.89 -0.17 0.72
4 0.72 -0.34 0.38
5 0.38 -0.06 0.32
6 0.32 -0.08 0.24
7 0.24 -0.03 0.21
8 0.21 -0.01 0.20
9 0.20 0.00 0.20 Converged

0.10

1 0.10 0.37 0.47
2 0.47 -0.21 0.26
3 0.26 -0.04 0.22
4 0.26 -0.02 0.20
5 0.20 0.00 0.20 Converged

0.35

1 0.35 -0.11 0.24
2 0.24 -0.03 0.21
3 0.21 -0.01 0.20
4 0.20 0.00 0.20 Converged

0.50

1 0.50 -0.23 0.27
2 0.27 -0.05 0.22
3 0.22 -0.02 0.20
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4 0.20 0.00 0.20 Converged

2.50

1 2.50 -1.32 1.18
2 1.18 -0.59 1.18
3 1.18 -0.59 0.58
4 0.58 -0.28 0.30
5 0.30 -0.07 0.23
6 0.23 -0.02 0.21
7 0.21 -0.01 0.20
8 0.20 0.00 0.20 Converged

Table A.42: Iteration Summary for Estimating Synthetic ∆a = 0.35 with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.11

1 0.11 2.26 2.37
2 2.37 -1.22 1.15
3 1.15 -0.54 0.61
4 0.61 -0.22 0.39
5 0.39 -0.02 0.37
6 0.37 -0.02 0.35
7 0.35 0.00 0.35 Converged

0.20

1 0.20 0.33 0.53
2 0.53 -0.16 0.37
3 0.37 -0.02 0.35
4 0.35 0.00 0.35 Converged

0.50
1 0.50 -0.14 0.36
2 0.36 -0.01 0.35
3 0.35 0.00 0.35 Converged

2.50

1 2.50 -1.30 1.20
2 1.20 -0.21 0.99
3 0.99 -0.44 0.55
4 0.55 -0.17 0.37
5 0.37 -0.02 0.35
6 0.35 0.00 0.35 Converged
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Table A.43: Iteration Summary for Estimating Synthetic ∆a = 0.50 with Di�erent
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆(∆a) Result Comment
(∆a0) (k) (∆ak) (∆ak+1)

0.15

1 0.15 2.02 2.17
2 2.17 -1.06 1.11
3 1.11 -0.45 0.66
4 0.66 -0.14 0.52
5 0.52 -0.02 0.50
6 0.50 0.00 0.50 Converged

0.20

1 0.20 0.82 1.02
2 1.02 -0.39 0.63
3 0.63 -0.12 0.51
4 0.51 -0.01 0.50
5 0.50 0.00 0.50 Converged

0.35
1 0.35 0.17 0.52
2 0.52 -0.02 0.50
3 0.50 0.00 0.50 Converged

2.50

1 2.50 -1.27 1.23
2 1.23 -0.54 0.69
3 0.69 -0.16 0.53
4 0.53 -0.03 0.50
5 0.50 0.00 0.50 Converged

Ef,T

Table A.44: Combined Iteration Summary for Estimating Ef,T = 500N/mm2 with
di�erent initial guesses

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

Table A.44 � Continued

Initial Guess Iteration Guess ∆(δA) Result Comment
(δA0) (k) (δAk) (δAk+1)

1
1 1 527 528
2 528 -28 500
3 500 0 500 Converged
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250
1 250 95 345
2 345 155 500
3 500 0 500 Converged

1000
1 1000 -497 503
2 503 -3 500
3 500 0 500 Converged

2500
1 2500 -2119 381
2 381 119 500
3 500 0 500 Converged

4800

1 4800 -1480 3320
2 3320 -3003 317
3 317 184 501
4 501 -1 500
5 500 0 500 Converged

7500
1 7500 -7808 -308
2 -308 � � Model failed at this guess

Table A.45: Combined Iteration Summary for Estimating Ef,T = 7500N/mm2 with
di�erent initial guesses

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 6791 6792
2 6792 707 7499
3 7499 1 7500
4 7500 0 7500 Converged

500

1 500 6279 6779
2 6779 720 7499
3 7499 1 7500
4 7500 0 7500 Converged

10000
1 10000 -2494 7506
2 7506 -6 7500
3 7500 0 7500 Converged

21000

1 21000 -14883 6117
2 6117 1340 7457
3 7457 43 7500
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Table A.45 � Continued

