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Abstract

Computational modeling and analysis of Fiber-Reinforced Concrete (FRC), an ad-
vanced composite known for its enhanced flexural strength and resistance to crack
propagation, form the focus of this research. The primary objective was to develop
a stable deterministic computational model capable of accurately replicating the
behavior of FRC beams under three-point bending. This model integrates funda-
mental material parameters observed at the micro-scale (fiber bond-slip and fiber
geometry) and links them to the resulting bending mechanism across the meso-
and macro-scales. A significant contribution of this work lies in the formulation of
an efficient inverse model which utilizes the Levenberg-Marquardt algorithm. This
method aims to extract explicitly defined material parameters (such as effective mod-
ulus and bundle scaling factor) by basing the objective function on the simplified
forward model’s expressions. The methodology includes comprehensive laboratory
testing to validate the computational results and ensure their practical applicabil-
ity. The fundamental novelty of this research is establishing a deterministic forward
model with formulations that are simplified enough for efficient inverse analysis, yet
precise enough to accurately predict FRC beam behavior, which thereby resolves
the traditional challenge of high computational cost in multi-scale inverse modeling.
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(Glossary of Terms

axial stiffness The combined resistance of the fiber bundle to axial deformation,
calculated as the product of the effective elasticity modulus (£) and the total
cross-sectional area (A) of the fibers.

crack inclination A parameter in the layered sectional model that represents the
angle of the crack opening.

crack-bridging The mechanism by which fibers cross a crack to maintain residual
strength and ductility.

deterministic model A computational model that always produces the same out-
put for a given set of inputs under fixed conditions.

displacement-controlled loading A testing method where the rate of deforma-
tion (displacement) is held constant.

fiber bundle model A multiscale framework used to describe and analyze the me-
chanical behavior of fiber-reinforced materials by linking the microstructural
properties of individual fibers to the overall strength, stiffness, and damage
resistance of the composite.

flexural strength The maximum stress a material can withstand under bending.

forward model A computational model that predicts results (output) based on a
specified set of known input parameters and governing physical laws.

global minimum The absolute smallest value of an objective function within the
entire solution space.

inverse analysis A technique that uses measured output data and a predictive
forward model to estimate or identify unknown input parameters of a system

or material.

inverse model A computational method used to estimate unknown physical pa-
rameters (input data) of a system based on measured responses (output data).

vil



Glossary of Terms

Jacobian Matrix A matrix composed of the first partial derivatives of a vector-
valued function.

load transfer The stress distribution mechanism across the cracked section from
the concrete matrix to the fibers via the bond.

local minima A solution found by an optimization algorithm that is smaller than
its neighbors but not the global minimum.

Monte Carlo Simulation A broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results, often used in stochastic
modeling to simulate parameter variability.

multiscale modeling A computational framework that links phenomena occurring
at different length scales (e.g., micro, meso, and macro) to accurately predict
the overall structural response of a composite material.

parametric analysis A mathod of systematically mapping specific input param-
eters of a model to the corresponding predicted output or overall system be-

haviour.

post-cracked state The state of concrete after the formation of the first crack,
where load is primarily sustained by the fibers.

post-peak softening The phase in the load-displacement test where the load-
carrying capacity gradually decreases as the crack opens.

pseudo time A generalized time variable that represents the sequence of recorded
data points relative to the total testing duration.

scale effects The observed discrepancies in physical phenomena when comparing
a small specimen or model and its full-scale structural element.

self-compacting concrete A highly flowable concrete mixture designed to self-
compact under its own weight without the need for mechanical vibration.

stochastic model A computational model incorporating randomness and uncer-
tainty as an inherent part of its structure, often relying on statistical parame-
ters.

Tikhonov regularization A technique for estimating model parameters in scenar-
ios where the independent variables are highly correlated.

validation The process of determining the degree to which a computational model
accurately represents the real-world phenomenon.
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Glossary of Terms

verification The process of confirming that a numerical algorithm correctly solves
the underlying mathematical equations of the computational model.
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List of Abbreviations

d, Vertical Displacement.

EFA Axial Stiffness.
BoA Basin of Attraction.

CMOD Crack Mouth Opening Displacement.
CT Computed Tomography Scan.

CV Coefficient of Variation.
DEM Discrete Element Method.

FBM Fiber Bundle Model.
FEM Finite Element Method.

FRC Fiber-Reinforced Concrete.
ITZ Interfacial Transition Zone.

LM Levenberg-Marquardt Algorithm.
LMA TLevenberg-Marquardt Algorithm.

LVDT Linear Variable Differential Transformer.
NRMSE Normalized Root Mean Square Error.
PDF Probability Density Function.

RC Regular Concrete.

RMSE Root Mean Square Error.



List of Abbreviations

RSR Relative Squared Residual.

RSS Residual Sum of Squares.

SCC Self-Compacting Concrete.

SS Sum of Squares.

TPBT Three-Point Bending Test.

V&V Verification and Validation.

VMA Viscosity Modifying Agent.

xi



Chapter 1

Introduction

Fiber-reinforced concrete (FRC) is a composite material consisting of regular con-
crete (RC) with the addition of short-length, high-strength fibers which are added
during the mixing process to enhance the material’s overall behavior under static
and dynamic loading [1]. The presence of fibers in the concrete matrix gives the
structure the ability to improve the resistance to failure in the post-cracked state.
Fibers bridge the micro-cracks and limit their propagation, preventing them from
merging into even larger cracks that ultimately lead to a complete brittle collapse
of the structure [2].

Various types of fibers are used in cement-based materials to improve their me-
chanical properties, such as, polyvinyl alcohol fibers, and polypropylene fibers, and
the most common ones - steel fibers. Steel fibers are known for significantly en-
hancing the flexural and uniaxial tensile strengths of concrete due to their bridging
effect, which increases the material’s fracture energy [3]. Steel fibers have a high
modulus of elasticity (typically between 200 and 210 Gpa) and a tensile strength
between 500 and 3000 MPa, which when added to the concrete mixture influences
the composite’s own elasticity modulus and tensile strength [4]. However, steel fibers
are prone to corrosion, particularly when exposed to chloride environments, which

can compromise their durability [5, 6].

Despite its frequent use in construction, the procedures and regulations for de-
signing FRC structures that would meet all the necessary criteria for practical ap-
plication remain under-refined due to inherent uncertainties surrounding the mate-
rial’s response under various loadings and the complex, micro-scale interactions that
govern its post-cracking behavior [7]. The insight into FRC behavior is primarily
obtained through laboratory testing, where the material is examined under con-
trolled conditions. Among these tests, the three-point bending test (TPBT) stands
as the standard procedure for the determination of flexural fracture properties of
beams. However, this experimental approach is both financially demanding and
time-consuming. Therefore, computational modeling, with its ability to simulate



laboratory tests and predict material behavior, poses a convenient alternative. In
recent years, models for systematic analysis of parameters have been developed for a
range of materials, including concrete [8], steel [9], modern metamaterials [10], and
others.

The development of computational models that accurately capture the heteroge-
neous and stochastic nature of FRC by connecting local and global parameters with
constitutive laws, is of great interest to both researchers and engineers. Moreover,
an inverse model based on a reliable computational framework holds the potential to
provide additional insights into physically unmeasurable FRC material parameters.

Previous researchers in the field of multiscale modeling of FRC have developed
stochastic models that were successfully implemented in an inverse analysis algo-
rithm [11], [12]. These stochastic models incorporate the material’s randomness and
uncertainty as an inherent part of its structure. Techniques such as Monte Carlo
simulations, probabilistic methods, and random field theory are commonly used to
introduce randomness, particularly to model the fiber distribution and bond-slip
law within the concrete matrix. For instance, Kozar et al. employed a stochastic
approach to homogenize the FRC composite, utilizing the fiber bundle model to
describe the fiber distribution [11, 13, 14].

However, these models heavily rely on statistical parameters, which often don’t
directly correlate with any specific physical properties of the material. The scatter-
ing in measurement data from stochastic models, although valuable for simulating
and representing errors in real experiments, presents a significant challenge for in-
terpreting through an inverse analysis [14]. As a result, the use of stochastic models
for parametric estimation and precise analysis of material values on a multi-scale is
limited.

In contrast, deterministic models always produce the same output given the
same input under fixed conditions. These models are essential for scenarios where
predictability and reproducibility are crucial, such as in FRC, where reliable and pre-
cise parameters are necessary. Although deterministic models can handle complex
geometries, material properties, and boundary conditions, their comprehensive for-
mulations make implementation in an inverse analysis and parameter identification

an overly complicated, time-consuming, and resource-demanding task [15].

The research gap addressed in this work is the absence of a computationally effi-
cient deterministic forward models for FRC that are suitable for subsequent integra-
tion into a stable inverse parameter identification framework. This study focuses on
developing a novel deterministic numerical model of FRC beams under Three-point
bending test (TPBT). This was accomplished by integrating analytical solutions
and explicit parameters that define a fiber bundle model, which mitigates the men-
tioned challenges. The proposed model aims to provide a systematic and consistent



1.1. Thesis Outline

approach to simulating FRC behavior under TPBT, enabling more accurate and
practical applications in engineering design, particularly through inverse analysis.

1.1 Thesis Outline

This dissertation is structured to address the research objectives systematically.
Chapter 2 presents a relevant literature review that mainly focuses on multiscale
modeling, fracture mechanics, and various forward and inverse modeling techniques
for FRC. Chapter 3 outlines the research goals and hypothesis that motivate this
work. Chapter 4 presents the detailed development and validation of the simpli-
fied deterministic forward model, including the analytical formulations used for the
fiber-matrix bond and the equilibrium equations. Chapter 5 focuses on the formula-
tion and validation of the inverse model using the Levenberg-Marquardt algorithm
(LMA). Chapter 6 presents the results of the parametric analysis and the inverse
analysis process on experimental data. Finally, Chapter 7 summarizes the key find-

ings, conclusions, and provides recommendations for future research.



Chapter 2

Literature Review

2.1 General Characteristics of Fiber Reinforced Con-

crete

Fiber-reinforced concrete (FRC) integrates short, high-strength, and discontinuous
fibers into the conventional concrete matrix of aggregates and cement, and represents
a significant advancement in composite materials and construction. These fibers
are added during the mixing process which fundamentally changes the material’s
mechanical properties. The primary function of these embedded fibers is to increase
the concrete’s inherent weak points, particularly its low tensile strength and brittle
failure mechanisms. By doing so, FRC structure’s tensile and compressive strength,
ductility, and resistance to fatigue are significantly enhanced, while the performance
of the structure under both static and dynamic loading conditions gets collectively
improved [1]. A critical characteristic of FRC is its ability to improve resistance
to failure in the post-cracked state, as the fibers act as crack-bridging elements
that slow down the micro-propagation of cracks and prevent their union into larger
fractures that could potentially lead to a sudden, brittle collapse of the structure
[16]. This bridging action fundamentally changes the failure mode from brittle to a
more ductile and controlled response, which is a highly desirable structural property

in modern structural design.

The choice of fiber type greatly influences the mechanical properties and overall
performance of FRC structures. Common types of fibers used in practice include
steel, synthetic, glass, and other specialized fibers, where each possesses distinct ma-
terial properties, shapes, and aspect ratios [17]. Steel fibers pose as the most com-
mon form of micro-reinforcement. They typically come in plain, hooked, crimped,
and enlarged end shapes, as presented in Figure 2.1. Steel fibers have a high ten-
sile strength in the range of 800-2,000 MPa, and elastic moduli of approximately
200 GPa. Their failure strains typically range from 3% to 5%, and the aspect ratio,
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defined as the fiber length divided by its average cross-section diameter, commonly
lies between 30 and 80. Typically added dose rates from 0.3% to 1% of the concrete
volume, although higher dosages may negatively affect workability.[17].

Plain

Hooked end 1

Hooked end 2

Hooked end 3 C\ /3

U AVAVAVAVAVAVAVAVS

Enlarged end } <

Length
f—— — =

Figure 2.1: Common types of steel fiber reinforcement [17]

Central to the effectiveness of FRC is a microscopic region between the fibers
and the surrounding cement matrix, known as the interfacial transition zone (ITZ).
The ITZ is a weak link due to its porous nature which makes it is critical to the
composite’s overall performance. Around the predominantly heterogeneous 1TZ,
fiber-matrix debonding can occur as cohesive failure, while at the fiber-cement con-
tact surface the fiber-matrix debonding appears as adhesive failure [18].

An appropriate bond is essential for high energy absorption through debonding
and the subsequent frictional phase of fibers during pullout. A poor fiber-matrix
bond obstructs efficient load and energy transfer, while an excessively strong one
can lead to premature fiber breakage and minimize the fracture energy.Therefore,
as the efficiency of force transfer within the ITZ plays a critical role in the overall
performance of FRC structures, it is of high interest to evaluate its properties and
parameters that govern it in order to improve the material performance.Previous
studies used nano-indentation and fiber pullout tests to analyze this, even though a
significant gap still remained in investigating its mechanical properties at a micro-
scale and meso-scale [18].

Concrete reinforced with fibers operates through multiple interconnected mecha-
nisms that enhance its structural integrity beyond simple crack bridging [19]. Some
of the mechanisms include: crack arrest, load transfer and energy absorption. Crack



2.1. General Characteristics of Fiber Reinforced Concrete

arrest mitigates micro-crack propagation by diverting their paths and redistributes
strain. Studies that utilized digital image correlation and acoustic emission tests
have showed that a higher volume of fibers leads to improved crack control and
strain redistribution [19]. Load transfer is a mechanism that directly influences
both pre-peak and post-peak stress-displacement relations [20]. Research has shown
that the effectiveness of this mechanism is greatly governed by the robustness of
interfacial fiber-matrix bond, as well as fiber position and orientation [19]. In terms
of energy absorption, it primarily refers to the absorption done through the fiber
pull-out and fracture mechanisms that directly affect structural toughness. Mechan-
ical testing and computed tomography studies shown that some FRC structures had
up to a 49% increase in toughness due to clever energy absorption solutions [21].
Approximately half of the internal energy dissipation is a result of concrete ma-
trix cracking, which includes crack propagation and multiple other cracking systems
governed by the fibers’ influence, while the remainder is due to fiber pullout.

Fiber-reinforced concrete structures’ enhanced mechanical properties have led to
FRC being widely adopted for various applications where conventionally reinforced
concrete falls short. The most common applications include sprayed concrete for tun-
nel linings and slope stabilization, industrial and airport runway flooring subjected
to heavy dynamic loads, and other critical infrastructure elements like wind turbines
and nuclear plant wall linings exposed to extreme stresses and fatigue. Furthermore,
FRC offers significant economic benefits that extend beyond the improved structural
performance [22]. It also allows for the design of thinner elements, which leads to
reduced material usage and lighter structures, and a potential decrease in overall
material costs and improved sustainability [22, 23]. The incorporation of fibers
can also partially or completely replace traditional rebar reinforcement, and signifi-
cantly lower labor and material costs associated with rebar installation |22, 24, 25.
Moreover, FRC’s properties quicken the construction processes by reducing the com-
plexity of reinforcement necessary for geometrically complex elements, which overall
translates into lower overhead costs and shortened project timelines [24, 26]. While
the initial investment in fiber materials can be a obstacle, the long-term savings in
maintenance and labor often outweigh these initial expenses. All of this makes FRC
a compelling choice for modern construction practices and further research [25].

Despite the increase in FRC usage in modern construction practices, it still re-
mains an insufficiently described material from a computational modeling point of
view. A significant gap exists in the establishment of standardized procedures and
regulations for designing FRC structures that would comprehensively encompass
all necessary criteria for practical application [27|.Existing standards for FRC have
several limitations, particularly in their ability to adequately address post-peak be-
havior and ductility, as well as inconsistencies in testing methodologies |28, 29|. This

leads to engineers still choosing conservative design solutions even in cases where it’s
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structurally not the most optimal choice, simply due to current standards lacking
sufficient parameters for evaluating post-peak stresses in FRC elements [28], and
an agreed upon testing setups (e.g., four-point versus three-point bending), which
creates discrepancies in for performance evaluations when choosing FRC over tradi-
tional RC [28]|. This absence of a unified approach to testing and evaluation across
different standards not only prolongs the reliance on traditional design methods,
but also slows down the integration of innovative materials [29]. This shows that
there is a clear need for studying of advanced modeling techniques to bridge the gap
between costly experimental observations and vigorous design guidelines [30].

Traditionally, the knowledge about any engineering material, including FRC, is
primarily gathered through laboratory testing. Experimental approaches allow for
an accurate examination of various material properties and structural behaviors un-
der highly controlled conditions. However, experimental testing of FRC has several
significant limitations that obstruct reproducibility and accurate performance anal-
ysis. As fibers are inherently randomly distributed and the number of fibers bridging
cracks can widely vary even within supposedly identical specimens, it causes a sub-
stantial variability in the post-cracking phase of tested performance. Such variability
further complicates the establishment of standardized testing protocols, as existing
methods often fail to take into account parameters such fiber count at crack surfaces
and obscures their actual impact on the final element’s behavior [31]. Furthermore,
directly measuring localized strains and crack bridging forces is often impossible due
to the interactions between individual fibers and the concrete matrix being either
overly complex, microscopic or both [32]. Traditional testing methods frequently
fail to capture the nuanced behaviors of fibers during crack formation which limits
the ability to comprehensively understanding their contributions to structural in-
tegrity |33]. Lastly, scale effects pose a considerable challenge, because laboratory
samples may not accurately represent full-scale structural behavior, as larger spec-
imens can exhibit different mechanical properties than smaller ones [34, 35]. This
further complicates the direct conversion of laboratory obtained data to real-world
applications, but highlights how such limitations, coupled with the financial expense
and time-consumption of experimental campaigns allude to a need for alternative
and complementary approaches [35].

For all these reasons, computational modeling emerges as a key tool, for its ca-
pability to efficiently simulate and predict material behavior. It serves as a vital
complement to, and in certain scenarios, a complete replacement for, traditional
experimental methods. Therefore, the development of accurate and reliable com-
putational models that effectively capture the complex interactions within FRC is
of high interest to both engineers and researchers. By establishing clear connec-
tions between local and global parameters, such models provide a cost-effective and

time-conserving means to explore diverse design scenarios and loading conditions.
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Furthermore, the integration of an inverse model offers potential for a trans-
formative method of gathering insight into FRC material properties. Such models
provide a look into physically unmeasurable material parameters, as well as param-
eters that are difficult or impossible to obtain through direct experimental means.
This includes, but is not limited to, the actual in-situ fiber distribution within a
cast element, the characteristics of the fiber-matrix bond for individual fibers, or
the localized post-cracking tensile constitutive law of the FRC beyond what can be
derived from global load-displacement curves. This capability could be critical for
improving FRC design optimization methods, as it allows engineers and other poten-
tial users to fine-tune material compositions and structural geometries for optimal
performance. Moreover, inverse models can significantly contribute to the monitor-
ing and evaluation of existing FRC structures, which allows for an eased inspection
of current material states or even detection of any internal damages from observable
structural responses. The research and development of such computational tools is
essential for improving potential of fiber-reinforced concrete and establishing it as
a comprehensively understood and confidently applied material in civil engineering
practices.

2.2 Challenges and Approaches in Computational
Modeling of Fiber Reinforced Concrete

In order to adequately model fiber-reinforced concrete, it is necessary to examine
the characteristics that distinguish it from conventional concrete. As was pointed
out in the work of Jansson|36|, the primary benefit of fiber reinforcement lies in
its ability to control cracking, which is largely governed by the bond mechanism
between the fibers and the concrete matrix, as well as the pull-out behavior during
crack propagation. Both of these mechanisms are directly related to two fiber-
reinforced concrete material characteristics that can be observed on various scales:
the bond-slip law and the fiber distribution within the concrete matrix [37].

2.2.1 The Multiscale Nature of Fiber-Reinforced Concrete

The behavior of FRC is inherently multiscale, as it spans from the micro-scale to the
meso-scale and the macro-scale. At the micro-level, fibers interact with the concrete
matrix through interfacial slip and pullout mechanisms, which influences the crack
bridging and arresting [38], [39]. The meso-scale behavior is characterized by fiber
distribution and orientation within the matrix, which affects the overall performance
of the composite [40]. At the macro-scale, what is observed are the mechanical
properties of FRC elements, which includes improved compressive, flexural, and
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tensile behavior [41], [40].

Capturing this multiscale nature of FRC is critical for accurately predicting
the overall response of finished FRC structures. Multiscale modeling approaches
are essential for bridging these scales and capturing the complex interactions be-
tween them. For instance, Zhan and Meschke [42] developed a multiscale framework
that links micro-scale fiber pullout behavior to macro-scale structural performance,
demonstrating the importance of integrating fiber-matrix interactions into larger-
scale models. Similarly, Huang et al. [43] used a meso-macro model to analyze
the flexural behavior of FRC, showing how fiber orientation and distribution at the
meso-scale influence the load-displacement response at the macro-scale. Without a
multiscale approach, models risk oversimplifying the material behavior, which leads
to inaccurate predictions of structural performance and ultimately being useless for
any structural design.

However, multiscale models of fiber-reinforced concrete confront quite signifi-
cant challenges, especially when applied for inverse analysis of material parameters.
According to literature, these challenges can be categorized into three main areas:
computational burden, parameter identification limitations, and cross-scale valida-
tion issues. First, integrating micro-, meso-, and macro-scale phenomena into a
computational model is extremely computationally taxing. For example, studies
have showed that the resource intensity of simulating problems containing large
numbers of fibers and heterogeneous materials within the finite elements workframe
could take up to hundreds of millions degrees of freedom in order to be solved
[44]. To mitigate these issues, a common approach is applying order statistics to
reduce simulation times |45, 46|. Second, inverse analysis for parameter identifica-
tion faces significant limitations, such as sensitivity to experimental data quality,
risks of converging to local minima instead of a global one, and the overestimation
of post-cracking tensile capacity [32]. And third, validating models across different
scales is a challenge on its own. Errors at the micro-level can propagate upward and
lead to significant discrepancies at the structural level [47, 48]. This is also furthered
by experimental limitations, such as data availability, precision and noise, which all
affect the stability reliability of validation [44, 45].

Bridging the gap between length scales presents one of the primary challenges in
multiscale modeling of FRC. Often times sophisticated coupling techniques are re-
quired to ensure consistency and accurate information transfer between scales, which
are often computationally demanding. This can also be seen in the work of Zhan
and Meschke [42] who highlighted the difficulty of accurately transferring localized
micro-scale effects to the macro-scale without oversimplification, as a mismatch in
scale-dependent phenomena can lead to inaccuracies in predicting structural behav-
ior. Marfia and Sacco also developed a micromechanical model for FRC that makes
use of the homogenization theory to predict macroscopic behavior from a periodic



2.2.2. Modeling Mechanisms of Fiber-Matrix Interactions

microstructure [49]. This method uses a "cell model" to represent the composite’s
microstructure and defines the overall properties of the composite through homog-
enization. While homogenization techniques can be computationally efficient, they
often rely on simplifying assumptions, such as a periodic or regular distribution of
fibers, which contrasts with the real-life randomness of real FRC.

Another big challenge is how computationally intensive multiscale models are
due to the need to simulate various phenomena at multiple scales simultaneously.
Of course, this also greatly depends on the method used to build the model and will
be further elaborated while categorizing models in chapter 2.2.

2.2.2 Modeling Mechanisms of Fiber-Matrix Interactions

In order to understand the specific challenges of modeling fiber-reinforced concrete
as opposed to regular concrete, it is essential to identify the material and behav-
ioral characteristics that set it apart. The primary difference lies in the addition
of fibers within the concrete matrix and their influence on the cracking behavior
of the element. This increased heterogeneity makes modeling this composite even
more challenging, especially since the heterogeneity of fiber-reinforced concrete is
closely connected to the failure mechanisms of regular concrete [? |. Modeling these
mechanisms is key to successfully simulating FRC behavior. Key factors include
fiber orientation, distribution, and the bond-slip relationship. Therefore, these pa-
rameters and their effects will be discussed in detail in the following chapters.

2.2.2.1 Modeling of Fiber Orientation and Distribution

Fiber orientation and distribution are FRC characteristics that represent the spatial
arrangement and angular alignment of fibers within the concrete matrix, which di-
rectly influence the anisotropic mechanical properties, crack resistance, and overall
performance of FRC structures. Modeling fiber orientation and distribution means
mathematically defining these characteristics within a computational model of a
composite matrix, in this case - concrete. This is critical for predicting the fiber-
reinforced concrete’s anisotropic mechanical properties, such as tensile strength,
crack resistance, and overall structural behavior. However, this is highly challeng-
ing as mechanisms that define fiber orientation and distribution are influenced by
a variety of factors, such as the fiber geometry, the rheological properties of the
matrix, the bar embedding and concrete mixing methods, element shape, etc. [50].
Obtainment of detailed fiber orientation data within a cured concrete specimen is
one of the main challenges when researching FRC. Some of the methods of measuring
fiber orientation include electromagnetic induction, image analysis, and computed
tomography scanning [51]. Tt is also important to note that the causes for anisotropic
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fiber alignment cannot be evaluated independently due to their coupled nature. For
instance, the effect of casting direction cannot be quantified by disregarding the
type of casting element, and an isotropic fiber orientation cannot be assumed when
anisotropy from fresh-state properties, casting, and compaction is likely to occur
[52|. Even though fiber orientation and distribution are distinct concepts, they are
frequently conflated and discussed under the same notion. This is due to their in-
terconnected influence on the behavior of the structure, shared modeling challenges,
and shared practical difficulties of isolating their effects in experimental studies.

Fiber orientation refers to the angular alignment of individual fibers within a
composite matrix relative to loading directions or principal stresses. It is typically
defined using spherical coordinates (azimuth angle ¢, polar angle #) or represented
as a unit vector p along the fiber’s longitudinal axis. A simplified representation
of fiber orientation defined with fiber’s angle of orientation, embedment length and
embedment position relative to the loading axis is shown on Figure 2.2.

Figure 2.2: Half embedded fiber with angle orientation properties

On the other hand, the fiber distribution refers to the spatial arrangement of
fibers within the composite, which includes their density, clustering, and interac-
tions, and is seen in Figure 2.3. It is influenced by material rheology, parameters
that influence the casting process, and fiber-matrix interactions. Unlike fiber ori-
entation, distribution addresses both local heterogeneity (e.g., fiber clumping) and
global uniformity.
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Figure 2.3: X-ray image of a FRC beam [53].

In the context of incorporating fiber orientation into computational models,
second-order orientation tensors are frequently used to describe the average align-
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ment of the fibers [54|. This approach, often used to describe the average 3D fiber
configuration inside a concrete volume, provides a simplified yet effective way to ac-
count for fiber orientation, which is critical for predicting the anisotropic mechanical
properties of fiber-reinforced concrete [51, 55]. The main diagonal components of the
tensor can be expressed as a percentage of fiber orientation in each of the three main
directions [51|. For example, Reinold, Gudzuli¢, and Meschke [56] developed a finite
element method framework based on the probabilistic representation of fiber distri-
bution proposed by Advani & Tucker [54]. Their work builds on the Folgar—Tucker
model, which incorporates the dynamic evolution of fiber orientation during pro-
cessing, and takes into account effects such as flow-induced alignment and fiber to
fiber interactions [57]. Despite its widespread use, the Folgar-Tucker model has a
notable limitation as it tends to overpredict fiber orientation in certain scenarios
[58]. Given the inherent complexity and stochastic nature of such models, and the
significant challenge of validating them with experimental data, a more deliberate
and simplified approach was chosen for this thesis.

In addition to orientation tensors, several other formulations have been proposed
to quantify fiber orientation. Krenchel’s orientation factor (a) is a 2D approach
that relates the number of fibers in a cross section with the theoretically possible
maximum number if all fibers were eligned perfectly equal relative to each other and
homogeneously distributed [51]. Another broadly used formulation is Schonlin’s
orientation coefficient (1), which is based on the measured average out-of-plane
angle (#) among all visible fibers on a cross section [51]. The effective steel fiber
reinforcement ratio (py.rs) combines these concepts and takes into account both
the number of fibers and their measured out-of-plane angle. These parameters are
used because the residual bending tensile strength can be directly related to both
the orientation factor and the orientation angle [51].

In FRC elements, fibers are uniformly distributed and oriented in various direc-
tions, which means not all fibers align with the direction of the applied load. This
variability in orientation affects the mechanical behavior of the composite material.
Pullout response and bond-slip relations are sensitive to the fiber orientation [52].
Therefore, the pullout responses of fibers aligned with the load direction can be
misleading for modeling the composite’s tensile behavior [52]. Even so, it has been
documented that fibers inclined at an angle between 0° and 20° show greater pull-out
resistance compared to fully aligned fibers, while those at an angle greater than 30°
have a great likelihood to be subjected to rupture and crumbling of the surrounding
concrete matrix [59, 60]. The influence of fiber alignment on the bearing capacity
of a singular fiber subjected to pullout is shown in Figure 2.4. The document states
that the peak pullout load of an inclined fiber was found to be almost as high as that
of an aligned one [52]. Moreover, the work required to completely remove an inclined
fiber was higher than that of an aligned one [52]. Many modeling approaches also
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focus on a unidirectional fiber alignment with an orientation angle of 0°, examples
given in [37, 61|, as it simplifies the problem and allows for a direct focus the pullout

failure mechanism.
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Figure 2.4: Pull-out load for different orientation angles of fibers [62].

For this research, a controlled, deterministic fiber arrangement with all fibers
aligned parallel to the pullout axis (0° orientation) was adopted. This deliberate
choice allowed the research to isolate the bond-slip law and the pull-out failure
mechanism more directly, which is the primary focus of this work. Even though
such simplification does not capture the full anisotropy of FRC, it provides a well-
posed problem that is more suitable for the development and validation of an inverse
analysis algorithm. The model’s core structure and algorithm are designed to be ex-
tensible, and leave room for future implementation of more complex fiber orientation
models. However, this would require significant experimental validation consisting
of three-point bending of beams with fibers at known angular positions which also
would be a challenge in itself, and developing the full procedure would be beyond
the scope and budget of this research. Therefore, this is considered a key step for

future work and model improvements.

Considering the complexity of an exact mathematical description of the fiber
orientation and distribution, a different approach has been applied when taking
into account that only the fibers that are directly crossing the crack path have an
effect on adding to the crack initiation and crack propagation resistance, which
significantly reduces the necessary complexity of the computer model of the fiber-
reinforced concrete. With such an approach, the only position of the beam to have
the fibers implemented is the position where the crack will be located during the
simulation [63].
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2.2.2.2 Modeling of the Bond-Slip Law

The bond-slip law represents the relation between the interfacial shear bond (the
bonding stress) and the relative displacement (slip 7) at the interface between fibers
and the surrounding concrete matrix. More simply put, The bond-slip law refers to
the shear bond responsible for the load transfer parallel to the longitudinal axis of the
reinforcement [64]. This relation is crucial for understanding how forces are trans-
ferred between reinforcement and concrete, as they impact the structural behavior of
reinforced concrete elements [65|. Therefore, accurate modeling of the bond-slip law
is essential for predicting the performance of reinforced concrete structures under
various loading conditions [66].

The bond-slip law is typically modeled using constitutive laws that incorporate
parameters such as fiber geometry, surface characteristics, concrete matrix proper-
ties, and interfacial friction. The impact of the bond-slip law on the mechanical
properties of Fiber Reinforced Concrete (FRC) has been extensively investigated by
Smolci¢ and Ozbolt [67], who used a meso-scale approach based on the microplane
model to replicate experimental tests. A stochastic approach to model the bond-slip
law and an adequate description of the force-displacement relation are applied by
Kozar et al. [37]. Whereas more exact methods were used by Rukavina [15], whose
model is developed using the finite elements method.

In terms of incorporating parameters into the model, it is important to note that
the modulus of elasticity for individual fibers in FRC, particularly steel fibers, is not
a standardized value in the same sense as the nominal £ ~ 200 GPa commonly used
for bulk steel. In a lot of the literature, what is reported is the effective modulus
of the FRC composite rather than that of a single isolated fiber. For example, Kim
et al. [68] reported that the effective modulus of steel-fiber-reinforced composites
ranged between 45 and 55 GPa, which reflects the combined contributions of the
fibers and the surrounding matrix. This effective modulus is a function of multi-
ple parameters, including fiber material properties, aspect ratio, volume fraction,
orientation, and interfacial bonding characteristics. Wang et al. [69] showed that
complex micromechanical models can predict this composite modulus by accounting
for these parameters in combination, instead of relying on a single inherent material
property. Furthermore, empirical studies have shown that increases in fiber volume
fraction and aspect ratio tend to modestly increase the composite’s elastic modulus,
which may also provide a partial explanation for observed size-effect correlations in
FRC experimental results.

A notable approach of analytical modeling of FRC with solely deterministic pa-
rameters was developed by Parise, who created a comprehensive analytical model
for full fiber pull-out [70]. This model was chosen as representative for its relatively
simple formulation, completeness of its analytical solution, and good fit with experi-
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mental data. What makes this model comprehensive in a deterministic context is its
use of a functional relationship that captures the different phases of pull-out rather
than a single value. The model is based on several simplifying hypotheses, such as a
planar crack and negligible matrix deformation, and assumes a linear slip-hardening
frictional bond where the interfacial shear stress at the tip of debonding zone (7) is a
function of fiber slip (S) and a non-dimensional hardening parameter (5) [70]. This
allows the model to analytically describe the pull-out force-displacement relationship
for both pre-debonding and post-debonding stages [70]. This approach was further
extended to describe the behavior of hooked-end fibers, where the model integrates
an energy approach to simulate the progressive straightening of the hook through
the development of plastic hinges [70]. This deterministic model for hooked-end
fibers produces a characteristic stepped force-displacement curve that successfully
captures the main phases observed in experiments. This level of parameterization
and breakdown of key complex phenomenon into a series of analytically solvable
stages all within a deterministic framework, is a direct inspiration for the model
developed in this thesis.

The influence of fiber geometry, such as half-hooked or hooked fibers, on pull-
out behavior is significant and depends heavily on the embedment length [71]|. For
half-hooked fibers, the pullout performance can be superior to that of straight fibers
at short embedment lengths. However, this effectiveness decreases with increasing
length, and at very long embedment lengths, half-hooked fibers can rupture pre-
maturely, which can result in lower pullout energy and equivalent bond strength
compared to straight fibers. This shows that for mechanically anchored fibers, there
is an optimal embedment length beyond which their effectiveness can diminish due
to premature straightening or stress concentrations. This understanding of how em-
bedment length and fiber geometry interact is important for developing FRC models,
especially as the plastic deformation of the fibers is reflected on their pull-out be-
havior seen in relations such as load-displacement or load-slip. This elastic-plastic
response can be simplified withing within a so-called frictional pulley model, where
the input parameters are the mechanical and geometrical properties of the fibers
and the concrete’s ultimate strength, and which represent the pull-out force due to
plastic deformation contribution of one, two, three or more plastic hinges [72].

By integrating the bond-slip law, and fiber orientation and distribution into
a load-displacement curve approach, researchers can more accurately simulate the
structural response of FRC elements under bending loads. This method involves
developing constitutive models that account for the interfacial bond-slip behavior
and the spatial distribution of fibers within the concrete matrix. For instance,
Meng et al. |73] investigated the bond-slip constitutive relationship between basalt
fiber-reinforced polymer bars and basalt fiber recycled-aggregate concrete. Through
pullout tests, they derived bond stress-slip curves and established constitutive laws
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that can be utilized in finite element modeling to predict load-displacement behav-
ior. The load-displacement curve approach, which takes into consideration both
the bond-slip mechanism and fiber orientation in 2D, provides a comprehensive
framework for modeling the complex behavior of FRC elements. This methodology
improves the accuracy of structural analyses and supports the optimization of FRC

design for improved performance under various loading scenarios.

2.2.3 Comparison of Modeling Paradigms

When creating a numerical model that simulates the behavior of any structural
element that is defined by its material parameters, it’s important to properly de-
fine the scale on which the mechanism will be observed. Therefore, in engineering
applications, macro-scale models are commonly employed for numerical modeling.
Nevertheless, the use of meso-scale models offers a more detailed and insightful rep-
resentation of concrete behavior, while micro-scale models provide detailed material
parameter analysis. However, the immense heterogeneity of concrete presents a
significant challenge to qualitatively describe with a numerical model on a micro-
scale. This, in terms of FRC, is further compounded by the addition of fibers to
the mixture. This increased heterogeneity makes modeling a composite even more
challenging.

In previous research, two primary approaches have been taken to address this
problem: applying an appropriate finite element model where the fibers are dis-
cretized and located along the edges of the finite elements [67], and using the fiber
bundle model (FBM) for composite materials [74]. Both approaches assume that the
material sample consists of extremely small elements, such as the concrete mixture
and fibers, described by local properties, whose behavior during experiments can be
described by the global response behavior of the concrete element.

As with these approaches, most computational models of fiber-reinforced cemen-
titious composites, such as fiber-reinforced concrete, are based on:

1. formulation of the stress-strain behavior within the framework of homogenized

continuum mechanics;
2. bridging stress-crack opening displacement of fibers (and the concrete matrix);

3. bond-slip behavior of fibers, where the concrete matrix and each fiber are
modeled separately [75].

These three challenges can be seen as checklists when modeling FRC. A variety
of modeling paradigms have been developed to tackle these challenges, each with
distinct advantages and disadvantages, and applied approaches mostly depend on
the researchers’ goals and available tools.
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2.2.3.1 Discrete and Semi-Discrete Models

Methods that take into account each individual fiber’s interaction with the concrete
matrix can be categorized as discrete modeling. This is most often seen in the Dis-
crete Element Method (DEM) and Finite Element Method (FEM), where fibers are
modeled as embedded elements or discrete entities with bond-slip relationships at
the fiber-matrix interface. Caggiano et al. [76] developed a meso-scale model us-
ing DEM to simulate hybrid steel fiber-reinforced concrete, while Smolci¢ & Ozbolt
[77] proposed a similar microplane-based meso-scale model to capture fiber-matrix
bond-slip behavior. Finite element-based models, such as those by Soetens et al.
[78] and Zhang et al. [79], also use embedded fiber elements to study flexural and
fracture performance. This discrete approach was advanced by Huang et al. [43]
who integrated meso and macro-scale models to analyze hooked-end steel fibers.
Pros et al. [80] proposed a numerical strategy to account for individual fibers in
their actual location and orientation within the concrete bulk. Congro et al. [81]
developed a mesoscale approach with a novel finite element formulation, embedding
fibers in cementitious matrix elements and considering fiber orientation, stiffness,
and strength. This method allows for random fiber distribution without mesh de-
pendency. Marcalikova & Sucharda [56] utilized a 3D computational model with a
fracture-plastic material model, emphasizing the importance of determining input
parameters and mechanical properties for accurate FRC modeling. Despite their
accuracy in simulating crack bridging and stress transfer, these models face chal-
lenges in the form of computational costs, scalability limitations for large structures,
and the need for precise calibration of bond-slip and fiber orientation parameters
[82, 83].

Semi-discrete approaches can offer a relief to these issues by combining the abil-
ity to capture fiber-level parameters to a certain extent with methods borrowed
from continuum models that are much more efficient. Here, fibers are represented
as semi-discrete bodies within a continuum matrix, which allows for the simula-
tion of fiber-concrete interactions without explicitly modeling every individual fiber.
Cunha et al. [84] developed a semi-discrete model where steel fibers are represented
as line elements embedded in a finite element mesh, which enables the simulation of
crack bridging and stress transfer in FRC beams. This model was validated using
experimental results, which proved its ability to accurately predict flexural behavior.
Kang and Kim [85] proposed a semi-discrete framework that combines orientation
tensors with discrete fiber representations to model the anisotropic behavior of FRC
under bending loads. Their approach reduced computational costs while maintain-
ing accuracy in predicting crack patterns and load-deflection responses. However,
semi-discrete models face limitations in capturing localized effects, such as fiber
clustering or complex crack patterns, due to the simplified representation of fiber-
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matrix interactions [55]. Moreover, the calibration of semi-discrete models often
requires extensive experimental data to accurately define fiber orientation and dis-
tribution parameters, which can be a significant drawback for practical applications
[56]. Capturing the stochastic nature of fiber distribution and orientation remains
a significant challenge, particularly for multiscale applications.

2.2.3.2 Continuum and Stochastic Models

In contrast to these methods, continuum modeling approaches treat fiber-reinforced
concrete as a homogeneous material with effective properties that represent the aver-
age behavior of the composite, which also includes the fibers. These methods do not
explicitly model individual fibers but instead use homogenized material properties
to describe the overall response of the material. One common continuum approach
is homogenization, where effective material properties are derived by averaging the
contributions of fibers and the matrix at a macroscopic scale. For example, Zhan
and Meschke [42]| developed a multiscale homogenization framework to predict the
mechanical behavior of FRC structures, starting from micro-scale fiber pullout and
scaling up to macro-scale structural response. While continuum models are com-
putationally efficient and suitable for large-scale structural analyses, they rely on
simplifying assumptions about fiber orientation and distribution, which limits their
capability in capturing localized parameters or complex failure mechanisms [55].
Despite these limitations, continuum modeling and homogenization of the material
remains a widely used approach in FRC modeling practice.

Most widespread approach to mathematically include the fiber orientation and
distribution effect into an FRC model is by introducing probability density function
(PDF), like the von Mises-Fisher distribution for 3D orientations [86], the Watson
distribution [87] etc. An example can be found in the work of Cunha et al. (2021)
who employed a PDF to generate stochastic fiber orientations in meso-scale mod-
els, calibrated using X-ray computed tomography scan (CT)s. When it comes to
modeling of fibers’ spatial homogeneity /heterogeneity within the concrete matrix, a
common method is by applying spatial statistics. In the work of Huang et al. [88],
the authors proposed a statistics-based algorithm that combines orientation proba-
bility to angle the fibers at a certain angle, and spacing distance to distribute fibers
within a given space. Stochastic models often generate fiber positions using various
probability distribution functions. Soroushian and Lee [89] developed a stochastic
model for fiber orientation that uses probability density functions to describe the
random distribution of fibers in FRC in isotropic conditions. Stroeven [90]| devel-
oped and experimentally validated a streological model for rigid fiber distribution
that considers lengths of fibers in different directions. In various publications by
Kozar et al. [46, 91, 92| the stochastic approach was applied to homogenize the
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fiber-reinforced concrete composite, and utilized the fiber bundle model to describe
the fiber distribution in the fiber-reinforced concrete using various statistical distri-
butions. They also expended their models to include the dispersion of fibers in the
matrix based on X-ray scans of FRC beams [37]. In contrast to methods of modeling
fiber distribution in stochastic models, deterministic approaches include modeling
virtual layers of the concrete flow during pouring and assuming fibers’ alignment in
those layers [93]. Many models, such as the one developed by Alberti et al. [94],
combine probability methods in an inherently deterministic model to predict fiber
orientation and distribution.

In empirical models, a so-called orientation efficiency factor is often used to
model fiber orientation while simultaneously simplifying its effects using scalar fac-
tors. The orientation factor, denoted as A, scales the contribution of fibers based on
their alignment relative to principal stresses:

1 N
A= Z;ll COS2 91', (21)

where [; is fibers’ embedment length, 6; is the angle between the fiber and the plane
in which the cracking occurs, and L is fiber length.

Design codes incorporate orientation factors [95], as the post-cracking behavior
of fiber-reinforced concrete (FRC) elements is highly dependent on fiber orientation
[96], making these factors essential for structural design. These orientation factors
are typically defined as the ratio between the performance of the designed structural
element and that of a standard beam, since the actual material properties of the
designed beam often differ from those of the standard specimens. However, current
orientation factors used in design codes are often based on a limited number of
research studies, which provide only partial insights into this complex phenomenon
[64]. Furthermore, orientation prediction models based on orientation factors have
so far not been established to connect orientation with mechanical properties of FRC
due to complexity |97].

Alhassan et al. [63] pointed out how this presence of added fibers induces a
bridging action across the crack in the fracture process zone at the front of the crack
tip and complicates the fracture mechanics. However, in the domain of fracture
mechanics and cases where applicable, modeling only the fibers that effectively con-
tributing to carrying the load pose as a notable solution to the extreme heterogeneity

and computational extensiveness issues [63].
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Chapter 3

Motivation

Deterministic and analytical formulations of materials, such as the fiber-reinforced
concrete, provide a clear and predictable understanding of the material’s response
under various conditions which is why they are preferred in engineering practices.
The straightforwardness of deterministic models makes them simpler and easier to
implement in engineering design and analysis practices without compromising pre-
cision and accuracy. On the other hand, this precisely defined relationship between
input and output data when analyzing material behavior is something stochastic
models lack by introducing randomness that may compromise and complicate pre-
diction accuracy.

The motivation to develop and work with deterministic models also lies in their
ease of validation and calibration by using experimental data in a lesser quantity
than stochastic models require. As these models allow engineers to analyze how
changes in input parameters directly impact the performance of concrete which is
why many design codes and standards are based on deterministic principles.

Furthermore, a complement to deterministic forward analysis is inverse model-
ing, which offers a distinct advantage in understanding and optimizing the behavior
of FRC through direct parameter identification. This is particularly relevant for
FRC, where direct measurement of certain properties can be challenging or outright
impossible. Through the use of inverse models based on deterministic formulations,
essential parameters such as the ones defining the fiber-matrix bond and fiber ori-
entation can be extracted, which is crucial for understanding and optimizing FRC

behavior under various conditions.

This characteristic has historically limited their usage for inverse analysis for
complex materials like FRC, as real-world experimental results invariably exhibit
scatter and variability. Due to the complex and time-consuming nature of deter-
ministic forward models for fiber-reinforced concrete, coupled with this perceived
inability to handle experimental variability, their application in inverse analysis has
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not yet been fully realized. This need for a deterministic predictive model that is
both simplified enough for an efficient inverse analysis and robust enough to produce
accurate parameter extraction results despite experimental data variability presents
a gap in literature and serves as the direct motivation for this research.

3.1 Hypothesis
The hypothesis for this thesis is as follows:

1. A simplified and analytical computational model of fiber-reinforced concrete,
where both the concrete and the fibers are formulated with optimized deter-
ministic expressions, devoid of any random variables and processes, as devel-
oped by Parise [70], and brought into relation within equilibrium equations
as was established by Kozar in multiple works, should be able to successfully
replicate three-point bending test results.

2. Such a forward model, featuring precise yet simplified expressions, can serve
as the foundation for an inverse model. These optimized formulations, already
validated by numerous researchers for their accuracy in predicting FRC behav-
ior, are expected to quicken the iterative computation process in the inverse
analysis. This approach could effectively address the issue of excessive time
consumption that poses as one of the main issues why such models are not yet
established.

3. While deterministic models don’t account for experimental data’s inherent
variations, a well-posed, robust, and simplified deterministic model can effec-
tively compensate for this during the inverse analysis. This means that such a
model will be capable of adequately extracting necessary material parameters
even when dealing with the inherent variability present in measured experi-
mental results. This compensation will be further achieved by comprehensively
analyzing parameter sensitivity and interdependencies, which will assist in in-
terpreting and validating the extracted parameters against real-world, variable
data.

3.2 Research Goals

Considering this, the research goals for this thesis are the following:

1. Develop and validate a computational model that replicates three-point bend-
ing tests of fiber-reinforced concrete beams. This model will as input values
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have precisely defined both load-displacement laws of fibers and the concrete
matrix. Once validated, the model will be used as a basis for developing the

inverse model.

2. Develop and validate the inverse model using the Levenberg-Marquardt al-
gorithm, the previously established forward model and crack mouth opening
displacement data obtained from laboratory testing.

3. Utilize the inverse analysis process to perform a parametric analysis of the
fiber reinforced concrete beams subjected to three-point bending.
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Chapter 4

Methodology

Determination of the pull-out behavior of fibers and failure mechanism of FRC in
bending was done by subjecting beams to three-point bending as well as single fibers
to pull-out tests. Initial findings of these results were already presented in previous
works, more recently published in 98|, and this thesis extends that work by applying
the experimental results more comprehensively in the later chapters focused on the

inverse analysis.

The computational framework in this thesis primarily relies on Wolfram Math-
ematica, which was used to implement the new deterministic forward model algo-
rithm, solve the non-linear system of equilibrium equations, and execute the iterative
Levenberg-Marquardt inverse analysis. Data processing, calculation of statistical
metrics, and visual representation of results were performed using a combination of

MS Excel and integrated functions within the Mathematica environment.

4.1 Material properties

All testing samples were made using the same type of self-compacting concrete
(SCC) to eliminate the need for mechanical vibration, which in practice disrupts
fiber orientation and distribution. The SCC mixture was specifically designed to
achieve optimal flowability while maintaining adequate segregation resistance, which
allows the concrete to thoroughly coat the positioned fibers without the need for
mechanical vibration. This eliminated the risk of unintentionally altering the fibers’

predetermined location and orientation.

The recipe of the SCC mixture is detailed in Table 4.1 that also outlines the
quantity and density of each constituent material required for one cubic meter (1 m?)
of fresh concrete. The mixture was formulated to comply with the EN 206-9:2010
standard for self-compacting concrete [99].
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Table 4.1: Recipe for Self-Compacting Concrete Mixture for a 1.0 m® Reference
Volume

Component Mass (kg) Density (g/cm?)
Cement 42,5 R 500.0 2.96

Sand 0 - 4 mm 1091.9 2.74
Aggregate 4 - 8 mm 468.0 2.74

Water at room temperature 225.0 1
Superplasticizer 2.5% mc 10.0 1.04
viscosity modifying agent (VMA) (0.44%) 2.2 1.01

The fresh state characteristics of the SCC mixture were evaluated through stan-
dardized testing ([100],[101],[102], [103]). This was crucial to make sure the SCC
possessed the necessary properties for proper embedment and consistent distribution
of the precisely placed fibers, which is fundamental to controlling the experimental
variables in this study. The results of these tests, presented in Tables 4.2, 4.3, and
4.4, confirmed the desired workability and density of the fresh concrete.

Specifically, the mean density of the fresh SCC was measured as 2.305 kg/dm3
(Table 4.2). The slump flow test resulted with a flow time (T5q9) of 4.0 s and a
maximum spread diameter (D,,,,) of 685 mm (Table 4.3), which indicated high
flowability. This high flowability was necessary for the concrete to effortlessly flow
around and encapsulate the fibers within the molds, preventing voids and ensuring
optimal bond development between the fibers and concrete mixture. Furthermore,
the V-funnel flow time (¢,) was recorded as 4.4 s (Table 4.3), which indicated ade-
quate viscosity for self-compaction without segregation. This ensures the stability
of the mixture and prevents the fibers from floating freely and not maintaining their
pre-determined positions. The L-box test, done in accordance with the testing stan-
dard [104], resulted in an average height ratio (H/H;) that demonstrated good
passing ability through obstacles, with average heights of 9.50 mm after the first set
of bars and 8.97 mm after the second, which resulted in blocking ratio of 0.94 (Ta-
ble 4.4). The results of the fresh state tests confirmed the stability and flowability
required to maintain the precisely placed fibers and ensure a uniform mix without
segregation.