Initial Guess Iteration Guess ∆(δA) Result Comment
(δA0) (k) (δAk) (δAk+1)

4 7500 0 7500 Converged

30000

1 30000 -27506 2494
2 2494 4655 7149
3 7149 351 7500
4 7500 0 7500 Converged

60500

1 60500 -59312 1188
2 1188 1871 3059
3 3059 1210 4269
4 4269 3170 7439
5 7439 61 7500
6 7500 0 7500 Converged

150000

1 150000 9920 159920
2 159920 16604 176526
2 176526 � � Model failed at this guess

Table A.46: Combined Iteration Summary for Estimating Ef,T = 10 000N/mm2

with di�erent initial guesses

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 8738 8738
2 8738 1243 9981
3 9981 19 10000
4 10000 0 10000 Converged

500

1 500 8218 8718
2 8718 1263 9981
3 9981 19 10000
4 10000 0 10000 Converged

7500
1 7500 2393 9893
2 9893 107 10000
3 10000 0 10000 Converged

21000
1 21000 -11872 9128
2 9128 872 10000
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Table A.46 � Continued

Initial Guess Iteration Guess ∆(δA) Result Comment
(δA0) (k) (δAk) (δAk+1)

3 10000 0 10000 Converged

30000

1 30000 -23880 6120
2 6120 3700 9820
3 9820 180 10000
4 10000 0 10000 Converged

64500

1 64500 -62948 1552
2 1552 7297 8849
3 8849 1133 9982
4 9982 18 10000
5 10000 0 10000 Converged

150000
1 150000 6580 156580
2 156580 � � Model failed at this guess

Table A.47: Combined Iteration Summary for Estimating Ef,T = 21 000N/mm2

with di�erent initial guesses

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 17528 17529
2 17529 3594 21123
3 21123 -123 21000
4 21000 0 21000 Converged

500

1 500 17048 17548
2 17548 3575 21123
3 21123 -123 21000
4 21000 0 21000 Converged

7500

1 7500 12523 20023
2 20023 803 20826
3 20826 175 21001
4 21001 -1 21000
5 21000 0 21000 Converged

10000

1 10000 10100 20100
2 20100 725 20825
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Table A.47 � Continued

Initial Guess Iteration Guess ∆(δA) Result Comment
(δA0) (k) (δAk) (δAk+1)

3 20825 175 21001
4 21001 -1 21001
5 21000 0 21000 Converged

30000

1 30000 -9036 20964
2 20964 725 20825
3 20825 36 21000
4 21000 0 21000 Converged

73000

1 73000 -1508 71492
2 71492 -9494 61998
3 61998 -44920 17077
4 17077 2607 19684
5 19684 1330 21014
6 21014 -14 21000
7 21000 0 21000 Converged

300000
1 300000 4405 304405
2 304405 5053 309458 Consistent updating in the wrong direction
3 309458 � � Model failed at this guess

Table A.48: Combined Iteration Summary for Estimating Ef,T = 30 000N/mm2

with di�erent initial guesses

Initial Guess Iteration Guess ∆Ef,T Result Comment
(Ef,T ) (k) (Ef,T,k) (Ef,T,k+1)

1

1 1 8738 8738
2 8738 1243 9981
3 9981 19 10000
4 10000 0 10000 Converged

500

1 500 21375 21875
2 21875 7726 29601
3 29601 386 29987
4 29987 13 30000
5 30000 0 30000 Converged

21000

1 21000 8344 29344
2 29344 642 29986
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3 29986 14 30000
4 30000 0 30000 Converged

92000

1 92000 -7347 84653
2 84653 -5953 78700
3 78700 -8281 70420
4 70420 -12505 57915
5 57915 -28600 29315
6 29315 706 30021
7 30021 -21 30000
8 30000 0 30000 Converged

50000
1 50000 -19721 30279
2 30279 -279 30000
3 30000 0 30000 Converged

fmax
c

Table A.49: Iteration Summary for Estimating Synthetic fmax
c = 1.00kN with Dif-

ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01

1.00 0.01 0.62 0.62
2.00 0.62 0.39 1.01
3.00 1.01 -0.01 1.00
4.00 1.00 0.00 1.00 Converged