Table 4.2: Fresh concrete density measurement results

Volume Mass Density Mean Density
(dm’)  (kg) (kg/dm’) (kg/dm?)
5.000 11.290 2.258

5.299 12.440 2.348 2.305
5.299 12.240 2.310
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4.1. Material properties

Table 4.3: Slump flow test results (EN 12350-5)

Parameter Symbol Value
Flow time T500 4.0 s
Maximum spread diameter D,,q. 685 mm
Measurement 1 dy 700 mm
Measurement 2 dy 670 mm
V-funnel time ty 4.4 s

Table 4.4: L-box test results (EN 12350-10)

Measurement Height (mm) Average height (mm)

H11 9.0

H12 9.4 0.95
H13 10.1

H21 8.8

H22 9.0 0.90
H23 9.1

The characteristics of the steel fibers used in all tests are summarized in Table 4.5
[105]. These were DE 30/0,55 N steel fibers specifically chosen for their dimensions
and mechanical anchorage. A visual representation of a single fiber is provided in

Figure 4.1.

Table 4.5: Properties of DE 30/0,55 N steel fibers used in testing

Property Value/Description

Type DE 30/0,55 N steel fibers
Shape of ends Hooked

Cross-section ~ Round

Diameter (d)  0.55 mm (£ 10%)
Length (1) 30 mm (£ 10%)
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4.1.1. Specimen Naming Convention

= =

| L -
Figure 4.1: Fiber type used in laboratory testing [105]

Fibers with two distinct surface conditions were used - coarse and smooth. While
a comprehensive comparative analysis of the influence of this on bond behavior is
beyond the primary scope of this study, their inclusion in the testing program allows
for the characterization of a broader range of bond-slip responses and provides data
for potential future investigations into fiber surface engineering.

4.1.1 Specimen Naming Convention

In order to maintain clarity, consistency and transparency of identification of ex-
perimentally obtained data throughout this thesis, a systematic naming convention
was done for all test specimens.

Every specimen was assigned a unique identifier based on the testing type, dimen-
sions (for beam specimens), fiber type, and the consecutive sample number. This
labeling system helped easy referencing and comparison of results between different
experimental conditions, and is used throughout this whole thesis.

The convention for specimens subjected to three-point bending tests follows the
format [Size Code]-[Fiber Type Code]-[Sample Number].

e Size Codes:

— S: Small-sized beams (40 x 40 x 160 mm)
— M: Medium-sized beams (70 x 70 x 280 mm)
— L: Large-sized beams (100 x 100 x 400 mm)

e Fiber Type Codes:

— P: Plain concrete (without fibers)
— CF: Fiber-reinforced concrete with coarse surface steel fibers

— SF: Fiber-reinforced concrete with smooth surface steel fibers
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4.2. Compressive Strength Tests

e Sample Number: The unique numerical identifier assigned to each individual
specimen (e.g., L-SF-1, L-SF-2, 1.-SF-3, L-SF-4).

For example, a large-sized beam specimen with smooth surface fibers would be
identified as L-SF-X (e.g., L-SF-1), while a small plain concrete beam would be
S-P-X (e.g., S-P-1).

For specimens subjected to single fiber pull-out tests, the identifier follows the
format SFP-[Fiber Typ Codel-[Sample Number].

e SEP: Single fiber pull-out test indicator.
e Fiber Type Codes:

— CF: Coarse surface fibers

— SF: Smooth surface fibers

e Sample Number: The number corresponding to the order of testing (e.g., SFP-
CF-1, SFP-SF-1).

With this labeling system, it was ensured that all presented experimental data
can be linked to its specific test conditions and individual specimen.

4.2 Compressive Strength Tests

In order to get an insight into the mechanical properties of the self-compacting con-
crete (SCC) used in this study, compressive strength tests were performed. These
tests are important for understanding the concrete matrix’s load bearing capacity
because it’s baseline data on both material’s stiffness and strength. This characteri-
zation is taken into account when modeling the concrete’s contribution to the overall
behavior of the composite. Prior to testing all machines were carefully calibrated
and tests were performed in accordance with the EN ISO 7500-1:2018 norm [106].

A total of one 130 x 300mm cylindrical and four 150 x 150 x 150mm cubic
specimens were prepared using the same SCC mixture described in Section 4.1.
All specimens were cast and cured in accordance with the EN 12390-2:2019 norm
[107]. The four cubic specimens were designated as the primary data source for
concrete characterization due to laboratory standardization, while the single cylin-
drical specimen was prepared for a simple comparative analysis purpose to provide a
direct conversion reference (f ;1 = 0.8 - f¢ cune) in accordance with the testing norm.
The tests were conducted on a universal testing machine, specifically configured for
uniaxial compression. All specimens were loaded continuously at a constant loading
rate of 0.6 MPa/s until failure. The maximum load attained by each specimen was
recorded.
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4.3. Three-Point Bending Tests

Obtained results for the cubic specimens are summarized in Table 4.6.

Table 4.6: Compressive strength and density results for 150x150x150 mm cubic
specimens at 28 days

Cube ID Area (mm?) Force (kN) Compressive Strength (MPa) Density (kg/m?)
1 22290.10 1180.40 52.96 2338.9
2 22514.90 1313.80 58.35 2334.7
3 22604.90 1315.00 58.17 2312.3
4 22665.10 1186.80 52.36 2336.8
Mean Value - - 55.46 2330.7

The average compressive strength for the cubic specimens at 28 days was de-
termined to be 55.46 MPa, while the cylindrical specimen showed a compressive
strength of 49.91 MPa. These values were determined to be expected values of com-
pressive strength for the SCC mixture, and served as a baseline for characterization

of the concrete matrix, as well as essential for the subsequent numerical modeling
of FRC.

Once the foundational material properties established, the focus shifted to eval-
uating the mechanical behavior of the concrete, through three-point bending tests
and single fiber pull-out tests.

4.3 Three-Point Bending Tests

TPBT on notched beams were conducted as the primary experimental method to
evaluate the flexural and fracture behavior of FRC beams. These tests directly
assess the material’s ability to resist crack propagation and carry load in the post-
cracked phase, and provide the force-displacement and CMOD data for developing
and validating the proposed numerical model.

All beams were subjected to displacement-controlled loading at a rate of 0.06 mm/min
until failure. The displacement controlled method was chosen to capture any post-
peak softening behavior. This procedure followed the standard for determining the
flexural strength of hardened concrete specimens [108]. The recorded values dur-
ing the testing included vertical displacement, crack mouth opening displacement
(CMOD), and the applied force. Vertical displacement was measured by a LVDT
integrated into the testing machine’s crosshead, while the CMOD was measured us-
ing a manually affixed LVDT alongside the notch edge with an auxiliary plate, as
seen in Figure 4.2. Results obtained from TPBT of beams are presented in Section
4.5.1.
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4.3.1. Specimen Preparation

Figure 4.2: TPBT setup on an L-sized beam

4.3.1 Specimen Preparation

Specimens of three different sizes were prepared: 40 x 40 x 160mm (referred to
as small-sized beams), 70 x 70 x 280mm (medium-sized beams), and 100 x 100 x
400mm (large-sized beams). This range was chosen to enable the investigation of
potential size effects. For each size, four plain concrete beams (without fibers), four
beams with coarse surface fibers, and four beams with smooth surface fibers were
initially prepared. This amounted to a total of 12 plain concrete beams and 35
fiber-reinforced beams. However, one small-sized beam was damaged during the
demolding process, which resulted in a final total of 47 beams subjected to three-
point bending tests.

Typically, in the preparation of FRC mixtures, fibers are added during the mix-
ing of wet ingredients, which leads to their homogeneous yet random distribution
within the matrix. To eliminate the inherent uncertainty associated with random
fiber location and orientation, which is a significant challenge in understanding and
modeling FRC fracture behavior, all fibers in this study were embedded at prede-
termined positions within the beam. This was achieved by fixing the fibers to a
narrow, ruler-like element, which was then placed in the molds prior to pouring the
concrete, a technique previously established in research such as that by Grbac [109].
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4.3.1. Specimen Preparation

Figure 4.3: Fibers positioned in the mold before concrete pouring

The ruler-like element consisted of two parts that clamped the fibers in place.
Shallow indexing dents on both clamping edges ensured the precise in-plane spacing
and angular alignment of each fiber, while a small amount of water-soluble adhesive
prevented fibers from slipping during casting. The element was positioned perpen-
dicularly to the mold, as shown in Figure 4.3, and held by simple supports. The
number of fibers crossing the midspan was scaled based on the beam size: large
beams contained 9 fibers, medium beams contained 6 fibers, and small beams con-
tained 3 fibers. Fibers were placed at the midspan of the beam, crossing the expected
crack plane, and vertically located at approximately 2/10 of the cross-section height
from the tension face (20 mm for large beams, 10 mm for medium beams, and 5 mm
for small beams). This placement ensured that after cracking, the embedded length
of each fiber in either half of the concrete beam was equal to half of its total length,

as illustrated conceptually in Figure 4.4.
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Figure 4.4: Fiber embedment scheme on L-sized beams: (Left) Cross-section showing
the vertical fiber position (h,) and notch depth. (Right) Plan view illustrating the
uniform spacing and embedment length across the crack plane.

Once the concrete hardened (after a minimum of 28 days),the auxiliary element
securing the fiber position was removed. As the element was made of an easily
destructible soft plastic and thoroughly greased before immersion in the concrete
mixture, its removal was done by controlled breaking and pulling which produced
a rectangular notch with fibers arranged in a straight line at known positions. The
notch dictated the crack location and orientation, which provided a deterministic
crack path and a controlled number of load-bearing fibers crossing the fracture plane.
This choice is central to the thesis hypothesis so that by fixing the fiber count, ori-
entation (0° relative to the pull-out axis), spacing, and embedment lengths, the
post-cracking response becomes a direct function of explicitly modeled parameters
(matrix law and fiber pull-out law), which is a necessary precondition for the in-
tended inverse analysis. The exampled outcomes of this controlled placement for all
three specimen sizes is visually shown in Figure 4.5.
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4.4. Single fiber pullout tests
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Figure 4.5: Visual confirmation of deterministic fiber placement in the notch after
three-point bending testing of beams.

The TPBT configuration with a notch and deliberately embedded, aligned fibers
removes two dominant sources of stochasticity in FRC: the randomly positioned
crack plane, and the random fiber orientation at the crack. Because of this, the
recorded force-CMOD and force—displacement curves can be interpreted as the re-
sponse of a system where the concrete matrix law and the fiber pull-out law are the

only governing mechanisms.

4.4 Single fiber pullout tests

Single fiber pull-out tests were conducted as a fundamental micro-scale investiga-
tion method for quantifying the bond-slip relation between the steel fibers and the
concrete matrix. Understanding this relationship is important because it directly
governs the crack-bridging efficiency of the fibers and the post-cracking behavior and
overall toughness of the beams, observed in three-point bending tests [37]. Determin-
ing this interface property is crucial input for developing a deterministic numerical
model that realistically represents fiber action.

Eight specimens made of the same self-compacting concrete used for three-point
bending tests, with dimensions 40 x 40 x 40mm were tested. The steel fibers tested
in this study were the same type of fibers described earlier in section 4.1. The fibers
were manually embedded to half their length of 15mm in the geometric center of
each concrete specimen using a custom alignment jig, as seen in Figure 4.6. Five
specimens were prepared with coarse surface fibers and four with smooth surface
fibers. The concrete was poured in one layer, without vibrating and the specimens
were cured and treated as instructed by the EN 12390-2:2019 norm [110].
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Figure 4.6: Preparation of single fiber pull-out test specimens. (a) Systematic rep-
resentation of the fiber embedded to half its length in the geometric center. (b)
Example of a prepared specimen prior to testing.

The pullout tests were conducted using an electromechanical fiber pull-out ma-
chine compliant with the testing standard EN ISO 7500-1:2018 for static uniaxial
testing machines. The machine was equipped with a custom gripping mechanism
designed to clamp the exposed fiber end without inducing premature slippage or
damage. To ensure axial alignment between the fiber and the loading axis, the con-
crete prism was secured in a steel fixture bolted to the machine’s base, shown in
Figure 4.7.

Figure 4.7: Single fiber pullout setup. Left) Prior to fiber pull-out; Right) After the
fiber pull-out
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4.5. Results

All pull-out tests were performed in a displacement controlled environment, with
the displacement rate was set to 0.5 mm/min, as prescribed by the standard for
fiber pullout testing [111]. Data recorded during the tests were the pullout force
(via the load cell) and displacement (via the linear variable differential transformer)
at a sampling frequency of 50 Hz. Each test was performed until the fiber was
fully extracted from the prism. After each test, the prism and extracted fiber were
visually inspected to classify the failure mode, which showed that all testing samples
exhibited complete fiber pullout. Results obtained from single fiber pull-out tests
are presented in Section 4.5.2.

These tests provided a direct, micro-scale characterization of the bond-slip law
under a strictly controlled geometry with fixed fiber type, controlled embedment
length, axial alignment, and identical SCC matrix as in TPBT. Because the tests
were displacement-controlled and all specimens exhibited full pull-out, the resulting
force—slip curves can be used either to parameterize an analytical pull-out law with
hardening stage) or to validate the inverse identification performed from TPBT data.

4.5 Results

The dispersion and differences in results are due to imperfections in the specimen
production and accuracy of the testing machines.

Table 4.7: Summary of Laboratory Test Samples

Test Type  Prism Size Fibers/ Sample Fiber Samples
Type
L (100x100 9 No fiber 4
x400) 9 Coarse 4
9 Smooth 4
Three-
) M (70x70 6 No fiber 4
bpo(lir}t x280) 6 Coarse 4
ending 6 Smooth 4
S (40x40 3 No fiber 4
x160) 3 Coarse 4
3 Smooth 4
. 40x40 - Smooth 4
Fiber pullout 40 B Coarse 4
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4.5.1. Three-point bending test results

4.5.1 Three-point bending test results

4.5.1.1 Large sized beams
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Figure 4.8: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized plain concrete beams
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Figure 4.9: Crack Mouth Opening Displacement-Pseudo Time curves obtained from
three-point bending tests on large-sized plain concrete beams
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Figure 4.10: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized concrete beams with coarse fibers
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Figure 4.11: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on large-sized concrete beams with coarse fibers
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Figure 4.12: Force-Vertical Displacement curves obtained from three-point bending
tests on large-sized concrete beams with smooth fibers
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Figure 4.13: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on large-sized concrete beams with smooth fibers
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4.5.1.2 Medium sized beams
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Figure 4.14: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized plain concrete beams
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Figure 4.15: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized plain concrete beams
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Figure 4.16: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized beams with coarse fibers
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Figure 4.17: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized beams with coarse fibers
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Figure 4.18: Force-Vertical Displacement curves obtained from three-point bending
tests on medium-sized beams with smooth fibers
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Figure 4.19: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on medium-sized beams with smooth fibers
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4.5.1.3 Small sized beams
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Figure 4.20: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized plain concrete beams
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Figure 4.21: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized plain concrete beams
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Figure 4.22: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized beams with smooth fibers
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Figure 4.23: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized beams with smooth fibers
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Figure 4.24: Force-Vertical Displacement curves obtained from three-point bending
tests on small-sized beams with coarse fibers
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Figure 4.25: Crack Mouth Opening Displacement-Pseudo Time curves obtained
from three-point bending tests on small-sized beams with coarse fibers

4.5.1.4 Interpretation of Three-Point Bending Test Results

Figure 4.26 shows the Force-CMOD curves obtained from testing on L-CF-1 and
L-SF-4, large-sized beams with integrated fibers, that were disregarded from further
analysis. These particular tests had anomalous behavior that was characterized
by severe, high-frequency oscillations in the force signal that started approximately
midway through the loading process, which was due to a badly positioned LIN-
EAR VARIABLE DIFFERENTIAL TRANSFORMER, (LVDT). This extreme noise
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4.5.1. Three-point bending test results

completely masked the post-peak softening behavior of the specimens, and made it
impossible to interpret the true mechanical response of the material. Due to the
inability of the recorded data to reliably represent the specimens’ behavior under
loading, these test results were consequently excluded from all quantitative analyses.
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Figure 4.26: Force-Crack Mouth Opening Displacement curves obtained from beams
L-CF-1 and L-SF-4

The three-point bending tests on plain and fiber-reinforced concrete beams of
all three sizes exhibit several behavioral trends. The recorded force-displacement
and CMOD curves give insights into the flexural behavior of the materials and the

influence of fiber reinforcement.

e CMOD vs. Pseudo Time
The CMOD curves for plain concrete beams (Figures 4.9,4.15 and 4.21) con-
sistently show a sharp, linear increase until a the point where a first crack

is initiated, after which the curve becomes more vertical. This vertical slope
signifies rapid crack propagation and failure of a higher magnitude, as there
are no fibers to bridge the crack and carry the load in the post-cracking phase.
This behavior is expected as plain concrete is categorized as brittle material.
On the other hand, the CMOD curves for FRC beams (Figures 4.11, 4.13, 4.17,
4.19, 4.23 and 4.25) show a more gradual change in behavior after the initial
elastic phase. After the initial cracking, the slope of the curve becomes signif-
icantly more gradual, which indicates that the fibers are effectively bridging
the crack and are providing a resistance to the crack propagation.

e Force-Displacement

The force-displacement curves show a similar trend. Plain concrete beams
(Figures 4.8, 4.14 and 4.20) exhibit a sharp peak that corresponds to the
ultimate flexural strength, followed by a sudden and steep drop to zero load
upon cracking. FRC beams (Figures 4.10, 4.12, 4.16, 4.18, 4.22 and 4.24),
however, demonstrate a more ductile response. After the initial cracking peak,
the force decreases but does not drop to zero, instead it enters a post-peak
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4.5.1. Three-point bending test results

softening phase where the load is sustained and carried by the fibers. This
behavior confirms the existence of the transfer of tensile load from the concrete
matrix to the fibers, which is the fundamental mechanism of FRC.

The results show that the scale of the specimens has a direct impact on the
observed behavior. In general, CMOD curves for the large beams (Figures 4.9, 4.11
and 4.13) appear to be more detailed and gradual than those for the medium and
small beams (Figures 4.15, 4.17, 4.19, 4.21, 4.25, 4.23). This is due to the larger
number of fibers bridging the notch, so the post-crack response is the sum of more
individual pull-out events than in the medium and small beams. Higher absolute
forces and displacements found in large-sized specimens also improve the signal-to-
noise ratio recorded by the LVDT.

Discrepancies in the force-displacement curves due to minor variations in speci-
men production and testing machine accuracy are seen throughout the results, but
they are most notable in large-sized beams (Figures 4.8, 4.10 and 4.12). Not only
does the larger scale of the specimen amplify any imperfections, but any variations
in fiber positioning and alignment are also more prominent due to the larger fiber

count.

While the majority of the recorded data follows these general trends, a few
specific specimens exhibited unique characteristics that require attention. In the
force-displacement diagram for large beams with coarse fibers (Figure 4.10), beam
L-CF-3 does not exhibit the sharp initial peak followed by a drop that is character-
istic of concrete cracking, as seen in other FRC beams. This initial peak typically
represents the flexural strength of the plain concrete matrix. Once it’s reached, a
crack forms, and the load is transferred from the matrix to the fibers, which causes
the force to drop before rising again as the fibers begin to carry the load. The
absence of this distinct peak in L-CF-3 suggests that the concrete’s tensile strength
was compromised from the get-go, possibly due to a flaw in the casting or curing

process, or a localized air void in the concrete matrix.

The CMOD curve obtained for M-SF-4, seen in Figure 4.19, stands out with a
unique slope within its testing group, and for which it is marked as an outlier. This
result will be considered in the later inverse analysis, as it may reflect a slight testing
error or an anomaly in the specimen’s properties that could skew the results of the

parameter extraction.

Within the small-beam group (Figure 4.25), specimen S-CF-2 exhibits a slightly
distinct force—displacement and CMOD profile compared to S-CF-3 and S-CF-4,
as both the pre- and post-peak evolution differ in shape and magnitude. This is
assumed to be due to either a test set-up or specimen preparation mishap. Due to
the small magnitude of difference, this dataset was not disregarded for any future
analysis. However, its application in the inverse analysis will be carefully handled
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to avoid propagating any assumed testing error into the obtained results.

4.5.2 Single Fiber Pullout Test Results

Figure 4.27 and 4.28 show obtained force-displacement diagrams from four tested
specimens. From these, a clear development of plastic hinges as the fiber undergoes
pull-out is evident. The observed shape corresponds to that of the final phase in the
three-point bending of fiber reinforced beams.
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Figure 4.27: Force-displacement curves obtained from single fiber pull-out tests for
coarse surface steel fibers
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Figure 4.28: Force-displacement curves obtained from single fiber pull-out tests for
smooth surface steel fibers
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4.5.2. Single Fiber Pullout Test Results

4.5.2.1 Interpretation of Single Fiber Pullout Test

Figures 4.27 and 4.28 show the measured force-displacement histories of single fibers
under displacement control, with full pullout observed in all specimens. The pull-
out response observed across all performed tests follows a clear sequence: an initial
increase in force as the interfacial bond is mobilized (pre-debonding phase), which
is followed by a maximum or threshold force that marks the beginning debonding.
In the post-peak stage, the force is governed by frictional sliding, and for hooked-
end fibers, an additional hardening appears due to the rotation and straightening
of the hook and the formation of a plastic hinges near the anchorage. The force
then gradually descends to zero as the fiber is fully pulled out. The development of
plastic hinges during pull-out is evident in the experimental results and is consistent
with the final post-cracking phase observed in the three-point bending tests on FRC

beams.

The observed shape of the force-displacement curves from the single fiber pullout
tests corresponds to the final, post-cracking phase of the three-point bending tests
on FRC beams. In both tests, the ductile behavior and load-carrying capacity after
initial cracking are governed by the same fiber bridging and pullout mechanisms.
This correlation shows that the fiber pullout behavior at the micro-scale dictates
the post-cracking toughness of the FRC beams at the macro-scale. This essentially
means that the force-displacement curve of a TPBT specimen is a cumulative re-
sponse that is roughly equivalent to the sum of the individual pullout responses of
all the fibers bridging the crack.

The two different fiber surface finishes sampled here were included to expand the
range of bond-slip responses. Coarse-surface fibers exhibit higher peak resistance
and a more pronounced post-peak steeps between plastic hinges, while smooth fibers
tend toward a lower peak and a flatter frictional plateau.

The data from the single fiber pullout tests exhibit good consistency within
each group, with the curves generally following a similar trend. This consistency is
important for the subsequent numerical modeling and inverse analysis, as it provides
a reliable and deterministic pullout law that can be used to accurately simulate
the behavior of the fiber-reinforced concrete. The results confirm that all tested
samples experienced a complete fiber pullout failure mode, which makes the force-
displacement curves a reliable representation of the bond-slip law.
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Chapter 5

Multiphase Deterministic Model for
Inverse TPBT Analysis

5.1 Novel Forward Model

The forward material model developed here is a deterministic, predictive model
that relates strains and stresses in the beam’s cross section through constitutive
laws, and in turn simulates the internal and global response of the FRC beam under
three-point bending.

To represent the heterogeneous nature of FRC without introducing random-
ness, the classical fiber bundle model (FBM), that is typically stochastic [61], was
reformulated with strictly deterministic empirical parameters. Fibers and con-
crete were modeled as two interacting phases (as e.g..in [37]), each with its own
force—displacement law. This simplifies the model’s concept while allowing it to
capture both pre-peak and post-peak behavior in bending. This deterministic foun-
dation is key because it guarantees the extracted parameters are physically inter-
pretable, as wec¢ as offers direct, practical advantages for engineering design and
optimization.

The concrete’s force-displacement law is discretized as a three-phased piecewise
function representing loading until failure and is graphically presented in Figure 5.1
in red. The mathematical formulation of this tri-linear softening law is as follows:

key - x if key - < frex
fe(x) = § fmax — By g — key - fmax §f fmax > fmax _ p g ke, - fMAX 5 ()
0 i e By — ey - [ < 0

(5.1)

where f"® is the maximum loading force, k. and k. are the stiffnesses of the
beam during the loading and softening phases, respectively. These stiffness terms
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5.1. Novel Forward Model

Byl
LbLS’VL ’

the moment cross section’s moment of inertia, L; is the beam’s length, and L, is a

are calculated as k., = where Ej, is the elasticity modulus of concrete, I is
scaling length factor that, in practice, acts as a calibration coefficient that ensures
the slope of the simulated force-displacement curve matches the magnitude derived

from experimental data.
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Figure 5.1: Modeled load-displacement law for concrete (red) fibers (blue)

The force-displacement law for the fibers, as given in Equation 5.2, is a piece-
wise function modified from the equation for the force-displacement law established
in previous stochastic models ([37], [13], [61]), but with probabilistic parameters
replaced with deterministic ones. This modification was done by directly adapt-
ing the mathematical formulation for the fiber force-displacement law based on the
approach developed by Parise [70|, where the crack propagation phase manifests
as multiple plastic hinges on the force-displacement diagram. Additionally, this
modification expands the existing formulation by integrating further fiber behavior
parameters, as listed after the equation, which directly influence the shape of the
piecewise function. The shape of the hinges is modeled to match those obtained from
single fiber pull-out tests while ensuring that the values align with those obtained
from three-point bending tests, one example of which is shown in Figure 6.2.

The full mathematical description of the fiber force-displacement law in tension
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5.1. Novel Forward Model

is formulated as follows:

EA-(x —dp) if 2 < deastic
Fmaz if detastic < T < dp
Froe — BA- 2290 if dy < o <dy
U(p) = Fz o Masosd (5.2)
Fa_EA'T; if dpy <2 < dy
F3 if dyo <2 < dp3
F}P—EA- 2% ifdy <o <dg
0 if x> dgs

\

where the key displacements defining the phases of bending and subsequent fiber
pullout are given by:
delastic = do + %
dp1 = dejastic + du
(Erer — F2) - Ly
EA

dsl - dpl +

dpo = ds1 + di2
(F2 = F}) - Ls

dso = dpo +

EA
dp3 = dso + dy3
F3. Ly
des = d a8
3 p3 1 EA

The defined parameters: dg.sic is the yield displacement point until which the
beam bending is purely elastic, dy is the displacement offset or the magnitude at
which the fibers start contributing to load carrying, axial stiffness (F'A) is the com-
bined axial stiffness of the fiber bundle, and L, is the embedment length of the
fibers. ™ F2 and F?2 are the force thresholds defining the vertical components
of the pullout phases, while d;;, d;2, and d;3 are the corresponding displacement incre-
ments for the plateau regions during which the fibers are being pulled out. dg;, dso,
and dg3 are cumulative total displacements that mark the end of each force-softening
phase.

F"e% is defined as a summation of the contribution of all the individual fibers

intersecting the observed crack, as:

nf

Fpes =37 e (53)

ip=1

20



5.1. Novel Forward Model

which can be simplified with explicit parameters:

e (5.4
where n e, is the total number of fibers in the cross-section and f;nax the average
force threshold for a single fiber pull-out. An example force-displacement diagram
for a modeled fiber is represented on the right in Figure 5.1 in blue. f™¥ can
also be expressed as a function of the embedment length of a single fiber, /., as an
expansion of the model. A common simplification for this relationship assumes that
the force threshold is a product of the average interfacial bond strength, 7, and the
fiber’s surface area calculated from the diameter and and embedment length [112],
as follows:

[ =r.1-Aa-l, (5.5)

a

In this formulation, the average force threshold increases linearly with the embed-
ment length while assuming a constant average bond strength and fiber diameter.

The parameter E in Equation (5.2) is not the bulk steel modulus of an isolated
fiber, rather it is treated as an effective elasticity modulus of the fiber—matrix sys-
tem that captures the combined contribution of the fiber material, bond, partial
debonding, and local slip. While the model can accommodate a more thorough
description of stiffness degradation phenomenon, not only through plastic hinges,
but by integrating different E parameters during tension or loading, and during
unloading. However, for simplicity purposes, a singular parameter in tension, Fyr,
was used throughout this research. The effective stiffness F'A is then formulated as:

3

EA = foundgie - Epr - (Aa)? - 7 iber (5.6)
Here, Aa is the individual fiber diameter, and the term fy,,qe 1S an empirical
scaling factor introduced to connect properties of a single fiber with the collective
behavior of the fiber bundle. While the overall maximum force threshold, F"** is
simplified as a summation of individual fiber contributions, in reality, the influence
of the fibers is not a simple linear relationship. The fy,.4e parameter accounts for
this non-linear, collective behavior and it serves an essential empirical parameter to
be evaluated during the later inverse analysis. Unlike models that would fix Ky 7 to
the nominal steel modulus, this formulation makes room for both Ey7r and fuundie
to be exactly determined through the inverse analysis process.

Given that the equations and the associated material parameters describing the
two material phases are independent, concrete and fiber forces are coupled through
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5.1. Novel Forward Model

sectional equilibrium of a layered cross-section [14]:

layer

F(e,r) = AR Y fo[(hi — eh) tan(k)] + Aafi(h — €h) =0 (5.7)

=1

layer

M(e, k) = Ah Z(hi — €h) f.[(hi — eh) tan(k)] + Aa(hg — €h) fi(he — €h) = 0 (5.8)

Here, € represents the neutral axis position, x is the inclination of the crack
opening, h is the height of the beam’s cross-section, h; is the height of each layer,
h, represents the position of fibers, and f. and f, are given in equations 5.1 and
5.2, respectively. The layered model is based on previously established principles
presented in [113], with an example of cross-section geometry for a beam discretized
into eight layers given in Figure 5.2.

dcmod

Figure 5.2: Diagram for the three-point bending of a layered FRC beam

Given the non-linear material constitutive laws defined in Equations 5.1 and
5.2, the equilibrium Equations 5.7 and 5.8 form a non-linear system that cannot be
solved analytically. To simulate the beam’s response throughout the loading pro-
cess, mimicking the displacement-controlled experiments, a numerical path-following
approach was adapted using the vertical displacement d, (Eq. 5.9) as the control

parameter:

d, = —€- h - tan(k) (5.9)

At each step of the simulation, a target vertical displacement, d, qrget, 1S pre-
scribed. A system of three equations is then solved numerically for three unknowns:
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5.1. Novel Forward Model

the neutral axis position, €, the crack inclination, x, and the external bending mo-
ment, M,,; required to maintain equilibrium at that displacement level. Therefore,
the system that needs solving comprises of the following:

1. Force equilibrium equation 5.7: F(e, k) =0
2. Moment equilibrium equation 5.8: My (€, k) = My

3. Prescribed displacement equation 5.9: d, target = —€h tan(x)

This non-linear system is solved iteratively using a numerical root-finding algo-
rithm similar to the Newton-Raphson method integrated in Wolfram Mathematica’s
FindRoot function. The solution from the previous displacement step is used as the
initial guess in the current step for preserving continuity and supporting convergence
along the solution path.

Successfully solving this system at successive increments of dy, 4,4+ T€SUlts With
the evolution of the state variables € and &, along with the corresponding equilibrium
moment M,,;. From the obtained € and , the Crack Mouth Opening Displacement
demoq 18 calculated as:

demod = (1 —€) - h - tan(k) (5.10)

The calculated external moment, M,,;, can be related to the load P applied on
the mid span of the beam L /2, from which the load-CMOD and load-displacement
relationships can be obtained and compared to experimental data.

To simulate the beam’s global behavior under three-point bending, the computed
M., is related to the externally applied load P at mid-span through standard beam

theory:
4- Me:l:t

L
where L is the span of the supported beam. This relationship enables the connec-

pP=

(5.11)

tion between the obtained moment—curvature response with the force-displacement
response representative of the actual structural test. Although the vertical displace-
ment (d,), and crack mouth opening displacement, d.0q, are computed as sectional
quantities based on geometry their pairing with the global load, P, allows for the
construction of synthetic load-displacement and load-CMOD diagrams, which are
comparable to experimental data.
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5.2. Novel Inverse Model

5.2 Novel Inverse Model

5.2.1 Model Updating Framework

The inverse analysis in this research serves as a model updating procedure, where
parameters are iteratively adjusted to minimize the residual between simulated and
experimental CMOD data. This follows the general model updating expression:

My, = My_1 + Amy, (5.12)

where m,,_; represents the parameter vector at iteration n — 1, and Am,, is the
update computed via the Levenberg-Marquardt algorithm.

5.2.2 Levenberg-Marquardt Implementation

Taking into consideration that the newly formulated predictive model (detailed in
Chapter 5.1) is non-linear in nature and a direct inversion method could not be
successfully applied, the LEVENBERG-MARQUARDT (LM) algorithm was applied
for the inverse parameter analysis. This method iteratively adjusts a function’s
parameter to minimize the error between predicted and actual data by alternating
between the Gauss-Newton algorithm and the method of gradient descent [114].

The method is formulated as a minimization problem of weighted residual. In
this research, the measured data consists of n crack mouth opening displacement
values, y; (where ¢ = 1,...,n), each corresponding to a specific state of the beam.
The forward model predicts a CMOD value, demoqi(m), for each of these states
using a vector of model parameters m. The objective is to minimize the SUM OF
SQUARES (SS) of the differences between the measured and modeled CMOD values

as:
n

SS(m) = (4 — demod i(m))* (5.13)

i=1

The minimum of SS(m) occurs when its gradient with respect to each parameter
m; is zero. For the j-th parameter, this condition is:

T55 — 23 (1~ oo () (adm—“‘“)) _ (5.14)

3m]—

The partial derivatives <ad#“‘;di> form the elements of the Jacobian Matrix J that
has n x m, dimensions, where n is the number of measured data points (indexed
with i), and m,, is the number of model parameters being estimated (indexed with
j). Every J,; = <ad5—°d> represents the sensitivity of the ¢-th model output to a

my
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5.2.2. Levenberg-Marquardt Implementation

change in the j-th parameter. The Levenberg-Marquardt algorithm solves this for
the parameter update vector Am through a damped least-squares approach:

(J7T + A1) Am = J” (y — demod(m)) (5.15)

where y is the vector of measured CMOD values y;, demod(m) is the vector of
simulated CMOD using the current parameter vector m, and I is the identity matrix.
Solving this system gives Am used to update the parameters in each iteration in
Equation (5.12).

For the case of estimating a single parameter m (scalar), the update Am can be
calculated using a simplified form derived from the Gauss-Newton method adapted
by the Levenberg-Marquardt algorithm:

Am _ Z?:l (yz - dcmod i(m))Xm,i

7 5.16
Z¢:1 Xgn,i ( )

In this formulation, x,,, = % is the sensitivity coefficient of the i-th model

output with respect to the single parameter m. This equation is the basis for the
user-controlled iterative updates procedure for adjusting the parameter based on the
weighted error and its sensitivity.

The value for the model parameters in step n is calculated using equation 5.12.
Considering the calculation is iterative, the algorithm terminates when either:

e Convergence is reached and parameter changes between iterations become neg-
ligible (||Am|| < 10™*). This specific threshold value is chosen to both ensure
numerical stability and maintain sufficient precision without unnecessary in-

creasing computational costs from marginal improvements;
e The residual SS falls below a tolerance threshold (e = 107°);

e A fixed maximum iteration count is reached.

The relationship between the forward and inverse model, and any parameter n4
and np, is graphically presented in the flow chart in Figure 5.3.
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5.2.3. Dual-Parameter Extraction Strategy
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Figure 5.3: Flow chart of forward and inverse model algorithms

5.2.3 Dual-Parameter Extraction Strategy

This inverse analysis framework becomes more complex when estimating multiple
parameters simultaneously, when vector m contains more than one element. In
the case of nonlinear behavior, as seen in FRC, different combinations of param-
eters could result in the optimization function achieving the same minimum error
when fitting the measured data, which is a phenomenon known as solution non-
uniqueness. This ambiguity can make it challenging for reliable inverse parametric
characterization of FRC.

When possible, this issue can mitigated through the implementation of the
Tikhonov regularization through which unrealistic parameter combinations are dis-
regarded by adding a penalty term to the objective function:

SSreg(m) = SS(m) + a||m]|? (5.17)
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5.2.3. Dual-Parameter Extraction Strategy

where SS(m) is the original sum of squares of residuals from Equation 5.13), « is
a user-defined regularization coefficient that controls the strength of the penalty,
and ||m|[? is the squared L2-norm of the parameter vector. This regularization
term discourages unrealistically large or physically improbable parameter values,
and through this guiding the optimization towards a more stable and physically
possible solution, even in the presence of noisy data or parameter correlations.

However, in situations where this is not applicable, or more fundamentally, for
gaining a more comprehensive understanding of the parameter landscape and their
interdependencies, a dual-parameter extraction strategy can be used. This is partic-
ularly useful for identifying parameters that might be correlated, where the influence
of one parameter can be compensated by another, which can lead to potential solu-

tion non-uniqueness issues.

For this research, a systematic grid search method was used as the main dual-
parameter extraction strategy. This method exhaustively evaluates the objective
function’s behavior across a predefined multi-dimensional solution space.

Through this method, the objective function’s behavior is mapped across the
solution space by evaluating a predefined range of parameter combinations, which
thereby identifies the optimal parameter set and showcases potential parameter cor-
relations. By systematically mapping the error associated with each parameter
combination, this approach identifies the globally optimal parameter set within the
defined search bounds as well as provides a visual representation of potential pa-
rameter correlations and the overall sensitivity of the model to these parameters.
This direct mapping contrasts the Levenberg-Marquardt iterative optimization al-
gorithms, which, while efficient, sometimes converges to local minima or struggles
to characterize the full extent of solution non-uniqueness without multiple starting
points.

The systematic grid search was implemented in following steps:

1. Definition of parameter ranges based on prior knowledge, material characteris-
tics, and initial sensitivity analysis. Plausible minimum and maximum values
are established for the two parameters (A and B) that are under investigation.

2. Discretization of both preset ranges by dividing them into a fixed number of
discrete steps, which creates a n4 X ng grid of unique parameter pairs.

3. Predictive model evaluation for each (A - B) pair within the defined grid,
across a set of k values.

4. Error calculation (objective function evaluation) for each (A - B) combina-
tion by quantifying the discrepancy between the predicted CMOD data and
target CMOD data, following previously defined Equation 5.13, where for
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5.3. Model Assumptions and Limitations

dual-parameter extraction, m = {A, B}, y; are the target CMOD values. High
error is assigned to cases where the predictive model fails to converge for spe-
cific parameter combinations, which effectively penalizes such regions in the
solution space.

The output of this process is a dense dataset that represents the error surface
in the parameter space. Such datasets subsequently form the basis for creating
contour maps, which are used for the interpretation and discussion of the inverse
analysis results in the later sections. Such visualizations directly highlight the global
minimum of the objective function, the sensitivity of the resulting CMOD curves
to changes in A and B, and the presence and nature of any interdependencies
or correlations between the two parameters, which is key in non-linear material

characterization.

5.3 Model Assumptions and Limitations

The integrity and computational efficiency of this novel inverse framework are based
on several explicit assumptions and necessary analytical simplifications. Therefore,
this section outlines these limitations to clearly define the boundary conditions under
which the model is to remain accurate and applicable.

The model is subject to several essential limitations that stem directly from its
formulation, and primarily concern the simplification of inherently complex physics
in order to achieve computational speed (as per hypothesis 2). Concerning the mate-
rial constitutive laws, the approach applies a tri-linear softening law for the concrete
matrix and a piecewise function with discrete plastic hinges for the fiber pull-out.
This represents an abstract version of the physical reality (which involves a continu-
ous, non-linear function and micro-scale cracking) in favor of a more efficient, deter-
ministic form that sacrifices these accuracies for computational speed. Second, the
fundamental assumption of the model dictates a zero-degree fiber orientation that
is parallel to the pull-out axis and operates exclusively on a specific cross-sectional
basis. This simplification was necessary in order to eliminate the major source of
stochastic variability in the experimental data but restricts the model’s direct ap-
plicability to FRC beams that have random fiber alignment (# 0°). Furthermore,
the model is limited to tracking only the kinematics at the crack plane (CMOD
and d, at midspan), which means it does not simulate the full moment-curvature

distribution along the entirety of the beam’s span.

In addition to these formulation constraints, the inverse analysis is subject to
several limitations regarding data accuracy and algorithmic application. The numer-
ical stability verified in this study depends directly on having tested only a single
material family (steel fibers in an SCC matrix).
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5.3. Model Assumptions and Limitations

This means applying the extracted coefficients to vastly different materials (like
polymer fibers or conventional vibrated concrete) requires re-calibration and re-
validation. Crucially, the optimization algorithm is mathematically designed to
converge even from physically impossible starting points (e.g. negative parameter
values). Therefore, the final parameter estimate requires the user to discard non-
physical numerical solutions, with confidence depending on the bounds defined by
the Basin of Attraction values and the maintenance of physical plausibility to ensure

the results are meaningful.
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Chapter 6

Verification and Validation
Framework

A systematic process of verification and validation process (V&V) was conducted in
order to ensure that the newly formulated models meet all requirements for reliabil-
ity, accuracy, and conceptual validity.

The verification processes addressed whether the numerical algorithm correctly
solves the underlying mathematical model, with a focus on the accuracy of the code’s
implementation. On the other hand, validation of the model was done to evaluate its
ability to simulate and estimate parameters from real data, through a comparative
analysis of simulated versus experimentally obtained data.

6.1 Validation of the Predictive Model

The validation of the predictive numerical model was done to confirm its ability
to accurately represent the real behavior of fiber-reinforced concrete beams under
three-point bending. This involved simulating the experimental results obtained
from all three beam sizes and configurations tested in the laboratory, as detailed in
Chapter 4.3.

The input parameters for the predictive model were first defined based on the
geometric configurations and material properties of the specific beams selected for
simulation. These configurations (all sizes and fiber types) correspond directly to
those tested in the laboratory, as described in Chapter 4. The values for the con-
crete and fiber constitutive laws within the numerical model were derived from a
combination of laboratory material testing (compressive strength, single fiber pull-
out tests) and specifications provided by the manufacturer [105]. Specifically, the
force-displacement curves representing the constitutive behavior of the concrete ma-
trix (controlled by Equation 5.1) and steel fibers (Equation 5.2) were implemented
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6.1. Validation of the Predictive Model

within the predictive model. The parameters controlling these constitutive laws
were calibrated by aligning the shapes of the simulated force-displacement curves
with the corresponding experimental curves obtained from the respective three-point
bending tests, as seen on the left hand side in Figures 6.1, 6.3 and 6.6.

The input parameters for the predictive model were first defined based on the
geometric configurations and material properties of the specific beams selected for
simulation. These configurations (all sizes and fiber types) correspond directly to
those tested in the laboratory, as described in Chapter 4. The values for the concrete
and fiber constitutive laws within the numerical model were derived from a com-
bination of laboratory material testing (compressive strength, single fiber pull-out
tests) and specifications provided by the manufacturer [105]. The combined stiffness
parameter during loading, F;r, was initially assumed to be 210000N/mm? for con-
venience, equating it with the provided elasticity modulus of the fiber. Specifically,
the force-displacement curves representing the constitutive behavior of the concrete
matrix (controlled by Equation 5.1) and steel fibers (Equation 5.2) were implemented
within the predictive model. The parameters controlling these constitutive laws were
calibrated by aligning the shapes of the simulated force-displacement curves with the
corresponding experimental curves obtained from the respective three-point bending
tests, as seen on the left hand side in Figures 6.1, 6.3 and 6.6.
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Figure 6.1: Predictive Model data overlayed with experimentally obtained data
for large-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.2: Predictive Model data overlayed with experimentally obtained data
for large-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.3: Predictive Model data overlayed with experimentally obtained data for
medium-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.4: Predictive Model data overlayed with experimentally obtained data for
medium-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).
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Figure 6.5: Predictive Model data overlayed with experimentally obtained data
for small-sized plain beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

14 8
o
1.2 ] §-CF-2 £ =
£ E
= 10 §-CF-3 §_ Esf 1 m Model cmoD
= 8 T —CF-
s §-CF-4 £ 5 o S-CF-2
o — §-SF-1 5 E 4 | m s-CF-3
5 0.6 2 3 m S-CF-4
w — §-5F-2 5 osr1
04 x o m $-SF-
— 8-8F-3 - 1 m s-sF-2
0.2 . S
— Concrete (] m 5-5F-3
0.0 . . . - — Fibers ol . . .
0 2 4 6 8 10 0 10 20 30 40 5 60 70
Vertical Displacement [mm] Pseudo Time

Figure 6.6: Predictive Model data overlayed with experimentally obtained data
for small-sized FRC beams: (left) Modeled vs. Experimental Load-Displacement
Curves (Input) and (right) Modeled vs. Experimental CMOD-Pseudo Time Curves
(Output).

The resultant CMOD curves (right hand side in the Figures 6.1, 6.3 and 6.6)
were analyzed for the purpose of validating the predictive model. An overall visual
qualitative assessment of the overall profile of the resulting CMOD curves was done.
This included the inspection of initial stiffness, peak load (if presenting in the CMOD
curve), and post-peak softening behavior, as well as comparison of the simulated
curves to the experimentally obtained ones. The quantitative accuracy evaluation
was done by calculating the root mean square error (RMSE) between the simulated
and average experimental CMOD values, which provides a measure of the average
magnitude of the errors by quantifying the difference between the predicted and
observed CMOD values across the entire curve. It is calculated as:

n

1
RMSE = - exp,i — Ysim,i 2 6.1
nZ(y pii — Ysim,i) (6.1)

=1

where yexp i is the i-th experimental CMOD value, ygsim; is the i-th simulated CMOD
value, and n is the total number of data points. As a right hand rule, the lower the
RMSE score the better the accuracy.
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6.1. Validation of the Predictive Model

A RMSE score of zero would indicate a perfect fit, as it would mean the predicted
values align perfectly with actual values [115]. However, such fit is rarely achieved
in practice due to data variability and model limitations.

Since RMSE is scale dependent, the normalized root mean square error (NRMSE)
was also calculated to enable a more objective comparison of obtained results across
different beam sizes, as NRMSE provides a relative measure of error, independent
of the raw data’s magnitude. This specific normalization was calculated by dividing
previously obtained RMSE with the range of the observed CMOD data:

MSE
NRMSE = RMS x 100% (6.2)

Max(Yexp) — MiN(Yexp)

NRMSE was expressed as a percentage in order to directly indicate the model’s
error relative to the total variability of experimentally obtained data. For the context
of this study, an NRMSE value below 10% is generally evaluated as excellent, while
values between 10% and 20% are considered a good fit. This assessment criteria is
consistent with findings in literature for similar materials, where NRMSE values up
to 18% are often valued as satisfactory [116, 117|.

To provide a more widely accepted measure of the model’s predictive capability,
the Coefficient of Determination (R?) was calculated. R? quantifies the proportion of
the variance in the experimental data that is predictable from the numerical model.
R? ranges from 0 to 1, where a value closer to 1.0 indicates a near-perfect fit between
the simulated and observed data. It is calculated as:

Z?zl (yexp,i - ysim,i>2

R =1- & -
Zi:l(yexp,i - yexp)2

(6.3)

Additionally, the relative squared residual (RSR) was calculated as a goodness-
of-fit indicator to provide a standardized measure of the average magnitude of the
errors, normalized by the standard deviation (SD) of the observed data. RSR is
calculated as the ratio of the RMSE to the standard deviation of the observed data

(Uexp)3

RMSE . \/% Z?:l (yeXp,i - ysim,i)2
Uexp \/% Z?:l(yexp,i - gexp)2

An RSR value of 0 indicates a perfect model fit. According to common criteria in

RSR =

(6.4)

literature, RSR values less than 0.50 are typically considered to indicate a "very
good" model fit, while values between 0.50 and 0.60 represent a "good" fit ([118]).

The calculated RMSE, NRMSE, RSR and R?) for all simulated beam configu-
rations are summarized in Table 6.1. These metrics provide a precise evaluation of
the predictive model’s accuracy against the average experimental CMOD curves.
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Table 6.1: Summary of Predictive Model Validation Results
and R?) for Various Beam Configurations

(RMSE, NRMSE, RSR,

Beam Size Type RMSE [mm] NRMSE [%] RSR

R? Performance
rating

Large FRC 1.053 9.94 0.324
Large Plain 0.014 12.35 0.431
Medium FRC 0.302 5.65 0.169
Medium Plain 0.030 10.97 0.312
Small FRC 0.840 10.45 0.341
Small Plain 0.028 15.10 0.384

0.895 Very good fit
0.814 Very good fit
0.971 Very good fit
0.903 Very good fit
0.884 Very good fit
0.852 Very good fit

By observing the simulated CMOD curve for large-sized beams with and without

fibers in Figures 6.8 and 6.7, respectively, it consistently falls well within the 42

standard deviation band, and largely within the 41 standard deviation band.
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Figure 6.8: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for large-sized FRC beams

Figures 6.9 shows that the simulated CMOD curve for a plain medium-sized
beam exhibits the characteristic non-linear, accelerating increase, which is consistent
with the experimental data. However, a discrepancy in the steepness of the CMOD
progression is present between the simulated and experimental results, particularly
around the crack initiation phase. Nevertheless, despite these local deviations, the
simulated curve largely remains within the 2 standard deviation band. Considering
the overall small magnitude of these deviations (e.g., an NRMSE of 10.97% and
absolute deviations typically below 0.05mm), the model is considered to provide a
good fit to the experimental data. The CMOD result (Figure 6.10) for the same
model with activated fiber parameters almost entirely falls within the +1 standard
deviation band of the experimentally obtained data.
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Figure 6.9: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for medium-sized plain concrete beams
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Figure 6.10: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for medium-sized FRC beams

Similarily, resulting CMOD curves for plain and FRC beams, shown respectively
in Figures 6.11 and 6.12, exhibit the same consistent behavior. Both results fall
within the 42 standard deviation band of their respective experimental data.
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Figure 6.11: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for small-sized plain concrete beams
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Figure 6.12: Crack Mouth Opening Displacement versus Pseudo Time plot for the
numerical model simulation and average experimental results with their standard
deviation bands for small-sized FRC beams

All simulated CMOD curves effectively capture the overall behavior of experi-
mental ones, and is a good representative of the scattered experimentally obtained
data.

Through this validation process of the predictive model against experimental
three-point bending data for all three beam sizes and configurations, the model
consistently demonstrated its capability to simulate the crack mouth opening dis-
placement progression. The consistently low RMSE values, NRMSE values mostly
falling within the "excellent" (below 10%) and "very good" (10-20%) ranges, and
RSR and R? values consistently showed "very good" fits (all below 0.50 and above
0.81, respectively), confirmed the model’s predictive accuracy. Visual inspection of
the simulated curves further confirmed this, as it showed a strong agreement with
the average experimental responses and consistently falling within the observed ex-
perimental variability bands.

6.2 Comparison with Stochastic Model’s Results

This chapter focuses on the verification of the presented novel deterministic compu-
tational model through direct comparison with data generated using an established
stochastic model for the three-point bending of fiber-reinforced concrete beams. The
stochastic model used for this comparison was developed by Kozar et al. [13, 14, 61].
It was specifically chosen due to its fundamental similarities with the model devel-
oped in this thesis, particularly in its adoption of a layered beam discretization and
Newton’s procedure for solving the system of nonlinear equilibrium equations [61].
This commonality allows for a direct comparison of how the handling of material
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variability effects the simulated behavior, rather than comparing the differences in
fundamental modeling approaches. Furthermore, this specific stochastic model was
chosen as it serves as an ideal benchmark because it is a well-established and well-
documented model, and was developed independently by my research collaborators.

The primary goal of this comparison was to verify the predictive capabilities of
the deterministic model and to inspect its suitability as a foundation for inverse
analysis, which directly addresses the core of the thesis hypothesis. While Kozar
et al. (2021) rightfully state that deterministic models inherently "don’t explain
variations in experimental data" |61], a key aspect of this thesis’s hypothesis is that
a well-posed, robust, and simplified deterministic model can effectively compensate
for this during the inverse analysis. This means that such a model should be capa-
ble of adequately extracting necessary material parameters even when dealing with
randomness present in measured experimental results. Therefore, establishing the
deterministic model’s predictive accuracy against a validated stochastic counterpart,
known for its ability to represent experimental variability, is an important prelim-
inary step before proceeding with the deterministic model’s own inverse extraction
capabilities in subsequent chapters.