0.50
1.00 0.50 0.51 1.01
2.00 1.01 -0.01 1.00
4.00 1.00 0.00 1.00 Converged

2.00

1.00 2.00 -0.85 1.15
2.00 1.15 -0.14 1.01
3.00 1.01 -0.01 1.00
4.00 1.00 0.00 1.00 Converged

3.00

1.00 3.00 -1.56 1.44
2.00 1.44 -0.38 1.06
3.00 1.06 -0.06 1.00
4.00 1.00 0.00 1.00 Converged

4.50

1.00 4.50 -2.73 1.77
2.00 1.77 -0.65 1.11
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3.00 1.11 -0.11 1.00
4.00 1.00 0.00 1.00 Converged

8.10

1.00 8.10 -8.09 0.01
2.00 0.01 0.28 0.30
3.00 0.30 0.77 1.07
4.00 1.07 -0.07 1.00
5.00 1.00 0.00 1.00 Converged

Table A.50: Iteration Summary for Estimating Synthetic fmax
c = 2.00kN with Dif-

ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01

1.00 0.01 3.92 3.92
2.00 3.92 -1.65 2.27
3.00 2.27 -0.26 2.01
4.00 2.01 -0.01 2.00

1.00
1.00 1.00 1.06 2.06
2.00 2.06 -0.06 2.00
3.00 2.00 0.00 2.00 Converged

1.50
1.00 1.50 0.50 2.00
2.00 2.00 0.00 2.00 Converged

3.00
1.00 3.00 -0.89 2.11
2.00 2.11 -0.10 2.00
3.00 2.00 0.00 2.00 Converged

4.50

1.00 4.50 -2.20 2.30
2.00 2.30 -0.29 2.01
3.00 2.01 -0.01 2.00
4.00 2.00 0.00 2.00 Converged

8.40

1.00 8.40 -8.24 0.16
2.00 0.16 1.40 1.56
3.00 1.56 0.43 1.99
4.00 1.99 0.01 2.00
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Table A.51: Iteration Summary for Estimating Synthetic fmax
c = 3.00kN with Dif-

ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01

1.00 0.01 8.76 8.77
2.00 8.77 -8.47 0.30
3.00 0.30 2.42 2.72
4.00 2.72 0.29 3.00
5.00 3.00 0.00 3.00 Converged

1.00
1.00 1.00 2.11 3.11
2.00 3.11 -0.11 3.00
3.00 3.00 0.00 3.00 Converged

2.00
1.00 2.00 1.02 3.02
2.00 3.02 -0.02 3.00
3.00 3.00 0.00 3.00 Converged

2.50
1.00 2.50 0.51 3.01
2.00 3.01 -0.01 3.00
3.00 3.00 0.00 3.00 Converged

4.50
1.00 4.50 -1.44 3.06
2.00 3.06 -0.06 3.00
3.00 3.00 0.00 3.00 Converged

9.00

1.00 9.00 -8.91 0.09
2.00 0.09 0.98 1.07
3.00 1.07 2.11 3.17
4.00 3.17 -0.17 3.00
5.00 3.00 0.00 3.00 Converged

Table A.52: Iteration Summary for Estimating Synthetic fmax
c = 4.50kN with Dif-

ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess ∆fmax
c Result Comment

(fmax
c ) (k) fmax

c k fmax
c k+1

0.01

1.00 0.01 8.54 8.55
2.00 8.55 -5.60 2.96
3.00 2.96 1.54 4.49
4.00 4.49 0.01 4.50
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5.00 4.50 0.00 4.50 Converged

1.00
1.00 1.00 3.53 4.53
2.00 4.53 -0.03 4.50
3.00 4.50 0.00 4.50 Converged

2.00
1.00 2.00 2.55 4.55
2.00 4.55 -0.05 4.50
3.00 4.50 0.00 4.50 Converged

3.00
1.00 3.00 1.50 4.50
2.00 4.50 0.00 4.50 Converged

5.00
1.00 5.00 -0.49 4.51
2.00 4.51 -0.01 4.50
3.00 4.50 0.00 4.50 Converged

10.70

1.00 10.70 -10.52 0.18
2.00 0.18 2.40 2.58
3.00 2.58 1.96 4.54
4.00 4.54 -0.04 4.50
5.00 4.50 0.00 4.50 Converged
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