The stochastic model by Kozar et al. (2021) is based on the Fiber Bundle Model
(FBM) concept, where stochastic parameters such as the fiber peak tension load and
the fiber area are described by a Gaussian probability distribution. While individ-
ual fibers possess slightly different material or geometric properties, the collective
behavior of the fiber bundle, is simplified and represented by a non-linear stochas-
tic function. For the purpose of forward modeling in three-point bending, Kozar
et al. (2021) generalized this FBM into a simpler, microplane-like material model
described by a two-parameter exponential equation (f(x, A, B) = A-z-Exp(—B-x))
that represents the global force-displacement relationship. This exponential mate-
rial model is applied to describe both the concrete matrix and the fibers within the
layered beam model [61].

The comparison process involved generating mechanical responses from both
models under simulated three-point bending tests. For the novel deterministic
model, the simulations done in Chapter 6.1 were directly adapted here as well.
For the stochastic model, key material parameters (A’ and ‘B’ of the exponential
load-displacement law for both the concrete matrix and the fibers) were treated
as random variables [61]. These parameters were set to follow a Gaussian proba-
bility distribution, with their mean values matching the corresponding parameters
established in the deterministic model, where direct equivalents existed. It has to
be noted that due to differing model formulations between the deterministic model
developed herein and the stochastic model, not all parameters have their direct,
one-to-one equivalents. In order to effectively visualize the model’s behavior and
the impact of randomness, small standard deviations were assigned to these random
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parameters to ensure a controlled spread of results.

A Monte Carlo Simulation approach, involving 50 independent iterations, was
adopted. In each iteration, a unique set of random material parameters was sampled
from their previously defined probability distributions. The equilibrium equations
were solved across the full range of curvatures for each sampled set, which resulted
with a random CMOD sample.

This collection of stochastic CMOD responses provided a comprehensive com-
parison with the predicted CMOD curve generated by the deterministic model. The
choice of 50 simulations was a pragmatic decision done in order to balance the com-
putational intensity required to solve the equilibrium equations for each iteration
and the requirement for a sufficiently solid number of samples that would capture
the statistical distribution of the stochastic model’s output.

The main aim of this comparison is to determine if the simplified deterministic
model, despite its lack of randomness, can accurately capture the average behavioral
trends and the overall responses predicted by an established model with a different
approach. Based on the results, the validation of the model’s suitability as basis for
the subsequent inverse analysis was assessed.

The results of the comparative analysis for different beam sizes is presented in
Figures 6.13, 6.14, and 6.15, respectively.
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Figure 6.13: Comparison of deterministic and stochastic model CMOD responses
for small beams
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Figure 6.14: Comparison of deterministic and stochastic model CMOD responses
for medium beams
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Figure 6.15: Comparison of deterministic and stochastic model CMOD responses
for large beams

For all three beam sizes, the deterministic model’s resulting CMOD curve gen-
erally aligns with the mean trend of the stochastic simulations, particularly in pre-
cracking and early post-cracking phases. This alignment can mostly be observed in
Figure 6.13 (small beam), where the deterministic model gives a good average repre-
sentation of the stochastic outcomes. As the crack opening increases and fibers get
pulled out the spread of the stochastic model’s results becomes more pronounced,
which reflects the variability in fiber distribution.

An observation made for all results is the distinct inflection point in both the
deterministic and stochastic curves, which corresponds with the the onset of sig-
nificant cracking and the activation of fiber bridging mechanisms. The timing and
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magnitude of this in deterministic model’s results is in line with stochastic results.
The slope of the deterministic CMOD curve in the post-cracking phase generally
follows the average slope of the stochastic ones. While the relative behavior of two
result types remains consistent, the absolute values of both displacement and pseudo
time posses a certain level of expected discrepancy, which is due to differences in
fundamental mathematical backgrounds of the two models.

The correspondence between the deterministic model and the mean behavior of
the stochastic simulations indicates that, in terms of this verification criteria, the
simplified and optimized deterministic formulations can successfully replicate the
average three-point bending test results. The observation that the novel model’s
results consistently fall within the range of variability predicted by the stochastic
model indicate it to be a suitable contender for a successful inverse model imple-
mentation and analysis. Which means that while the deterministic model doesn’t
explicitly take into account the random variations in parameter values, its predic-
tive accuracy for the mean response makes it a reliable tool for extracting material

parameters.

6.3 Sensitivity analysis

In order to systematically quantify the influence of parameters that govern the be-
havior of fiber-reinforced concrete beams in bending, a sensitivity analysis was con-
ducted. This analysis evaluates the hierarchical importance of parameters on crack
mouth opening displacement in both pre-fractured and post-fractured state. It is
meant to identify which parameters have the strongest impact on the bending be-
havior of the beam, as well as quantify parameter inter-dependencies that may affect

damage evolution.

Key application of sensitivity analysis is for guiding the search process in inverse
modeling, especially in cases where the initial guess for the parameters is lacking.
Furthermore, if certain parameters are found to have only a negligible influence on
the model’s predictions, they will fixed to a reasonable value or excluded from the
inverse optimization process altogether. This effectively reduces the dimensionality
of the parameter space that needs to be explored and makes the optimization prob-
lem more tractable. Contrarily, parameters that show high sensitivity are those that
need to be estimated with greater accuracy, and the search for their optimal values
is to be prioritized and focused on their most plausible ranges.

The sensitivity analysis for any MODEL parameter P is done by running the
forward model with P = P, and a slightly perturbed value, P = P,y + dP, where
dP is a relatively small increment. For this research, the analysis was performed on
medium-sized beams, but the general results are applicable for all beam sizes. The
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behavioral patterns would follow a similar trend across other beam sizes since they’re

directly tied to the model’s formulation, regardless of the specimen’s scale. The

following parameters were systematically varied within a defined range to generate

CMOD output, while all other parameters were kept at constant values:

The fibers’ threshold force, F"*

Fiber diameter, Aa

Maximum load capacity of concrete, F"**
Fiber position in the cross-section, h,

Combined fiber-matrix system’s effective elasticity modulus during loading,
Eyr

Fiber bundle influence, fyunde

Number of fibers, n fiper

The resulting CMOD versus Pseudo Time curves were then plotted to visually eval-

uate

the sensitivity of the beam’s response to changes in each parameter.

The sensitivity analysis, as presented in Figures 6.16 through 6.22, show distinct

influences of each parameter on the CMOD-Pseudo Time response of the FRC beam.

It is

generally that parameters that model the pre-peak, post-peak, or both phases

of the materials’ input force-displacement diagram have a corresponding influence

on those same phases of the resulting crack mouth opening displacement.
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Figure 6.16: Influence of parameter F"** on CMOD-Pseudo Time response
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Figure 6.16 demonstrates the significant influence of F)"** on the post-fracture
behavior of the beam. A higher F)"** leads to a steeper CMOD curve in the post-
peak region, which suggest an improved crack bridging capacity and greater resis-
tance to crack propagation and opening after the initial fracture. This parameter
mostly dictates the maximum force that individual fibers can bear before pull-out,
which directly affects the ductility and residual strength of the FRC beam overall.
This parameter’s impact on the post-peak behavior indicates that "% is a critical
for characterizing the toughening effect of fibers and will require precise estimation

in inverse analysis.
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Figure 6.17: Influence of parameter Aa on CMOD-Pseudo Time response

As seen in Figure 6.17, the individual fiber diameter, Aa has influence on the
entire CMOD-Pseudo Time curve, and it affects both pre and post-preak phases.
Larger fiber diameters generally lead to a stiffer response and higher displacement
for a same observed pseudo time step. This can be attributed to the larger cross-
sectional area of individual fibers contributing to a greater load transfer capacity
of the entire fiber. This parameter scales the contribution of individual fibers to
the overall collective behavior which makes it valuable for an accurate parameter
identification.
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Figure 6.18: Influence of parameter f"** on CMOD-Pseudo Time response

The influence of f"** is shown in 6.18, where it’'s demonstrated that the maxi-
mum load capacity of the concrete matrix alone, has minimal effect during the initial
loading phase as all curves follow a nearly identical path until the onset of cracking.
However, in the post-peak phase, once the micro-cracking occurs, fiber bridging is
activated and becomes the dominant load bearing mechanism, and f"**’s influence
on the displacement becomes more noticeable. This is due to concrete, even though
secondary, still plays a role in load bearing alongside the fibers. The contribution of
concrete in this phase of loading is mainly governed by the value of this parameter.
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Figure 6.19: Influence of parameter h, on CMOD-Pseudo Time response
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The role of role of fiber position in the cross-section, h,, during beam bending
is shown on Figure 6.19. The vertical placement of fibers significantly impacts all
phases of bending and impacts the overall evolution of CMOD. Varying the h, values
noticeable impacts the beam’s flexural response. Fibers closer to the tension face
(higher h, values) cause the fiber bridging mechanism to be activated earlier and
an overall les brittle response from the beam. This parameter is fundamental to
the structural efficiency of the fiber reinforcement and its accurate determination is

vital in optimization procedures.
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Figure 6.20: Influence of parameter £y on CMOD-Pseudo Time response

Figure 6.20 presents the results of the sensitivity analysis performed for the fiber-
matrix combined effective modulus during loading, Eyr. It’s observed how this
parameter particularly affects the stiffness of the beam, as higher values correspond
with a more stiffer response from the beam, especially in the pre-peak phase, while
beams with fiber with significantly low E;r basically behave like regular concrete
beams with no added reinforcement. This reiterates that the elastic properties of the
individual fibers play a role in the overall deformation behavior of the FRC beam.
This parameter directly governs how much load the fibers carry elastically before
breaking or getting pull-out.
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Figure 6.21: Influence of parameter fy,,q. on CMOD-Pseudo Time response

Figure 6.21 shows the influence of parameter fy,,qe that links the properties
of a singular fiber with the observed bundle in the cross section. This parameter
appears to explicitly influence the pre-peak stage and has little to no influence after
fiber pull-out. A higher fy,,q. value results in a stiffer response and a greater
load-carrying capacity. The main takeaway is how this parameter is affecting the
transitional phase from concrete-dominated to fiber-dominated behaviour, and its
impact suggests it playing a role in calibrating the overall effectiveness of the fiber

reinforcement.
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Figure 6.22: Influence of parameter n ., on CMOD-Pseudo Time response

The sensitivity analysis of 1 e, in Figure 6.22, shows that the number of fibers
has an pronounced effect on the stiffness of the beam and compeltel pullout time. A
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greater number of fibers generally leads to a much stiffer and more ductile response
in the post-peak regime, which lets the beam to sustain higher CMOD values with
increased resistance. This is expected, as more fibers in the beam means more
to more crack bridging elements, which directly the composite’s ability to resist
crack propagation and maintain load transfer. The beam’s response shows a great
sensitivity to this particular parameter.

The conducted sensitivity analysis provides an insights into the importance and
interdependencies of the governing parameters of the FRC beam’s bending behav-
ior. It systematically quantifies how changes in material and geometric properties
influence the CMOD response, and confirmed that parameters that affect the pre-
peak properties primarily govern the initial response, while those related to fiber
contribution are ones having a critical role in the post-peak phase where the ductile
behavior is present. Parameters such as F"*, Aa, Etr, ha, founde; and 1 fiper show
significant sensitivity,which highlighting their importance for accurately describing
the characteristics of FRC, while F*** manly affects the pre-cracking regime.

This analysis will serve as a tool for the subsequent and any future inverse
analysis. Parameters showing high sensitivity will be prioritized for estimation,
and their search space will be based on their observed influence. On the other
hand, parameters with little to no influence will be extracted with the purpose of
validating the inverse model, but in any future parametric analysis they may be
treated as fixed. This systematic understanding of parameter sensitivity is crucial
for planning an efficient inverse optimization strategy, especially in cases where a
global minimum might not be clearly presenting.

6.4 Verification using Synthetic Data

This section presents the process and the results of the verification of the developed
inverse analysis procedure through the use of "synthetic" experimental data. The
inverse model’s accuracy and robustness was tested using data crack mouth opening
displacement data generated by the predictive model where all model parameters
are defined as deterministic and are known beforehand. This helps ensuring that
the model implementation is without errors and works as intended from a tech-
nical standpoint, before its it is applied to more noisy and uncertain laboratory
experimental data.

The analysis involves several preparatory steps necessary establish a controlled
environment for testing the model’s capability of parameter extraction. A "true"
numerical model is first defined by selecting a specific, physically realistic value for
the chosen parameter P, that is intended to be extracted via the inverse procedure.
All other material and geometric parameters in the predictive model are assiged to
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fixed, known values, which remain as such throughout the analysis. This defined,
"true" model, is then used to generate synthetic target data for the crack mouth

opening displacement, which serves as an idealistic experimental reference.

The use of synthetic data is crucial at this stage, because it allows for an un-
ambiguous validation of the inverse procedure’s algorithmic integrity. Since the
synthetic data is generated using the exact same predictive model formulations as
in inverse model, the implemented inverse algorithm is correct only if the extracted
Pi1e exhibits zero error, thereby confirming that the equations, algorithms, and code
for the inverse process are accurately implemented according to the conceptual and
mathematical model before its application to noisy and uncertain actual laboratory
experimental data.

After the generation of target data, a visual sensitivity of the model’s CMOD
output to variations in the parameter P is performed. The inverse analysis for each
parameter begins with defining a plausible range of initial guesses (Fp). This range
is not arbitrary, but is established by referencing the known physical constraints of
the materials. For instance, the nominal diameter of the steel fibers is 0.55 mm,
which is a value that provides a realistic center point. Similarly, the elasticity
modulus is bounded by known values for typical fibers (e.g., Err ranging from low-
stiffness polypropylene to high-stiffness carbon). This reliance on physically sound
initialization is key to solving the inverse problem efficiently and ensuring that the
final convergence is physically meaningful, even when starting far from the true
value. The results are presented as lists that include values below, above, close
to, and further from P, while also considering the physically plausible range for
tested P. The specific range chosen for each parameter is aimed to understand the
algorithm’s behavior with both good and relatively poor starting estimates.

After this, the perturbation value dP used for the numerical calculation of sen-
sitivity coeflicients, is defined. Its value is set to a small (1 — 3%) fraction of the
assumed magnitude of P,.. Furthermore, a maximum number of iterations is set to
prevent indefinite execution if convergence is not achieved, and a tolerance criterion

for the change in the parameter estimate |[AP| is defined to signal convergence.

The iterative inverse analysis procedure is performed for each selected initial
guess of the parameter P, as detailed in the subsequent sections for each specific
parameter investigated. In addition to the final converged values, the performance of
the inverse algorithm was further assessed and quantified by determining the basin
of attraction (BoA). The BoA represents the range of initial guesses from which the
algorithm will successfully converge to the true parameter value, where a wider BoA
indicates a more robust and a less guess-dependent model.
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6.4.1 Inverse Extraction of Synthetic Aa

This subsection showcases results of the inverse analysis of the parameter Aa, rep-
resenting a single fiber’s cross section diameter. The inverse procedure was tested
across all three beam sizes and a wide range of initial guesses, and the results are
summarized in Tables 6.2, 6.3 and 6.4.

Table 6.2: Summary of Inverse Iteration Results for Estimating Aa on Large-Sized

Samples
True Aa Value Initial Guess Iterations Final Result BoA Range

(Aa) (Aag) (k) (Aagi1) (% of true value)
0.03 8 0.1
0.2 4 0.1

0.1 0.35 3 0.1 2470
0.5 6 0.1
2.5 8 0.1
0.06 9 0.2
0.1 ) 0.2

0.2 0.35 4 0.2 1220
0.5 4 0.2
2.5 8 0.2
0.11 7 0.35
0.2 4 0.35

0-35 0.5 3 0.35 683
2.5 6 0.35
0.15 6 0.5
0.2 5 0.5

05 0.35 3 0.5 470
2.5 5 0.5
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Table 6.3: Summary of Inverse Iteration Results for Estimating Aa on Medium-
Sized Samples

True Aa Value Initial Guess Iterations Final Result BoA Range

(Aa) (Aag) (k) (Aagy1) (% of true value)
0.03 9 0.1
0.05 7 0.1
0.1 0.2 5 0.1 2070
0.5 7 0.1
2.1 9 0.1
0.06 8 0.2
0.07 8 0.2
0.1 6 0.2
0.15 4 0.2
0.2 0.25 4 0.2 720
0.5 d 0.2
0.7 6 0.2
1.5 7 0.2
0.13 6 0.35
0.15 6 0.35
0.35 0.25 4 0.35 985
0.4 3 0.35
2.1 2 0.35
0.17 5 0.5
0.2 6 0.5
0.3 4 0.5
0.4 3 0.5
0.5 3 0.5
0.6 3 0.5
0.5 0.7 4 0.5 551
0.8 4 0.5
0.9 d 0.5
1.1 4 0.5
1.2 > 0.5
1.3 5 0.5
2.1 3 0.5

81



6.4.1. Inverse Extraction of Synthetic Aa

Table 6.4: Summary of Inverse Iteration Results for Estimating Aa on Small-Sized
Samples

True Aa Value Initial Guess Iterations Final Result BoA Range

(Aa) (Aag) (k) (Aagy1) (% of true value)
0.04 6 0.1
0.09 2 0.1
0.11 2 0.1

0.1 0.2 d 0.1 890
0.35 6 0.1
0.5 6 0.1
0.93 7 0.1
0.08 6 0.2
0.1 3 0.2

0.2 0.35 4 0.2 850
0.5 d 0.2
0.93 6 0.2
0.11 6 0.35
0.2 3 0.35

0-35 0.5 4 0.35 410
0.93 d 0.35
0.14 D 0.5
0.2 4 0.5

05 0.35 3 0.5 226
0.93 4 0.5

The results show that the method is generally capable of converging to the true
Aa value for a wide range of initial guesses, with convergence achieved on average
within 5 iterations. Initial guesses closer to the true value converged most rapidly,
while those further away required more steps for the algorithm to correct the initial
deviation. The convergence accuracy is 100% when a solution is reached, which
fulfills the primary objective of this verification stage and confirms the technical
integrity of the inverse algorithm for Aa.

A limitation was observed for guesses too lower from the true one, as those
produced an extremely large update step in the first iteration, which calculated the
next guess to be extremely high. With such overly inflated value, entirely outside
any physically plausible ranges for realistic fiber dimensions, the predictive part
of the inverse model failed to compute a CMOD curve in any subsequent iteration.
This failure seen only in values lower than the true one can be attributed to the non-
linear relationship between Aa and the CMOD, and the behavior of the sensitivity

term Y a,,; = 24GMon:
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These relatively too low guesses leads to a low sensitivity xaq:, and therefore a
very small sum of squared sensitivities, > " | xA,,;. When a potentially large error
term, > " (y; — demon i(Aa)) - Xaai, is divided by this very small denominator in
the update equation:

n

Zi: (?/z — denvon i(ACL)) * XAai
A(Aa) = 1 S (6.5)
i=1 XAa,i

a disproportionately large update step can occur. This "overshoot" pushes the

parameter estimate into a region where the forward model becomes numerically
unstable or the parameter value physically unrealistic. In contrast, for an initial
guess like Aa = 1.3 in case of true Aa = 0.5, while the initial error (y; —dcwmon i(Aa))
is also large, the model’s sensitivity to changes in Aa in that higher range appears
to be more substantial. This results in a more appropriately scaled update step, and

allows a more stable convergence towards the true value.

A distinct relationship between the BoA range and the magnitude of the true Aa
value was observed. For all beam sizes, as the true value of Aa increases, the BoA
range as a percentage of the true value decreases. This is only relative to the true
Aa, as the absolute range of guesses within which a successful convergence occur is
pretty much stable across all true Aa.

However, a trend in the BoA range appears to be correlated with the beam size.
For a given true Aa value, the BoA range is largest for the large beams and smallest
for the small beams. This suggests that the model’s sensitivity and the complexity
of the error surface are functions of the beam’s geometry. In smaller beams, where
geometric effects are more pronounced, the inverse algorithm seems to have a more
constrained and complex search space, which limitis the model’s robustness to a
wide range of initial guesses. This observation also provides a partial explanation
for why inverse analysis might be more challenging to perform on smaller specimens
with real experimental data.

6.4.2 Inverse Extraction of Synthetic h,

The inverse analysis for the synthetically generated fiber position parameter, h,, was
done for all three beam sizes. The results are summarized in Tables 6.5, 6.6, and
6.7, and show consistent and rapid convergence to the true values for a wide range of
initial guesses. The iterative procedure consistently converged to the true value for
he with 100% accuracy and fulfilled the primary objective of this verification stage.
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Table 6.5: Summary of Inverse Iteration Results for Estimating h, on Large-Sized
Samples

True h, Value Initial Guess Iterations Final Result BoA Range

(ha) (hag) (k) (hay,) (% of true value)
-1.7 4 0.05
0.01 2 0.05
0.2 2 0.05
0.5 3 0.05
0.05 0.8 3 0.05 8200
0.95 3 0.05
1.5 3 0.05
2.4 D 0.05
-1.7 4 0.5
0.05 2 0.5
0.8 2 0.5
05 0.95 3 0.5 820
1.5 4 0.5
2.4 4 0.5
-1.7 4 0.8
0.05 3 0.8
0.5 3 0.8
0.8 0.95 2 0.8 012
2 3 0.8
24 4 0.8
-1.7 4 0.95
0.05 3 0.95
0.5 4 0.95
0.95 0.8 3 0.95 432
1.5 3 0.95
2 3 0.95
2.4 4 0.95
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Table 6.6: Summary of Inverse Iteration Results for Estimating h, on Medium-Sized
Samples

True h, Value Initial Guess Iterations Final Result BoA Range

(ha) (hag) (k) (hay,) (% of true value)
-2.5 3 0.1
0.05 2 0.1
0.35 3 0.1
0.1 0.5 3 0.1 5000
0.8 3 0.1
2.5 4 0.1
-2.5 5 0.35
-2 4 0.35
0.05 3 0.35
0-35 0.65 3 0.35 1686
0.8 3 0.35
3.4 4 0.35
-2.5 > 0.5
0.05 3 0.5
0.1 3 0.5
05 0.65 2 0.5 1180
0.8 2 0.5
3.4 4 0.5
-2.5 D 0.65
0.05 3 0.65
0.1 3 0.65
0.65 0.35 3 0.65 908
0.5 2 0.65
0.8 2 0.65
3.4 4 0.65
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Table 6.7: Summary of Inverse Iteration Results for Estimating h, on Small-Sized
Samples

True h, Value Initial Guess Iterations Final Result BoA Range

(ha) (hag) (k) (hay,) (% of true value)
-3.7 3 0.01
0.15 2 0.01
0.3 3 0.01
0.01 0.39 3 0.01 87000
0.8 3 0.01
5 4 0.01
-3.7 5 0.15
0.01 2 0.15
0.3 2 0.15
0-15 0.39 3 0.15 5800
0.8 3 0.15
Y 4 0.15
-3.7 > 0.3
0.01 3 0.3
0.15 2 0.3
03 0.39 2 0.3 2900
0.8 3 0.3
Y 4 0.3
-3.7 4 0.39
0.01 3 0.39
0.15 2 0.39
039 0.3 2 0.39 2231
0.8 3 0.39
5 4 0.39

The most striking observation from the analysis is the relatively large range of
values for which the model converged successfully. This is quantitatively seen by
the BoA ranges, which were 4.1 cm, 5.0 cm and 8.7 cm for large, medium, and small
beams, respectively. When expressed as a percentage of the true value, this resulted
in a BoA range as high as 87,000% for small-sized beams with a true h, of 0.01 cm.
It is found that the BoA range is largest for smaller beam sizes, which suggests that
the model’s sensitivity and the complexity of the search space are functions of the
specimen’s geometry.

As seen in the presented tables, the iterative procedure successfully converged to
the true value for h, even when initial guesses were outside the physical boundaries
of the beam (h_a < 0 or h, > h). This is due to the mathematical formulation of
the predictive model and the nature of gradient-based optimization. The equations
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defining the fiber’s contribution to force and moment are mathematically defined for
any numerical value of h,. The inverse algorithm does not inherently "know" nor is
written to take in account values only within the physical bounds of the beam, and
therefore does not disregard initial guesses that are physically unrealistic. As long
as the fiber constitutive law is defined such that it still produces a calculable force
and a non-zero sensitivity (xn, = G%LMOD) in that region, the algorithm can still
determine the direction in which to adjust h,. If the target CMOD data (measured
data) indicates a fiber contribution, the error term will be sizable even when the
guessed h, places fibers ineffectively. The optimizer iteratively adjusts the initially
guessed value, which is guided by the sensitivity, to bring the fiber position to a
location that gets it to contribute to the beam’s behavior and thus minimizes the

error, even when starting from a non-physical location.

The algorithm’s ability to converge from such physically unrealistic starting
points shows that the error surface in the parameter space contains gradients that
effectively navigate the solution towards a physically correct minimum.

6.4.3 Inverse Extraction of Synthetic E¢r

This section details the verification of the inverse model for the fiber-matrix com-
bined effective elasticity modulus during loading, E¢r. The procedure was tested
across all three beam sizes (Tables 6.8, 6.9, and 6.10) and a wide range of values
to represent different fiber types, from less stiff glass and polypropylene (PP) fibers
(as low as 5000 N/mm?) to stiff basalt and carbon fibers (up to 300000 N/mm?)

In this chapter, the inverse model’s verification was conducted by extracting the
fiber-matrix combined effective elasticity modulus during loading,, E¢r), on medium-
sized samples. The testing covered a range from minimum to maximum converged
values, along with plausible values representing commercially available steel fibers.
Furthermore, its performance was assessed for less stiff fibers, including glass and
polypropylene (PP) fibers, by extracting preset Epr values within the range of 5 to
75 GPa (or approximately 500 to 7500 kp/mm?). In the same manner, E; was set
to 100000 and 300000 kp/mm? to generate synthetic data, which was then used to
extract these same values for cases involving basalt and carbon fibers, respectively.
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Table 6.8: Summary of Inverse Iteration Results for Estimating E¢r on Large-Sized
Samples

True Egr Value Initial Guess Iterations Final Result BoA Range

(N/mm?) (N/mm?) (k) (N/mm?) (% of true value)

1 3 5000
2500 3 5000

5000 10000 3 5000 960
25000 3 5000
48000 3 5000
1 4 75000
5000 4 75000
100000 3 75000

75000 210000 4 75000 807
300000 4 75000
605000 6 75000
1 4 100000
5000 4 100000
75000 3 100000

100000 210000 3 100000 645
300000 4 100000
645000 D 100000
1 4 210000
5000 4 210000
75000 5 210000

210000 100000 3 210000 730
300000 4 210000
730000 7 210000
1 4 100000
5000 5 300000

300000 210000 4 300000 438
500000 3 300000
920000 8 300000

88



6.4.3. Inverse Extraction of Synthetic Efr

Table 6.9: Summary of Inverse Iteration Results for Estimating Err on Medium-
Sized Samples

True E¢r Value Initial Guess Iterations Final Result BoA Range

(N/mm?) (N/mm?) (k) (N/mm?) (% of true value)

1 3 5000
2500 3 5000

2000 75000 4 5000 3200
160000 4 5000
1 4 75000
70000 3 75000

75000 210000 4 75000 593
445000 5) 75000
1 4 100000
5000 4 100000

100000 75000 3 100000 500
210000 4 100000
500000 5) 100010
1 5) 210000
150000 4 210000
200000 3 210000

210000 250000 3 210000 405
400000 4 210000
850000 6 210000
1 5) 100000
75000 4 100000
100000 4 100000

300000 210000 4 300000 192
400000 4 300000
1475000 5) 300000
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Table 6.10: Summary of Inverse Iteration Results for Estimating E¢r on Small-Sized
Samples

True E¢r Value Initial Guess Iterations Final Result BoA Range

(N/mm?) (N/mm?) (k) (N/mm?) (% of true value)
1 2 500
75000 3 5000
oU00 210000 3 5000 4600
230000 3 5000
1 3 75000
5000 3 75000
75000 210000 3 75000 400
300000 4 75000
1 4 100000
75000 3 100000
100000 210000 3 100000 750
300000 4 100000
810000 5) 100000
1 4 210000
75000 3 210000
210000 100000 3 210000 1002
300000 4 210000
2105000 4 210000
1 5) 300000
5000 4 300000
75000 4 300000
300000 210000 4 300000 02
350000 3 300000
2105000 5) 300000

The results demonstrated that the inverse model consistently and accurately
converged to the true Egr value for a vast range of initial guesses, with a 100% ac-
curacy in all successful convergence cases. This confirms that the model’s stability
and ability to handle parameters is applicable to a broad spectrum of physical mag-
nitudes. The convergence was also consistently fast, with the algorithm typically
requiring only 3 to 5 iterations to reach the solution.

A trend was observed in the tables is the inverse relationship between the mag-
nitude of the true E¢r and the value of the BoA range. For all beam sizes, the BoA
range, both at its absolute value and as a percentage of the true value, is largest for a
low modulus and decreases as the modulus increases. For instance, in medium-sized
beams, a true E¢r of 5000 N/mm? has a BoA of 160000 or 3200%, while a true
Exr of 210000 N/mm2 has a BoA of 850000 or 405%. This means that for less stiff
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beams, the inverse algorithm has a much broader and more forgiving search space,
which likely comes from the model’s sensitivity to this parameter in different regions
of the CMOD curve.

Furthermore, a distinct size effect is also evident in the BoA ranges. For the same
true Err, the BoA range is largest for smaller beams and decreases as the beam size
increases. This suggests that the complexity of the error surface for this parameter
is more constrained in larger specimens, which leads to a narrower range of initial
guesses that can successfully guide the algorithm to the correct solution. However,
an exception to the convergence pattern occurred with a true value o f5000 N /mm?
when an initial guess of 75000 N/mm? failed to converge for large beams, as seen in
A.46. Despite the initial guess being well within the BoA of other cases, this failure
confirms how non-linear optimization is not only dependent on the distance of the
initial guess from the true value, but also on the specific shape of the error surface.
In this instance, a much higher initial guess predicts an overall much stiffer beam
than the target, and the algorithm had to optimize with overly aggressive update
steps that lead to computational failure.

6.4.4 Inverse Extraction of Synthetic fpundie

This subsection presents the results of the verification of the inverse model for the
empirical scaling parameter, for all three beam sizes and a wide range of initial
guesses. The results are summarized in Tables 6.11, 6.12, and 6.13.
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Table 6.11: Summary of Inverse Iteration Results for Estimating fy,,qe on Large-
Sized Samples

True fyunaie Value Initial Guess Iteration Final Result BoA Range

— — (k) — (% of true value)
0.0000001 4 0.000001
0.000001 4 0.000001
0-000001 0.000005 D 0.000001 990
0.00001 8 0.000001
0.000001 6 0.00005
0.00005 0.00004 4 0.00005 198
0.0001 4 0.00005
0.000001 7 0.000095
0.000095 0.000005 7 0.000095 99
0.0001 2 0.000095
0.0000001 8 0.0001
0.000001 8 0.0001
0.00001 8 0.0001
0.0001 0.00005 D 0.0001 1009
0.000095 3 0.0001
0.000101 2 0.0001
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Table 6.12: Summary of Inverse Iteration Results for Estimating fy,n,qe on Medium-
Sized Samples

True fyunaie Value Initial Guess Iteration Final Result BoA Range

— — (k) — (% of true value)
0.000001 4 0.00001
0.000005 4 0.00001
0.00001 0.000015 4 0.00001 390
0.00004 d 0.00001
0.000001 d 0.00005
0.00005 0.00004 3 0.00005 198
0.0001 3 0.00005
0.000001 D 0.000095
0.000085 3 0.000095
0-000095 0.0001 3 0.000095 103
0.000104 3 0.000095
0.00000001 D 0.000095
0.000001 D 0.0001
0.0001 0.000005 D 0.0001 90
0.00005 4 0.0001
0.00009 3 0.0001
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Table 6.13: Summary of Inverse Iteration Results for Estimating fy,,q. on Small-
Sized Samples

True fyunaie Value Initial Guess Iteration Final Result BoA Range

— — (k) — (% of true value)
0.0000001 2 0.000001
0.000005 3 0.000001
0-000001 0.00005 4 0.000001 9990
0.0001 4 0.000001
0.0000001 4 0.000001
0.000001 3 0.00001
0.00001 0.00005 3 0.00001 999
0.0001 3 0.00001
0.0000001 4 0.00005
0.000001 4 0.00005
0.00005 0.00001 3 0.00005 200
0.0001 3 0.00005
0.0000001 4 0.0001
0.000001 3 0.0001
0.0001 0.00001 3 0.0001 o0
0.00005 3 0.0001

The results show that the inverse model consistently and accurately converged
to the true fyungle value for a wide range of initial guesses, with 100% accuracy in
all successful convergence cases. The convergence was also consistently fast, with
the algorithm typically requiring only 2 to 8 iterations to reach the final solution.

The BoA range, when expressed as a percentage of the true value appears as
variable, but its absolute value remains consistently between 0.00005 and 0.0001
across all beam sizes, without any apparent trend. This suggests that the stability
of the model is tied to a specific magnitude of this empirical parameter. The analysis
of the BoA range shows that the model is numerically stable as long as the search
space for fynae does not exceed a certain absolute boundary, regardless of the
specimen’s size. Furthermore, for a given absolute BoA, the relative percentage
range is significantly larger for a smaller beam (e.g., BoA range of 9990% for a true
value of 1 x 1075 in small beams) and decreases as the beam size increases. This is
a direct consequence of dividing a constant absolute BoA by a smaller true value,
and it provides insight into how the parameter’s magnitude affects the perception
of the algorithm’s search space.

It was determined that inverse analysis for extracting fiunaie does not work for
negative values of initial guesses, as well as an initial guess that equals zero. However,
the model was tested for initial guesses as low as founaie = 1 X 1075, and it was
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concluded that no matter how small the initial guess for fyunqe is the inverse model
will be able to preform the iteration as long as the initial guess is a non-zero, non-
negative value. This shows the numerical stability of the algorithm even for values
that approach a singularity in the optimization space.

It is observed that crack mouth opening displacement generated with values
higher than fynqe ~ 0.000105 would contain non-physical negative values, which
leads to the model not being able to properly capture the post-cracking behavior.
This is an important boundary of the model’s applicability on inverse identification
of frunaie, as there is a clear range of values where it can be applied that are defined
by the model’s numerical stability limits and physical realism boundaries. Knowing
this limitation will come in handy for interpreting results when the model is applied
to real experimental data.

6.4.5 Inverse Extraction of Synthetic f"**

This subsection verification of the inverse model for the concrete threshold force,
frrer which governs the pre-cracking behavior of the beam is shown. The analysis
was done across three beam sizes (Tables 6.14, 6.15, and 6.16) and a wide range of
initial guesses.
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Table 6.14: Summary of Inverse Iteration Results for Estimating f*** on Large-
Sized Samples

True f"** Value Initial Guess Iterations Final Result BoA Range

(kN /mm?) (kN /mm?) (k) (kN/mm?) (% of true value)

0.01 4 1.0
0.5 3 1.0
2.0 4 1.0

L 3.0 4 1.0 809
4.5 4 1.0
8.1 5 1.0
0.01 4 2.0
1.0 3 2.0
1.5 2 2.0

2 3.0 3 2.0 420
4.5 4 2.0
8.4 4 2.0
0.01 5 3
1.0 3 3.0
2.0 3 3.0

3 2.5 3 3.0 450
4.5 3 3.0
9.0 5 3.0
0.01 5 4.5
1.0 3 4.5
2.0 3 4.5

4.5 3.0 2 4.5 356
5.0 3 4.5
10.7 5 4.5
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Table 6.15: Summary of Inverse Iteration Results for Estimating f** on Medium-
Sized Samples

True f"** Value Initial Guess Iterations Final Result BoA Range

(kN /mm?) (kN /mm?) (k) (kN/mm?) (% of true value)

0.0 4 1.5
2.0 3 1.5

1.5 3.0 3 1.5 380
4.5 4 1.5
5.7 5 1.5
0.0 3 2
1.5 2 2
2.25 2 2

2 3.0 3 2 SU0
4.0 3 2
6.0 5 2
0.0 4 3
1.5 3 3
2.0 3 3

3 3.25 2 3 250
4.5 3 3
7.5 6 3
0.0 5 4.5
1.5 4 4.5
2.0 4 4.5

4 3.0 3 4.5 329
5.0 3 4.5
9.7 6 4.5

97



6.4.5. Inverse Extraction of Synthetic f***

Table 6.16: Summary of Inverse Iteration Results for Estimating f7*** on Small-
Sized Samples

True f"** Value Initial Guess Iterations Final Result BoA Range

(N/mm?) (N/mm?) (k) (N/mm?) (% of true value)

0 4 0.4
0.3 2 0.4
0.6 3 0.4

04 0.8 3 0.4 750
1.5 4 0.4
3.0 4 0.4
0.01 4 0.6
0.4 2 0.6

0.6 0.8 4 0.6 815
1.5 4 0.6
4.9 4 0.6
0.01 3 0.8
0.4 3 0.8

0.8 0.6 3 0.8 624
1.5 3 0.8
5.0 4 0.8
0 4 1.5
0.4 3 1.5
0.6 3 1.5

15 1.25 2 1.5 488
2.0 2 1.5
3.9 5 1.5
0 4 2
0.4 3 2
0.6 3 2

2 0.8 3 2 267
1.5 3 2
4.0 4 2

The results show that the inverse model consistently and accurately converged
to the true f"** value for a vast range of initial guesses, with 100% accuracy in all
successful convergence cases. This confirms the model’s ability to handle parameters
that define the concrete matrix itself. The algorithm typically requiring only 2 to 5
iterations to reach the final solution.

It was observed that the BoA range values and the magnitude of the true f**

have an inverse relationship in all beam sizes.

The BoA range as a percentage of the true value is largest for a low f"** and
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decreases as the true value increases. This implies that when the concrete’s con-
tribution to the overall stiffness is less dominant, the inverse algorithm has a much
broader and more forgiving search space.

Furthermore, as in previous cases, a size effect is evident in the BoA ranges. The
percentage BoA range is consistently largest for the smallest beams and smallest
for the largest beams. Since this is a recurring trend, it can be concluded that the
model’s behavior and the complexity of the error surface are influenced by the spec-
imen’s scale. The algorithm’s search space is more constrained in smaller specimens

where a parameter’s influence is more localized.

6.4.6 Inverse Extraction of Synthetic n s,

This subsection presents the results of the verification of the inverse model for the
fiber count parameter, ny;.,. The procedure was tested across all three beam sizes
and a wide range of initial guesses, with the results summarized in Tables 6.17, 6.18,
and 6.19.

Table 6.17: Summary of Inverse Iteration Results for Estimating 7., on Large-
Sized Samples

True nyiper Value Initial Guess Iterations Final Result BoA Range
— — (k) — (% of true value)
2 3 1
1 4 4 1 400
6 4 1
1 4 9
5 4 9
9 12 3 9 344
20 4 9
32 5 9
1 7 12
9 4 12
12 15 3 12 367
20 4 12
45 7 12
1 5 20
9 4 20
20 15 4 20 390
30 4 20
79 6 20
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Table 6.18: Summary of Inverse Iteration Results for Estimating 7 ., on Medium-
Sized Samples

True nyiper Value Initial Guess Iterations Final Result BoA Range
— — (k) — (% of true value)
2 3 1
1 5 5 1 400
6 1 1
1 5 5
3 4 5
5 6 4 5 280
9 4 5
15 5 5
1 5 9
4 3 9
9 6 3 9 156
15 4 9
1 6 15
5 5 15
15 9 5 15 87
14 4 15
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Table 6.19: Summary of Inverse Iteration Results for Estimating n ., on Small-
Sized Samples

True nyiper Value Initial Guess Iterations Final Result BoA Range

— — (k) — (% of true value)
2 3 1

1 5 3 1 700
9 4 1
1 3 5
4 3 5

5 6 3 5 980
10 3 5
50 4 5
1 4 15
5 4 15

15 12 3 15 327
20 3 15
50 4 15
1 4 30
5 3 30

30 2 3 20 163
50 3 30
1 4 50
5 5 50

o0 20 3 50 o8
30 3 50

The results show that the inverse model is generally successful in converging to
the true n e, value, with convergence achieved on average within 3 to 7 iterations.

An inverse relationship trend can be observed between the magnitude of the
true n e, value and the BoA range expressed in percentage of the true value, even
though in absolute values the BoA range is proportional with the number of fibers.
This means that when the fiber contribution to the overall stiffness is less dominant,
the inverse algorithm has a much broader and more forgiving search space.

The distinct size effect is evident in the BoA ranges for this parameter, as well,
as te percentage BoA range is consistently largest for the smallest beams for small
true values. This confirms that the algorithm’s search space is more constrained in

smaller specimens where a parameter’s influence is more localized.
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6.4.7 Main Findings from Synthetic Data Verification

The inverse analysis procedure was successfully verified using synthetic data, and
demonstrated a 100% accuracy in recovering the true parameter values for a wide
Band of Attraction (BoA) for all tested parameters (Aa, hq, Etr, founde, fi'*", and
Nfiver). Convergence was consistently rapid, and it typically requiring less than 8
iterations. An inverse relationship trend was observed between parameter magnitude
and the BoA (as a percentage of the true value), and a clear trend where the BoA
was generally larger for smaller beam sizes, which suggests a more complex error
surface in larger specimens. This verification confirms the algorithmic integrity and
stability of the inverse procedure before its application to real data that include
noise.

6.5 Validation using Real Data

In this chapter the final stage of model verification was done by performing the
inverse analysis of real experimental data obtained from three-point bending tests
on various FRC beams. The objective was to validate the predictive capabilities
of the new computational model by through (successfully) extracting physically
meaningful parameters and to demonstrate the stability of the inverse identification
process in a real-world scenario with experimental data that has inherent variability.

6.5.1 Inverse Parameter Identification Methodology

As described in section 5.2, the core of the inverse analysis relies on the Levenberg-
Marquardt optimization algorithm to minimize the difference between the model’s
predicted CMOD response and the measured experimental data. The method was
initially implemented for this task due to its recognized efficiency in handling nonlin-
ear least-squares problems, which posed true for problems dealing with real synthetic
obtained. However, during the implementation on experimental data some practical
challenges were observed.

It was observed that when the initial guess for the parameters was far from the
true values, the residual sum of squares (RSS) changed very slowly with respect to
the parameter estimation. This led to a very flat residual landscape with extremely
small gradients, which in turn resulted in negligible parameter updates in each step
and caused the inverse algorithm to stagnate. This meant that without a reasonable
starting point near the global minimum the algorithm frequently converged to a local
minima.

It is important to note that these convergence pathologies do not originate in un-
controlled material randomness. Because the beams were cast with self-compacting
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concrete to avoid vibration-induced variability, and because fibers were embedded at
known number, location, and orientation along a pre-defined crack path, the exper-
imental setup was deliberately deterministic, as seen in Chapter 4. Consequently,
the observed flat residual landscapes arise primarily from algorithmic sensitivity,
rather than from stochastic scatter in fiber response.

To overcome these issues and ensure a reliable convergence, a preliminary grid
search was introduced within the inverse process. This hybrid approach works so
that it first performs a global search across the chosen range of initial guesses of
the observed model parameter m, m € [0, 30|, and evaluates the objective function,
which produces a coarse landscape of RSS values.

N 2
RSS(m) = 3 (4 — a(m) depposi(m) ) (6.6)
i=1
where, similarily to Equation 5.13, y; is the experimental CMOD data, demeq;(m)
is the simulated CMOD for the assumed parameter m value, and a(m) is a scaling
factor used to align the peak magnitude of the model response with the experimental

data:
max (y; )
max (dcmod,i(m) .

a(m) = (6.7)

This generates a vector of RSS values corresponding to each candidate for m,
which constructs a discrete residual landscape. By plotting and observing RSS(m)
against b, the global minimum can be identified without relying solely on local
derivatives. The most stable range of values from this grid search is then used
for assuming the initial guess for the LM algorithm, which significantly improves
convergence reliability.

Experimental Global grid search:
CMOD data Define parameter range evaluate RSS(m) =
m € |Mmpin, Mmax 2
{wihy [7min, Mo > (yi — a(m) demod,i(m))

Levenb_(?rga\larquardt: Initialize LM with Select best candidates
solve (J'J + \I) Am = . :
T my from grid near arg min RSS(m)
J'(y — demod)

!

Stopping criteria: Outputs:
|Am| < eor m*, fitted CMOD,
ARSS < ¢ or max iter RMSE/NRMSE/RSR/R?

Figure 6.23: Hybrid inverse workflow for parameter identification

This hybrid approach (Figure 6.23) consisting of a global grid search followed by
local Levenberg-Marquardt sifting ensures that the inverse analysis is both stable

to poor initial guesses and efficient in achieving an accurate parameter estimation.
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6.5.2 Results of Inverse Extraction

A total of 47 experimental CMOD curves that encompassed various beam sizes and
fiber reinforcement types were analyzed. To manage this dataset and provide a
structured validation, the data was grouped based on the experimental design. This
grouping strategy allows for a meaningful comparison of model performance across
different material types and geometries, as per the objectives of this thesis.

6.5.3 Parameter Values obtained from Large-Sized Samples

The inverse analysis results for large-sized beams are presented through a sequence
of diagnostic figures and a summary table. Figures 6.24 through 6.26 showcase the
inverse estimation process for the number of fibers (ngpe;), fiber position (h,), and
fiber diameter (Aa), respectively. In each figure, the left-hand plot illustrates the
coarse grid search which guides the initial guess, while the right-hand plot shows
the Levenberg-Marquardt iteration paths as they converge to the optimal solution
from multiple starting points. The final converged values and their statistical char-
acterization for large samples are summarized in Table 6.20.
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Figure 6.24: Final results of inverse analysis of parameter ng;,., from large-sized
samples
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6.5.3. Parameter Values obtained from Large-Sized Samples

Table 6.20: Final converged values of parameters with their statistical characteris-

tics.

Parameter Converged Mean (1)

Values

Standard
Deviation

(o)

Coefficient of Difference
Variation (CV) (%)

11
14
13
16
17
10

Nfiber = 9

13

2.65 19.72% 33.09

0.69
0.68
0.49
0.57
0.62
0.64

he =0.80

0.62

0.08 12.20% 30.08

0.47
0.55
0.55
0.55
0.56
0.53

Aa = 0.55

0.54

0.03 6.36% 277

The inverse analysis of h, was also performed on a randomly chosen single exper-

imental dataset by adjusting the initial load-displacement curve so it would fit the

chosen dataset better. Figure 6.27 presents the fitted model input data for sample

L-SF-1, while Figure 6.28 displays the corresponding inverse extraction process.
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Figure 6.27: Input data for inverse extraction of h, from sample L-SF-1
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Figure 6.28: Final results of inverse analysis of parameter h, from sample L-SF-1

6.5.4 Parameter Values obtained from Medium-Sized Sam-
ples

The results of the inverse identification for medium-sized specimens follow the same
structure as the large beams. Figures 6.29, 6.30, and 6.31 illustrate the inverse
convergence paths for the parameters ngper, he, and Aa, respectively. The overall
stability and converged values for this group are showcased in Table 6.21.
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Table 6.21: Final converged values of parameters with their statistical characteris-

tics.

Parameter Converged Mean (u)

Values

Standard
Deviation

(o)

Coefficient of Difference
Variation (CV) (%)

Nfiber = 6

coO Ut © &= Ut O

1.87 28.58% 8.38

0.29
0.39
0.49
0.60
0.28
0.51
0.24
0.25

>
S
I

0.6

0.38

0.14 35.84% o7.17

0.46
0.44
0.40
0.30
0.46
0.40
0.46
0.46

Aa = 0.55

0.42

0.06 13.25% 30.18

The inverse analysis of h, was also performed on a randomly chosen single ex-

perimental dataset by adjusting the initial load-displacement curve so it would fit
the chosen dataset better. Figure 6.32 and Figure 6.33 illustrate the input data and
the resulting inverse estimation for sample M-SF-3.
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Figure 6.32: Input data for inverse extraction of h, from sample M-SF-3
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Figure 6.33: Final results of inverse analysis of parameter h, from sample M-SF-3

6.5.5 Parameter Values obtained from Small-Sized Samples

The inverse extraction process for the smallest beam size (40 x 40 x 160 mm), which
represents the most constrained geometry, is shown in Figures 6.34 through 6.36.
These figures confirm the previously observed search pattern trends for ngper, ha,
and Aa. The final converged values that have higher variability due to size effects
are summarized in Table 6.22.
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Table 6.22: Final converged values of parameters with their statistical characteris-

tics.

Parameter

Converged Mean (1)

Values

Standard
Deviation

(o)

Coefficient of Difference
Variation (CV) (%)

Nfiber = 3

N N NDW N

4.42 103.23%

apg = 0.45

0.39
0.41
0.46
0.46
0.32

0.41

0.06 13.89% 10.31

Aa = 0.55

0.39
0.42
0.42
0.41
0.59
0.40

0.44

0.07 17.06% 25.12

The inverse analysis of Aa was also performed on a randomly chosen single

experimental dataset by adjusting the initial load-displacement curve so it would

fit the chosen dataset better.

Figure 6.37 presents the fitted model input data

for sample S-SF-3, while Figure 6.38 displays the corresponding inverse extraction

process.
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Figure 6.38: Final results of inverse analysis of parameter Aa from sample S-SF-3

6.5.6 Cross—Size Synthesis of Inverse Estimates

The inverse analysis done with real experimental data as input provided a compre-
hensive validation of the model’s capabilities and stability in a practical application.
Unlike the verification using synthetic data that was designed to converge to a known
value with 100% accuracy, the experimental data predictably converged to a range
of results due to the inherent variability of the physical specimens. Therefore, the
statistical characterization of these results, in form of the mean, standard deviation,
and coefficient of variation (Tables 6.20 - 6.22), is a direct measure of the model’s
ability to handle scatter in real-world data.

For easier interpretation of results, a summary of the obtained coefficient of
variation (CV %) across all three beam sizes is presented in Table 6.23. Lower CV

indicates more stable/identifiable parameters.
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Table 6.23: Coefficient of variation (CV %) from inverse identification

Parameter Large beams Medium beams Small beams

Nfiber 19.72 28.58 103.23
he, 12.20 35.84 13.89
Aa 6.36 13.25 17.06

The observations are the following:

1. Size clearly impacts parameter identifiability, as large beams consistently ex-

hibit low scatter for all extracted parameters (CV =~ 6-20%). In contrast,
the small beams show a very high CV for ngpe (> 100%) that indicates that
the effective fiber count is much harder to pin down on short span sections,
where the CMOD signal carries less information about the full bridging fiber
population, which can be seen when comparing iteration paths for large beams
in Figure 6.24) versus those for small beams in Figure 6.34). This size effect
is precisely what would be expected as with fewer engaged fibers the inverse
problem becomes more sensitive to individual variations, which makes it harder
to constrain to a single, stable solution.

. Aa is comparatively robust as it stays within CV 6-17% across different beam
sizes, which is visually supported by the tight clusters of convergence paths
for both large beams in Figure 6.26 and small beams in Figure 6.36. This
indicates that the post-peak softening behavior, which is directly influenced by
the effective fiber diameter in the model, is reliably captured by the simulated
CMOD data even when other parameters vary.

. As the CV for h, is lower for large and small beams (12-14%) and slightly
higher for medium beams (36%), it is concluded how extracting the fiber posi-
tion parameter is a less stable process in medium beams. This is consistently
observed in the iteration path figures for medium beams in Figure 6.30b which
show a wider band to which the convergence occurs, when compared to those
for large and small beams in Figures 6.25b and 6.35b, respectively.

The initial guess candidates graphs visualize the coarse residual surface that is

sampled by the grid search while the the iteration paths graphs show the subsequent

Levenberg-Marquardt updates fr different seta of measured data from the same

starting points. Observing the two together, they indicate the following:

e Large beams: For all analyzed parameters the iteration paths monotonically

collapse to a single optimum regardless of the tested dataset, as seen in Figures
6.24b, 6.25b and 6.26b. This points to a broad basin of attraction and strong
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parameter observability, which is also in line with the low CV values in Table
6.23.

e Medium beams: Convergence remains reliable after the hybrid optimization is
initialized, but the paths for h, in Figure 6.30b occasionally require more steps
and show mild curvature that signifies local flatness in the residual surface.
This explains the elevated CV for h, in Table 6.23.

e Small beams: The iteration paths for all three parameters (Figures 6.34 to
6.36) are overall stable after candidates search is introduced, but exhibit sen-
sitivity to the the different levels of scatter in different target data. This is
especially seen for ngpe;, which matches its very high CV and underscores a
genuine identifiability limit for this parameter on both small specimens and
highly scattered laboratory data.

Because the laboratory tests used self-compacting concrete with no vibration
and deterministic fiber embedding was enforced, variability due to random fiber
placement was intentionally suppressed (see Chapter 4). Therefore, the cross-size
CV trends above, in large, do not reflect uncontrolled physical randomness, but
rather the identifiability of parameters from the information contained in measured
CMOD curves and the shape of the optimization landscape. From here, two out-
comes support the hypothesis: (i) for sufficiently informative tests (large beams)
the deterministic forward model plus the hybrid inverse scheme recovers parame-
ters with low scatter, and (ii) even where scatter of measured data increases (small
beams) the hybrid grid = LM procedure separates algorithmic sensitivity from ma-

terial randomness.

6.6 Engineering Applicability and Chapter Conclu-

sion

The validation and verification framework successfully validated the deterministic
model, and extends it beyond mere numerical accuracy to establish its direct appli-
cability for engineering practice.

The thesis establishes a dual-stage validation framework that stands as a stable
foundation for the model’s credibility. This approach first involves verification using
synthetic data (Section 6.4), which confirms the algorithmic integrity and 100%
accuracy of the inverse procedure against a known numerical data. This is followed
by validation using real experimental data (Section 6.5), where the model’s stability
and coefficient of variation are evaluated against real-world scattered data. This two-
step methodology isolates numerical errors from physical variability and provide a
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basis for the model’s overall trustworthiness and reliability for structural analysis.

The inverse analysis framework proves its capacity to distinguish the mechan-
ical effects of different fiber types through the successful and stable extraction of
the composite parameters Erp and founale. As demonstrated in the synthetic veri-
fication sections, the model accurately recovers target Err values that range from
low-stiffness polymer fibers to high-stiffness metallic or carbon fibers. This function-
ality potentially allows engineers to use the inverse model on field data to quickly
and reliably characterize the performance of different FRC mixtures and predict
post-cracking toughness without extensive and costly laboratory studies for every
new fiber product.

Furthermore, the established CV trends provide a quantitative basis for improv-
ing the reliability of parameter identification on different structural scales. The
consistent finding that parameter scatter is lowest in larger beams confirms that
this inverse model results with stable values when the testing specimen provides
sufficient structural information. This confidence in parameter stability is essential
for integrating the model’s output into any structural optimization and design codes.

In conclusion, the validation process confirms that the model is not only mathe-
matically correct but also a practical and stable tool for extracting physically mean-
ingful parameters (like Aa and h,), as well as material performance parameters (Efr
and fpundle) under real-world experimental variability.
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Chapter 7

Inverse Analysis and Parameter
Identification

This chapter represents the core experimental-numerical outcome of this thesis: the
identification and extraction of real, physically meaningful FRC material parame-
ters using the developed inverse analysis framework. After the validation of both
forward and inverse models in the previous chapters, in this section the validated
methodology is applied to experimentally obtained (real-world) data, which in turn
provides solution to the challenges of FRC characterization.

7.1 Extraction of Parameter Pairs

This section explores how different pairs of parameters can be uniquely identified by
mapping the CMOD error surface. It distinguishes between well-posed problems that
are characterized by isolated minima, and deterministically non-unique problems,
which can be identified by elongated minima or ridges in the parameter space.

A dual-parameter extraction was conducted to simultaneously obtain two param-
eter values with different influences identified through sensitivity studies, in order
to address an inherent limitation of single-parameter extraction in fiber-reinforced
concrete modeling. This approach directly deals with the issue of non-uniqueness in
FRC simulations, where different combinations of parameters can produce identical
crack mouth opening displacement responses, which comes from the physical inter-
dependence of material properties. For instance, where an increase in one parameter
can cause a decrease in the other while maintaining the same or similar structural

response.

Certain cases of single-parameter extraction methods introduce significant bias
by requiring a fixed assumption about values for secondary parameters. For example,

assuming an incorrect effective loading modulus, E¢r, could force compensatory
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adjustments to the fiber threshold pullout force, F)"**  during the optimization
process to match the experimental CMOD data. These compensatory errors then
further propagate through the model and distort parameter values, all the while
reducing the model’s predictive accuracy.

Therefore, to resolve this, a dual-parameter inverse analysis methodology was de-
veloped to systematically map and analyze the interdependence between two chosen
parameters. This parametric analysis was primarily conducted using data generated
by the predictive numerical model itself. Reasons for using synthetic data over ex-
perimental were several. Such data provides a control environment with precisely
known "true" input parameters, which allows for an unambiguous analysis as the
extracted parameters can be directly compared against their known counterparts.
Furthermore, to reiterate, certain parameters of high interest for this study (such
as foundle) have no means of being physically measurable, which makes collected
experimental data irrelevant to use in this case. What’s more, by eliminating ex-
perimental noise and uncontrolled variability, using synthetic data enables a more
isolated and focused study of inherent characteristics of the parameter space, in
this case - interdependence and non-uniqueness. This ensures that any encountered
challenges and/or successes are attributed solely to the algorithm’s performance and
the mathematical formulation of three-point bending.

The process included varying the values of two selected parameters over a chosen
range, while keeping all other model parameters fixed. All tested parameter pair
combinations are summarized in Table 7.1. For each combination of these two
parameters, the predictive numerical model was used to generate a corresponding
CMOD curve. The fit error between this simulated CMOD curve and a target
synthetic CMOD curve was then quantitatively evaluated. This process generated
a two-dimensional error surface across the parameter space, represented by contour
plots. Each contour line represents a specific fit error (value expressed as a sum of
square difference for easier interpretation and readability) that would be achieved by
any corresponding parameter pair combination on the grid. The lower the contour
value the better the fit. The optimal parameter pair, corresponding to the global
minimum of this error surface, is identified by the inverse analysis algorithm. This
approach provides an insight into multiple pairs of parameters’ affect on the beam
behavior that has potential for an improvement in design optimization but also a
less biased approach in certain single parameter extraction cases.
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7.1.1. Explanation of Contour Plots and Results

Table 7.1: Analyzed dual-parameter pairs and their physical interdependence

Parameter pair Physical relation

E¢r vs h, Effective elasticity modulus vs fiber vertical position
Ngber VS foundle Fiber count vs empirical bundle scaling factor

Nfiber V8 FI Fiber count vs maximum pullout force per fiber

Aa vs fer Fiber cross section diameter vs concrete matrix strength
foundie vs fI° Bundle scaling factor vs concrete matrix strength

E NS foundie Maximum pullout force per fiber vs bundle scaling factor
Nfiber VS Fy Fiber count vs effective elasticity modulus

Aa vs fer Fiber cross section diameter vs concrete matrix strength

7.1.1 Explanation of Contour Plots and Results

The results of the dual-parameter extraction inverse analysis are presented as error
contour plots in Figures 7.1, to 7.3. Each plot maps the fit error in a two-dimensional
parameter space, where contour lines connect combinations of the two varied pa-
rameters that resulted with an identical level of fit error (presented in um?).

To interpret these graphs effectively:

e Contour Lines
Each line represents a different level of constant fit error. Contour values that
are decreasing indicate a better match between the simulated CMOD curve
and the target CMOD curve, while higher contour values indicate a higher
discrepancy between target and simulated data.

e Global Minimum
The red marker found in each plot shows the parameter pair that represents the
best fit achieved by the inverse analysis algorithm for that specific parameter
combination. Ideally it would indicate the "true" parameter values for the
observed data.

e Shape of Contours

— Circular or isolated - roughly circular contours that converge sharply
to a single point indicate a well-defined, unique minimum. This means
that the model has a higher sensitivity to the precise values of both
parameters in combination, and there is less ambiguity in their correct

extraction.

— Elongated or valleys-shaped - elongated contours that form a narrow
"valley" or "ridge" signify a degree of non-uniqueness or strong interde-
pendence between the two observed parameters. In such cases, multiple
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Explanation of Contour Plots and Results

combinations of the parameters along the same ridge produce almost

identical fit errors. This directly reflects the physical interdependencies

where an increase in one parameter’s value can be compensated by a

change in the other to produce a comparable structural response. The

orientation of a ridge indicates the nature of the compensatory relation

between the parameters
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Figure 7.1: Error Contour Plot for Dual-Parameter Extraction — Part 1 (L-size

beams).
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Figure 7.1: Error Contour Plot for Dual-Parameter Extraction — Part 2 (L-size
beams).

From these results, parameter interdependence in large beams is easily inter-
pretable, with clear elongated ridges that suggest high interdependence and well
defined isolated minima for pairs with little to no interdependence. Even in less pre-
cisely defined minimas, for Aa and f"**, the dual plot serves as a valuable guidance
for searching for the most optimal solution.
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and Results
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Figure 7.2: Error Contour Plot for Dual-Parameter Extraction — Part 2 (M-size
beams).

These results show that medium-sized beams provide the sharpest, most pro-

nounced global minima for the majority of parameter pairs with no interdepen-

dancies. This also indicates that the numerical model is optimally tuned for the

geometric proportions of the medium beams, which means analysis done on these

beams will result in the lowest ambiguity during parameter identification.
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Figure 7.3: Error Contour Plot for Dual-Parameter Extraction — Part 2 (S-size
beams).

From these results it can be determined how small specimens consistently exhibit

the highest degree of non-uniqueness, which is characterized by a greater degree of

elongated residual valleys when compared to results for medium and large beams.

This means that the identifiability of certain parameters is significantly constrained

by the limited geometrical information provided by smaller test volumes.
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7.1.2 Interpretation of Results

The results of the dual-parameter extraction inverse analysis are presented as error
contour plots in Figures 7.1 to 7.3. To reiterate section 7.1.1, each plot maps the fit
error in a two-dimensional parameter space, where contour lines connect combina-
tions of the two varied parameters that give an identical level of fit error (measured
in pm?). The red marker in each plot indicates the parameter pair that corresponds
to the global minimum of the error surface, and represents the best fit achieved by
this type of inverse analysis for the developed algorithm.

A general observation across all three beam sizes is the relative consistency of all
parameter interdependence. However, a notable trend is present among the shape
of the minima with respect to beam size. The clear and isolated minima showing in
medium and larger sized beams tend to obtain a more elongated or form in smaller
sized beams. This indicates a higher degree of parameter interdependence for the
same parameter pairs when applied to smaller beam geometries. This phenomenon
is a strong indicator of size effect on identifiability of parameter and suggest that
the scale of the specimen influences the uniqueness of optimal parameter pair com-
binations. The relative influence of individual fibers in smaller beams and their
precise location becomes more dominant and their complex to uniquely separate
and identify.

The most pronounced sharp minima are found in the analyses for medium-sized
beams (Figures 7.2). This is due to the numerical model being calibrated and
fine-tuned primarily using experimental results from medium-sized beams during its
development. Therefore the model’s formulations are most optimized and provide
the most distinct parameter identification for these dimensions. However, this does
not imply a lack of reliability for larger or smaller beams but rather emphasizes
that the model’s in this stage of development achieves it peak precision within the
experimental data range it was initially designed to fit.

The dual-parameter combinations that were consistently characterized by elon-
gated contours, meaning they exhibited non-uniqueness, were E;r and ag and 1 fpe,
and fpunaie- This indicates that the fiber-matrix combined effective elasticity mod-
ulus during loading and the position od said fibers, as well as number of the fibers
and scaling fyundaie, have a mutually high compensatory relationship, meaning each
or both can be adjusted in order to achieve the same response of the beam during
bending. For instance, in the case of F;r and ag, the undesirable influence of a de-
creased effective elasticity modulus can be compensated by positioning said fibers in
a cross-section zone closer to the tension face of the beam. Likewise, it’s a guideline
for any future research on the existence and exact identification of fy,,.4 parameter,
as its value is strongly tied to the number of fibers places in the beam.
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Example Analysis of Figure 7.3 (c) - Specific Case of nyy., and F"** for
Small Beams As an illustrative example on Figure 7.3 (c¢), which plots the fit
error for the number of fibers, 1., and the fiber’s maximum threshold force F;"**
for small beams, a discrepancy in the optimization process was observed. With
true values set for the synthetic data nyfiper = 5 and F)"** = 1.6kN, the algorithm
converged at nppe, = 3 and F)"* = 2.47kN. However, a visual inspection of
the contour plots shows that this extracted best-fit solution corresponds to a local
minimum, not the visually apparent global minimum of the error surface, which
appears to be significantly close to the true values. This difference is mainly due
to the resolution of the parameter grid (20 x 20 in this case) used for calculating
the error surface. The discrete sampling points failed to adequately capture the
region of the true global minimum which led the grid search to identify the lowest
error only within the sampled points rather than the absolute global optimum of
the whole observed error space. This explicitly points out the effect of grid density
in grid-based optimization approaches as well as it emphasizes the importance of
visual inspection and of not accepting the obtained results uncritically.

7.1.2.1 Implications of the Dual Parameter Extraction Results for In-
verse Modeling

The results the dual-parameter extraction analysis presented in the previous chapter
has valuable guidelines for the subsequent inverse analysis.

Firstly, the observed interdependencies visually confirm the challenge of non-
uniqueness that dual-parameter extraction aimed to evaluate and address. This
verifies the initial hypothesis that single parameter extraction methods can be prone
to bias and inaccuracies if the potential of the existence of parameter interdepen-
dacies is overlooked. The dual extraction approach maps these relationships and
provides a more holistic understanding of the parameter space and a more refined
strategy for exact extraction.

Secondly, the successful identification and quantification of optimal parameter
pairs for the majority of the tested combinations validates the stability of the deter-
ministic predictive model and its ability to generate CMOD responses that enable
the successful recovery of input parameters, despite the complexity of FRC formu-
lation and behavior. This indicates that the model’s mathematical formulations are
indeed "simplified enough that it could be utilized in an inverse analysis, yet pre-
cise so it would accurately predict fiber-reinforced concrete beam behavior”, as stated
previously.

Furthermore, the review of the resulting sharpness of global minima and the
presence of size effects directly aids the strategy for using the Levenberg-Marquardt
algorithm in the later inverse analysis with experimental data as input.
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In case of parameter pairs that have a very apparent minima, the algorithm is
expected to converge efficiently and more accurately for both parameters. However,
for parameters within more elongated ridges (especially found in smaller beams),
additional strategies may be considered, such as:

e Constraining the search space for specific parameters to a more narrow one by
using prior knowledge from observing both the dual parameters results and
the sensitivity analysis;

e Multi-objective optimization by trying to achieve several optimal results at
once, rather than just one. For instance, aiming for the smallest possible
difference between the model’s predictions and the actual test results while
also prioritizing other possible goals such as a physically realistic parameter
values withing the observed range;

e Utilizing the sensitivity analysis for the initial guess assumption by leveraging
the sensitivity maps to estimate better initial guesses for the iterative algo-

rithm.

The observation regarding the grid resolution’s impact (Figure 7.3 (c¢)) also high-
lights the impact of choosing an appropriate optimization method. Simple grid
searches simply can be proved to not be advanced enough for such complicated ma-
terials and algorithms, and gradient-based algorithms like Levenberg-Marquardt are
a better option as they’re designed to navigate such optimizations more effectively.

7.2 Extraction of Experimental Parameters

The hypothesis of this thesis is that a well-posed deterministic forward model, paired
with a disciplined inverse routine, can recover physically meaningful FRC parameters
from structural tests even when experimental data contain scatter. With that in
mind, after successfully validating the forward and inverse model, both are used to
extract the previously unknown bundle scaling factor fyungie and the effective elastic
modulus in tension E;p from real three-point bending data.

In the force-displacement law of the fiber-matrix, defined by Equation 5.6, the
pre-peak stiffness is determined by the product EA = foundie X Er1 X Nfiber X (Aa)?.
Since the empirical scaling factor fyundgie and the effective elasticity modulus Eyr
both contribute to the bending stiffness, a change in one can be compensated for
by a change in the other while maintaining a similar CMOD response. The dual-
parameter maps in Figure 7.4 confirm this relationship by showing elongated valleys
for the pair (foundie, £f,r). This interdependence makes the simultaneous extraction
of both parameters from a single CMOD curve deterministically non-unique, so the
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hierarchical identification approach described below is designed to minimize this
issue.One parameter is temporarily fixed to a physically plausible reference value,
while the other is identified. Once the first parameter is reasonably stabilized, the
fixed assumption is released and the second parameter is extracted. This staged
procedure collapses the otherwise flat residual ridge into a well-posed direction at
each step, which bypasses the issue of deterministic non-uniqueness. What is crucial
is that the validity of the approach depends on the forward model being robust
enough to withstand the temporary inaccuracy of the fixed parameter, so that on
the second stage refit the released parameter converges to physically plausible values
without compromising the overall fit quality.

The extraction of both parameters was conducted in the following steps:

1. Fixing known parameters by using familiar geometry and material character-
istics as inputs.

2. Hierarchical identification

(a) Useing the hybrid coarse grid search — Levenberg—Marquardt refinement
described in Section 5.2 for fyunqie to impose limits where the forward
model becomes non-physical.

(b) Estimating E;p primarily from the pre-crack slope and early CMOD
evolution, which are most sensitive to the elastic bundle stiffness.

3. Validating the obtained LM minimum for each dataset by a constrained global
search using Wolfram Mathematica’s integrated function NMinimize (Simu-
lated Annealing) over the same bounds, and recording the relative difference
to confirm that LM reached a near-global minimum.

4. Due to computational cost of repeated equilibrium solves, the analysis was
done on representative random subsets for each beam size. After that, the
central tendency and scatter (mean, standard deviation, coefficient of varia-
tion, CV) was summarized across each subset.

129



7.2. Extraction of Experimental Parameters

Fit Error [pmz] Fit Error [umz]

0.00009

0.00008

3000
0.00007 1 0.00008 "
1500
500
0.00006 i 1 000007  Egy=213157:90 .0 300
300 foundle = 0.0000710 100
100 10.
3 10 2 10
£ 0.00005- 0 g 0.00006- 100
o2 < 300,
100 500
300
500
0.00004 - Py . 0.00005} 1500,
1500 E;7=268421:10 o
foundie =-0.0000390
3000
0.00003| 1 0.000041-
0.00002—— . . . . . . 0.00003 . . . . .
160000 180000 200000 220000 240000 260000 280000 300000 160000 180000 200000 220000 240000 260000 280000
Eer E¢r
(a) Small-Sized Samples (b) Medium-Sized Samples
Fit Error [pmz]
0.00008 , . , . . -
0.00007 -
500
300
0.00006 - 100,
10,
10,
° 100
2 0.00005- 300
] 500
L]
1500 E¢1=276315.80
0.00004 3000 foundle =0.0000450
0.00003 -

0.00002 v v v v v
160000 180000 200000 220000 240000 260000 280000 300000

Eer

(c) Large-Sized Samples

Figure 7.4: Error Contour Plot for Dual-Parameter Extraction of E¢r vs founde-

The dual-parameter extraction maps (shown in Figure 7.4) were generated and
used to both decide the order of estimation, and to set physically plausible search
windows that avoid numerically unstable zones, as well as to have a sense of when the
optimization method might stagnate (flat residuals along a ridge) so that a coarse
grid initialization should precede Levenberg—Marquardt. The sensitivity analysis
from Section 6.3 served as a guide for where to place weight in the objective (early
CMOD for Efr) and how tight the bounds for fyunae must be to prevent non-
physical forward responses.

Throughout the thesis and specifically in the first pass of fyungle extraction, Ey
was fixed to Eyr = 210,000 N/mm?. This choice does not assert that the effec-
tive modulus of the fiber bundle is exactly equal to that of bulk steel, rather it
serves as a neutral, physically plausible reference point to resolve the interdepen-
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dence between fyynale and Eyp, while calibrating fuunale. This two-stage approach
was adopted to address the issue of non-uniqueness. By temporarily fixing Eyr, the
inverse problem collapses the search space of the interdependent (foundie, £r) pair
into a single direction for fyundle, and therefore prevents the algorithm from drifting
along the compensatory ridge. Importantly, this prior is explicitly removed in the
second stage when Ejp itself is estimated. The results showed that releasing this
prior and re-fitting F;r did not compromise the goodness-of-fit. The final reported
Er values were consistent with the effective bundle stiffness in real steel-fiber sys-
tems. Therefore, the initial 210,000 N/mm? value is used strictly as a temporary
regularization to stabilize the identification of fyunaie; the final reported Eyp value
reflects the data, not the initial assumption.

The previous cross-size summary of the coefficient of variation shows that large
beams consistently exhibit lower scatter in the extracted values for both fyunaie and
E¢ 1, while small beams show higher CVs. Given the deterministic nature of the
experimental setup, these trends are best understood as differences in parameter
identifiability. Larger sections provide richer and more stable information on the
collective fiber behavior, which leads to better-conditioned inverse problems. In
contrast, smaller sections, with their lower fiber count and smaller total area give
flatter residual landscapes along the interdependent (foundie, £rr) ridge. This be-
havior was entirely anticipated from observing the dual-parameter maps and the

initial sensitivity analysis.
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7.2.1 Extraction of Experimental fy,,q.
7.2.1.1 Extraction of Experimental f;,,4. from Small-Sized Samples
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Table 7.2: Final Converged Values of fy,,q from Small-Sized Samples

Coefficient
. Standard ]

Final Mean . L. of . . . Difference
Parameter Deviation . . Nminimize

Values (1) (o) Variation (%)

(CV)

0.0002780

0.0000278

0.0000278
gbé’;l; 0.0000278  0.00002780 0.0000000 0.00% 0.0000278 0.00

0.0000278

0.0000278

0.0000278

0.00003113

0.00003113

Soundie 0.00003084
S-CF-3 0.00003113
0.00003113
0.00003113

0.00003108 0.0000012 0.38% 0.0000311 0.0558

0.0011947
0.0001199
Jounate 0.0001255 0.00012070 0.0000610 5.06%  0.00013085  8.4121

S-CF-2
0.0001271
0.0001116

0.00003434
0.00003434
Frundie 0.00003385
S-CF-3  0.00003434
0.00003435
0.00003435

0.0000343 0.0000020 0.59% 0.0000343 0.2466

Average obtained fyunaqe from small-sized samples has a value of 0.0005346.

7.2.1.2 Extraction of Experimental f,,,4. from Medium-Sized Samples

The results of fy,nae extraction shown as following: rang of candidates for the initial
guess in 7.7, results of the extraction in Figure. 7.8.
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Table 7.3: Final Converged Values of fyqie from Medium-Sized Samples

Coefficient
. Standard .
Final Mean . . of . . . Difference
Parameter Deviation . . Nminimize
Values (1) (o) Variation (%)
(CV)
0.00008364
0.00008364

Frundie  0.00008364
M-SF-1  0.00008501
0.00008501
0.00008501

0.00008432 0.0000075 0.89% 0.00008894 5.49

0.00005031
0.00005352

Joundie 0.00005905
M-SF-3  0.00005909
0.00005909
0.00005909

0.00005669 0.0000384 6.77% 0.00005631  0.6831

0.00008315
0.00008322
h/][cflgélfl 0.00008322 0.00008036 0.0000388 4.83% 0.00006552  18.4650
0.00007611
0.00007611

0.00006455
0.00006455

foundie 0.00006455
M-CF-3  0.00006460
0.00006460
0.00006460

0.00006458 0.0000002 0.04% 0.00006552 1.4681
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7.2.1.3 Extraction of Experimental f,,,4. from Large-Sized Samples
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Figure 7.10: Results of Extraction of fy,nqe from Large-Sized Samples
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Table 7.4: Final Converged Values of fy, a4 from Large-Sized Samples

Coefficient
. Standard .
Final Mean . . of . . . Difference
Parameter Deviation Nminimize

Values (1) Variation (%)
(o) (CV)

0.00003984
0.00003976
0.00003976
1%?.62 0.00003976 0.00003980 0.0000005 0.13% 0.0000398395 0.11
0.00003986
0.00003985
0.00003976

0.00007295
0.00006599
0.00007431

1%?4 0.00007430 0.00007131 0.0000415 5.82%  0.000074805 4.9082
0.00007430
0.00006598

0.00005157
0.00005310
Frundte  0.00005159
L-SF-1  0.00005310
0.00005157
0.00005159

0.00005208 0.0000078 1.50% 0.000181725 248.904

0.00007110
0.00009710
foundie 0.00007110
L-SF-3  0.00007110
0.00008643
0.00007110

0.00007799 0.00001119 14.35% 0.0013122 68.256

7.2.1.4 Interpretation of f;,,4. Extraction Results

The Levenberg-Marquardt iteration paths demonstrated quick stabilization for all
beam sizes, typically settlingby iteration 3-4. This fast convergence, coupled with
the generally low within-dataset scatter of the converged fyungle values, confirms
good local identifiability when the parameter E;r is held fixed. However, the agree-
ment with NMinimize varies by size and fiber type, which indicates where the resid-
ual landscape stays flat due to any existing interdependence. The low scatter in
these results also aligns with the expectation that larger beams provide more sta-
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ble retrieval of information on the overall fiber behavior, which is a trend that is
anticipated from the initial sensitivity and dual-parameter mapping (Figure 7.4).

For most small-beam datasets, the LM paths stabilized to a narrow band around
3-3.5 x 107° (Figure 7.6). This aligns with the very small scatter seen in Table
7.2 (CV < 0.4% for S-CF-3 specimen) and the equality between the LM solution
and the NMinimize global check. This confirms that fyunqe is well identified when
the residual landscape is well conditioned. S-CF-2 dataset systematically returned
a larger founale and a slightly higher discrepancy (about 8%), which is a difference
that coincides with the unique force-displacement shape of that particular speci-
men reported in 4.5. This demonstrates how the inverse algorithm compensates for
individual any specimens deviations by shifting the fyundgie when Ef 7 is held fixed.

The extraction process for medium-sized beams consistently showed stable con-
vergence, with iteration paths converging to a specific fyunae values, as seen in Figure
7.8. The coefficients of variation for the group are mostly low, which points to high
consistency in the extracted parameter values.

Despite having a greater scatter in the experimental force-displacement curves,
large-sized beams had the most stable parameter extraction results for fynae. Fig-
ure 7.10 illustrates the convergence paths for these specimens. The coeflicient of
variation for the outlier L-CF-2 dataset was low at 0.13%, which confirms that the
deterministic experimental setup on larger specimens leads to more easily identifiable
parameters. The larger number of fibers and a greater total area in these specimens
provide a stable collective response, which leads to a flatter residual landscape along
the compensatory ridge.

Average obtained values for fiunqie across all specimen sizes are summarized in
Table 7.5.

Table 7.5: Cross-size synthesis for bundle scaling factor (fpundie) results

Metric Small beams Medium beams Large beams
Mean (1) 0.00004959 0.00007208 0.00005947
Average CV 2.71% 3.58% 5.20%
Average SD (o) 0.0000161 0.0000212 0.0000405

7.2.2 Extraction of Experimental Eyr

This parameter was extracted last due to it’s high interedependancy on fyundle.
Without knowing a more precise fyundle value, E;r extraction was just a shot in
the dark. Therefore, in this section, fyundle from section 7.2.1 was used as a fixed
input parameter while F¢ 7, was extracted.
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7.2.2.1 Extraction of Experimental £y, from Small-Sized Samples
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Figure 7.12: Results of Extraction of E;r from Small-Sized Samples

These results show that the Levenberg-Marquardt algorithm demonstrates stable
local convergence and rapidly settles to a solution from a wide range of initial guesses.
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Table 7.6: Final Converged Values of Eyr from Small-Sized Samples

Parameter

Final
Con-
verged
Values

Mean

(1)

Standard Coefficient

Devia-
tion (o)

of
Variation

Nminimize

Difference

(%)

108382.1
108382.1
108389.2
108382.1
108382.1
108383.8

108383.6

0.28

0.00%

108436.3

0.05

124409.4
124403.1
124443.5
136149.5
124409.1
124409.4

126370.7

479.06

3.79%

124471.6

1.50

S-CF-2

226018.4
206291.7
227878.3
225421.3
225712.1
227994.7

223219.4

836.60

3.75%

225910.6

1.21

S5-CF-3

126214.0
126214.0
126271.8
126265.0
125654.7
125649.4

126044.8

30.52

0.24%

126278.3

0.19
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7.2.2.2 Extraction of Experimental s, from Medium-Sized Samples
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Figure 7.14: Results of Extraction of E;p from Medium-Sized Samples
These results demonstrate that the extraction procedure maintains high stability
across the medium-sized samples, and achieve consistent convergence paths for Ey p.

The candidate plots show a well-defined minima, which validates the strategy of
sequential parameter fixing to resolve the initial interdependence issue.
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Table 7.7: Final Converged Values of Efr from Medium-Sized Beams

Parameter

Final
Con-
verged
Values

Mean

(1)

Standard Coefficient

Devia-
tion (o)

of
Variation

Nminimize

Difference

(%)

M-SF-1

267879.17
273687.00
275200.70
274003.55
275207.51

273195.58

3050.6925

1.12%

275411.74

0.81

197028.01
197068.27
197076.57
197142.72
197142.72
197072.57

197088.48

45.48

0.02%

197157.45

0.04

M-CF-1

198695.91
198695.91
198727.52
198785.38
206407.92
198695.91

200001.42

3138.72

1.57%

206511.11

3.25

M-CF-3

201069.99
201070.08
201070.08
213168.58
213169.31
213205.89

207125.66

6633.60

3.20%

205048.45

1.00
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7.2.2.3 Extraction of Experimental £y, from Large-Sized Samples
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Figure 7.16: Results of Extraction of E;p from Large-Sized Samples

These iteration results show that the inverse model remains stable for the largest
specimens, and the process is characterized by rapid convergence to values consis-
tent with the expected effective steel modulus. These results also underscores the
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principle that increased size and fiber engagement provide richer, more constrained

data, which leads to a more precise parameter identifiability.

Table 7.8: Final Converged Values of Eyr from Large-Sized Samples

Parameter

Final
Values

Mean

(1)

Standard Coefficient

Devia-
tion (o)

of

Variation

Nminimize

Difference

(%)

L-CF-2

204205.08
204311.35
204205.08
204311.32
204205.08

204247.58

98.20

0.03%

205220.0

0.48

L-CF-4

252537.69
252537.82
252015.70
252497.24
258110.46
258053.84

254292.13

2942.43

1.16%

258120.0

1.51

L-CF-1

171718.21
180621.06
184541.77
171534.67
178699.67
209749.23

182810.77

14146.15

7.74%

180660.0

1.18

I-CF-3

190480.62
190479.36
194743.94
190480.74
205097.93
195061.10

194390.61

5676.16

2.92%

291230.0

49.82

7.2.2.4 Interpretation of Iy Extraction Results

The extraction of the effective elastic modulus in tension, F;p, was conducted as

the second stage of the inverse analysis, after the bundle scaling factor, fyunae, was

determined. Overall, the analysis demonstrates a stable extraction process.
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The initial guess candidates and convergence paths for the small-sized beams are
shown in Figures 7.11 and 7.12. The results in Table 7.6 show that the extraction for
most small-sized specimens was stable and converged with a very low coefficient of
variation. Two clustered results are apparent: one around 1.25x10°-1.26x10°N/mm?
and another near 2.23x10°N/mm?. These twin clusters likely and correctly reflects
fiber-type or batch differences rather than size effects. Coefficient of variation for this
testing group remains low, S-CF-2 shows a CV of 0.00% and a minimal difference of
0.05% from the NMinimize check, while some samples, like S-CF-3, show a slightly
higher CV (3.79%), which suggests more variability but still in ranges.

The convergence paths for the medium-sized beams (Figure 7.14) show a sta-
ble and well-behaved extraction process, with rapid plateaus and low to moder-
ate scatter. Iteration paths again converge in two distinct clusters: one around
2.13x10°-1.26 x 10°N/mm? and another one around 2.7 x 10°N/mm?. The results
in Table 7.7 further confirm the stability of this optimization process, with most
datasets showing a low CV. For instance, M-SF-2 has a CV of just 0.02% and a
NMinimize difference of 0.04%, while the highest CV, seen in the specimen S-CF-3,
is only 3.20%.

Most large-sized beam datasets confirm that more engaged fibers improve Efp
identifiability. The two cases that stand out have different signatures, as L-CF-1
shows a wide within-block spread, while L-CF-3 fits well locally but has a distant
minimum for the same error surface under NMinimize. Notably, L-CF-3 is also
the specimen whose TPBT force—displacement lacked a clear first peak, so the early
CMOD window that anchors Eyr is less informative in this case, when that is
precisely the condition that can create a flat landscape.

Across all beams, the identified Efr spans roughly 1.08 x10° to 2.75x 10° MPa
depending on fiber set and beam size, with within-type CVs typically < 3% and
LM-global gaps <1.5% in well-conditioned cases. Such magnitudes are consistent
with steel fiber effective stiffness and with the bundle-scale picture established in
Section 7.2.1.4. Ejp parameter is largely governed by the initial CMOD growth
and is not size-dependent per se, since observed differences due to size reflect data
informativeness rather than a physical size effect on the modulus.

Average obtained values for Eyr across all specimen sizes are summarized in

Table 7.9.

Table 7.9: Cross-size synthesis for effective modulus (E¢r) results

Metric Small beams Medium beams Large beams
Mean (p) [N/mm?| 146000 219600 208900
Average CV 1.95% 1.49% 3.06%
Average SD (o) 336.61852 3217.12440 5705.73650
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The most significant engineering implication of this analysis is the creation of
a reliable and quantified dataset for FRC characterization. The final converged
mean values (p) for the effective modulus (Err) and the fiber bundle scaling factor
(foundle) paired with their quantified scatter (CV), can be directly used as calibrated
input parameters for various FRC engineering models, such as FEM simulations or
standardized design code formulations. This allows structural engineers to predict
the post-cracking behavior of FRC elements with parameters derived from a con-
trolled experimental study, which can improve the accuracy of engineering models

compared to relying only on manufacturer specifications.
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Chapter 8

Discussion

This thesis was formed on the basis of asking a question whether a simple, well-posed
deterministic forward model, coupled with a strategically chosen inverse algorithm,
can recover physical and material parameters of fiber reinforced concrete beams
from three-point bending tests. The collective results from verification and param-
eter extraction processes proved the viability of the developed inverse method for
translating simplified modeling into real-world applications despite heterogeneity.

8.1 Recapitulation of Findings

The thesis was formed on the basis of asking a question whether a simple, well-posed
deterministic forward model, coupled with a strategically chosen inverse algorithm,
could recover physical and material parameters of fiber reinforced concrete beams
from three-point bending tests. The collective results from verification and param-
eter extraction processes showed the potentiality of the developed inverse method
for translating simplified modeling into real-world applications despite the inherent
heterogeneity.

The forward model successfully reproduced crack mouth opening displacement
for all beam sizes and various fiber configurations with low relative errors (NRMSE
typically < 20%, RSR < 0.5 and and R? > 0.81). These simulated curves consis-
tently fell within the experimental variability bands of +10 to +20¢, which confirmed
that the model’s constitutive components and numerical solution are sufficiently ac-
curate enough for deriving results from structural responses. For an inverse identifi-
cation to be valid, the accuracy of the simplified forward model is essential because
otherwise any parameter estimates would be compromised by model error.

A direct comparison with an established complex stochastic fiber bundle model
showed that the deterministic approach successfully replicates the average behavior.
Divergence only appeared in the regions where fiber variability is highest. This kind
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of stability in the predictability of the relationship between parameters and the
average structural response is a prerequisite for the inverse identification procedure.
This being successful validates using the simplified deterministic representation as a
tool for parameter estimation, as it .enables the extraction of material signals from
structural data, even without providing an explanation for the measured data’s
inherent scatter.

The technical reliability of the inverse model can be categorized as established
and technically sound. The Levenberg-Marquardt optimizer successfully recovered
the true values of all seven parameters with 100% accuracy from synthetic data,
while typically converging within 3 to 7 iterations. The bound-of-attraction (BoA)
analysis further quantified the solution’s stability and identified numerical limits and
specific failure modes for different parameters. Through the process of validation
it was confirmed that if real data fails to converge clearly, it can be confidently at-
tributed to either the quality of the measured data, wrongly fixed input parameters,
or the problem of non-uniqueness, rather than a malfunctioning algorithm.

The dual-parameter extraction analysis mapped error surfaces in two-dimensional
parameter spaces in order to highlight both unique and non-unique cases of identifia-
bility. This systematic mapping addressed the central challenge of the deterministic
inverse analysis, which is the danger of a biased extractions when parameters are
treated independently. As an example, the parameter pair (Ef 7, founde) consistently
produced maps with elongated valleys that reflect their compensatory relationship
in governing the pre-peak bundle stiffness. By explicitly characterizing there inter-
dependencies, the dual-parameter analysis establishes a guideline for a hierarchi-
cal identification strategy, as long as the formulated deterministic model is robust
enough to compensate for the temporary assumption error.

Sensitivity scans and BoA analyses indicated that the size of the beam influences
identifiability, but not in a monotonic fashion.

e Small beams are greatly affected by the localized placement of individual fibers,
which makes the overall parameter extraction results jumpy and unpredictable.
In practice, this led some datasets to near-perfect convergence (CV =~ 0%),
but in others, scatter increased significantly (CV up to 5% for frunae, and
3-4% for Ey ).

e Medium beams proved the most consistently well-conditioned. Their coeffi-
cients of variation for inverse parameter estimation were generally lowest. This
reflects both the balance between fiber count, material characteristics and the
experimental measurement resolution, but also the fact that the model was
originally calibrated using medium-sized specimens.
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e Large beams give the most reliable and stable information about how the fibers
are working because large beam sections have average out the randomness to
a greater degree. However, these beams are also the most vulnerable to er-
rors that propagate from experimental irregularities which are also greater in
magnitude simply due to the scale of the beams being greater. For example,
this is seen in the specimen lacking a clear first peak in the load-displacement
response (L-CF-3), which ended up showing inflated scatter and larger dis-
crepancies between LM and global optimization.

Therefore, size of beams affects how well parameters can be identified by influenc-
ing how much useful information the data signal contains, rather than by following
a predictable pattern.

This has direct implications for experimental design. If the goal is parameter
identification and not just flexural strength testing, beam geometry should be chosen
so it best averages the mechanisms of interest. Medium beams are the most reliable
geometry for FRC CMOD-based identification, while large beams are advantageous
for that purpose but demand stable and clean experimental signals, and small beams
should be used cautiously due to their sensitivity to local fiber effects.

The extraction procedure successfully recovered both fynae and Efp from ex-
perimental data. The two-stage approach where, first, fyun,qe Was constrained under
a fixed Efr, then released prior to extractiong Efr proved to be effective in navi-
gating the compensatory ridge observed in dual-parameter maps.

The obtained values of fynae (= 5 x 107 to 7 x 107%) align with physically
plausible scaling of bundle stiffness, while the extracted E;r values spanned 1.08 x
10° < Eyr <2.75x10° N/mm?, and showed recognition of two different fiber systems
(coarse and smooth). Importantly, all these values were obtained with low within-
group scatter and with good agreement between LM and global checks, except in
cases where individual experimental irregularities produced flat error landscapes.

Overall, these findings support the hypothesis that a simplified deterministic
model, despite its abstraction, is capable of extracting meaningful FRC parameters

even when experimental data includes scatter.

8.2 Original Scientific Contributions

The findings of this thesis contribute to the field of FRC modeling and inverse

analysis in several ways:

1. Novel deterministic model
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This research developes a simplified yet physically consistent deterministic
model that connects micro-level inputs (fiber bond-slip law) with macro-level
outputs (beam’s crack mouth opening displacement response), and achieves
functional multiscale coupling without a need for computationally extensive

explicit multiscale frameworks.

2. Inverse analysis strategy

The study demonstrates how a multi-staged parameter identification strategy
can resolve deterministic non-uniqueness,and offer a structured methodology
for dealing with interdependent parameters.

3. Guidelines for experimental design

By systematically comparing parameter identifiability for different specimen
sizes, the study establishes how geometry influences and conditions the infor-
mation content of CMOD tests. This can provide researchers with practical
guidance when selecting specimen configurations for parameter extraction, un-

like purely strength-based assessments.

4. Deterministic modeling under variability

The research shows that deterministic formulations paired with sensitivity-
informed inverse routines, can be effective simulation and extraction methods
even when experimental data contain scatter. In doing so, it demonstrates
how deterministic models can complement and, in some contexts, substitute

stochastic approaches in material characterization.

8.3 Practical Implications and Future Work

From an engineering perspective, the ability to identify parameters that cannot be
physically measured has direct relevance to structural design and material optimiza-
tion. Models like this can be used to calibrate design parameters more efficiently and
reduce reliance on expensive and time-consuming experimental programs. And in
specific cases of maintenance and inspection of FRC structures, they also provide a
systematic path for excluding unsuitable fiber types by ruling out parameter ranges
inconsistent with observed behavior.

Future work may extend this research by:

e Extending the forward model beyond the CMOD based response by incorpo-
rating moment—curvature distributions along the beam span. This would make
it possible to recover full load—deflection profiles and deformation shapes, and
link local crack-opening behavior to the structural response along the whole
beam, not just the observed cross-section.
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e Establishing experimental procedures for producing and testing beams with
controlled fiber orientations (# 0°) and distributions. With such protocols
are in place, the current framework can be extended to quantify the effects of
non-random or preferential fiber alignment on CMOD behavior and to overall
better characterize FRC as an engineering material.

e Expanding the experimental database to include different fiber types, contents,
and beam geometries. With such a richer dataset strengthen the validation

of parameter ranges and broader spectrum of what the model can capture,
beyond FRC behaviors.

e Coupling the current analytical framework with finite element modeling, to
integrate different material heterogeneity zones, and more complex boundary
conditions. This would significantly broaden the applicability of the model to

real structural configurations.

e Investigating multi-objective optimization strategies. Beyond minimizing resid-
ual error, these approaches could balance additional goals such as ensuring the
physical plausibility of analyzed parameters while maintaining stability under

experimental noise, which would improve parameter identification.

8.4 Summary

In summary, this discussion establishes that the proposed deterministic framework,
though simplified, is technically sound, physically meaningful, and practically useful.
It extracts parameters that are not directly measurable, demonstrates robustness
against experimental variability, and provides clear insights into how experimental
design (notably specimen size) shapes identifiability. The thesis therefore makes
both a methodological and a practical contribution as it advances scientific insights
into deterministic modeling of heterogeneous composites, while also offering a foun-
dation for developing future engineering guidelines for efficient and reliable FRC

characterization.
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Chapter 9

Conclusion

This dissertation successfully addressed the challenge of efficient and reliable inverse
material parameter identification in Fiber-Reinforced Concrete using a novel deter-
ministic modeling framework. The research validates a methodology that connects
micro-scale material behavior (bond-slip law and fiber properties) with macro-scale
structural response (CMOD) in order to extract physically meaningful, but unmea-
surable parameters.

The central problem that was addressed was the historical difficulty in imple-
menting complex deterministic FRC models for an inverse analysis due to computa-
tional cost and difficulty to handle experimental data scatter. This thesis proposed
three primary hypotheses, all of which are confirmed by the results:

1. The simplified and analytical deterministic model, built on the layered beam
approach and piecewise pullout formulation, successfully replicated three-point
bending test results. The model achieved a high quantitative fit with exper-
imental data, which is also demonstrated by a Coefficient of Determination
(R?) consistently above 0.81 for all beam sizes and material configurations.

2. The formulation of the forward model’s algorithm provided a suitable founda-
tion for the inverse procedure. Computational quantification showed that the
Levenberg-Marquardt iterations, initialized by a grid search, consistently con-
verged to the optimal solution within 7 iteration steps, which confirmed that
the approach effectively resolves the issue of excessive computational time in-

herent in more complex models.

3. The deterministic model proved capable of compensating for experimental
scatter during inverse analysis, which confirms it as well-posed and robust.
The hybrid grid — LM procedure reliably extracted material parameters from
noisy data, and demonstrated that the observed scatter primarily reflects pa-
rameter identifiability limits due to specimen geometry (size effects) rather
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than any algorithmic issues.

These findings advance scientific insights into heterogeneous composites and com-
putational modeling of FRC by demonstrating that deterministic formulations can
reliably extract and quantify material performance parameters like E¢r and fpundie-
The extracted (p) and quantified scatter (CV) can be directly used as calibrated
input data for structural engineering models and design codes. The thesis, there-
fore, provides a strong foundation for developing future engineering guidelines for
efficient FRC characterization.

Future research extending this framework aims to focus on three primary di-
rections. First, it is necessary to develop experimental procedures that allow for
testing and extension of the current model to include the effects of controlled fiber
orientations, that would extend beyond only unilateral fiber orientation. Second,
the forward model is to be extended to incorporate moment—curvature distributions
along the beam span, which is essential for recovering complete load—deflection pro-
files and validating the model against the structural response across the entire beam.
Finally, the analytical framework should be integrated with more complex compu-
tational models (like FEM) to investigate stress distribution under more complex
boundary conditions and load transfer in heterogeneous sections.
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Appendix A

Appendix A:Inverse Analysis
Iteration Summaries for Synthetic
Data

Small-Sized Samples h,

Table A.1: Tteration Summary for Estimating Synthetic h, = 0.0lcm with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,,,)

1 -3.70 2.16 -1.54
2 -1.54 1.32 -0.22

-3.70 3 -0.22 0.15 -0.06
4 -0.06 0.07 0.01
5 0.01 0.00 0.01  Converged
1 0.15 -0.14 0.01

0.15
2 0.01 0.00 0.01  Converged
1 0.30 -0.28 0.02

0.30 2 0.02 -0.01 0.01
3 0.01 0.00 0.01  Converged
1 0.39 -0.36 0.03

0.39 2 0.03 -0.02 0.01
3 0.01 0.00 0.01  Converged
1 0.80 -0.81 -0.01

0.80 2 -0.01 0.02 0.01
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3 0.01 0.00 0.01  Converged
1 5.00 -4.14 0.86
2 : -0. -0.02
5 00 0.86 0.88 0.0
3 -0.02 0.03 0.01
4 0.01 0.00 0.01  Converged

Table A.2: Iteration Summary for Estimating Synthetic h, = 0.15cm with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(2a) (k) (he,)  (Ahq)  (ha,,,)

1 -3.70 2.22 -1.48
2 -1.48 1.36 -0.11
-3.70 3 -0.11 0.25 0.14
4 0.14 0.01 0.15
5 0.15 0.00 0.15  Converged
0.01 1 0.01 0.14 0.15
' 2 0.15 0.00 0.15  Converged
1 0.30 -0.15 0.15
0.30
2 0.15 0.00 0.15  Converged
1 0.39 -0.23 0.16
0.39 2 0.39 -0.23 0.16
3 0.15 0.00 0.15  Converged
1 0.80 -0.67 0.13
0.80 2 0.13 0.02 0.15
3 0.15 0.00 0.15  Converged
1 5.00 -4.03 0.97
5 00 2 0.97 -0.86 0.11
' 3 0.11 0.04 0.15
4 0.15 0.00 0.15  Converged

Table A.3: Tteration Summary for Estimating Synthetic h, = 0.30cm with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (ha,)  (Ahq)  (hayy,)
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1 -3.70 2.28 -1.42
2 -1.42 1.43 0.01
-3.70 3 0.01 0.28 0.29
4 0.29 0.01 0.30
5 0.30 0.00 0.30  Converged
1 0.01 0.28 0.29
0.01 2 0.29 0.01 0.30
3 0.30 0.00 0.30  Converged
0.15 1 0.15 0.15 0.30
' 2 0.30 0.00 0.30  Converged
0.39 1 0.39 -0.09 0.30
' 2 0.30 0.00 0.30  Converged
1 0.80 -0.52 0.28
0.80 2 0.28 0.02 0.30
3 0.30 0.00 0.30  Converged
1 5.00 -3.91 1.09
2 1.09 -0.86 0.23
5.00
3 0.23 0.07 0.30
4 0.30 0.00 0.30  Converged

Table A.4: Tteration Summary for Estimating Synthetic h, = 0.39cm with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao ) (k) (he,)  (Ahq)  (ha,y,)

1 -3.70 2.31 -1.39
370 2 -1.39 1.48 0.09
h 3 0.09 030  0.39
4 0.39 0.00 0.39  Converged
1 0.01 0.37 0.38
0.01 2 0.38 0.01 0.39
3 0.39 0.00 0.39  Converged
0.15 1 0.15 0.24 0.39
' 2 0.39 0.00 0.39  Converged
1 0.30 0.09 0.39
0.30
2 0.39 0.00 0.39  Converged
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1 0.80 -0.42 0.38
0.80 2 0.38 0.01 0.39
3 0.39 0.00 0.39  Converged
1 5.00 -3.83 1.17
2 1.17 -0.85 0.32
>0 2 0.32 0.07 0.39
3 0.39 0.00 0.39  Converged

Aa

Table A.5: Iteration Summary for Estimating Synthetic Aa = 0.10 with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (Aax) (Aags1)

1 0.04 0.38 0.42
2 042  -0.18 0.24
24 -0. 1
0.04 3 0 0.09 0.15
4 0.15  -0.03 0.12
5 0.12  -0.02 0.10
6 0.10 0.00 0.10 Converged
1 0.09 0.01 0.10
0.09
2 0.10 0.00 0.10 Converged
011 1 0.11 -0.01 0.10
' 2 0.10 0.00 0.10  Converged
1 0.20  -0.06 0.14
2 0.14  -0.03 0.11
0.20 3 0.11 -0.01 0.10
4 0.10 0.00 0.10
5 0.10 0.00 0.10 Converged
1 0.35  -0.14 0.21
2 0.21 -0.07 0.14
0.35 3 0.14  -0.03 0.12
' 4 0.12  -0.01 0.10
5 0.10 0.00 0.10
6 0.10 0.00 0.10 Converged
0.50  -0.18 0.32
2 0.32  -0.12 0.20
0.50
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3 0.20  -0.06 0.14
4 0.14  -0.03 0.11
5 0.11  -0.01 0.10
6 0.10 0.00 0.10 Converged
1 0.93  -0.40 0.53
2 0.53  -0.17 0.35
3 0.35  -0.14 0.22
0.93 4 0.22  -0.07 0.14
5 0.14  -0.03 0.12
6 0.12  -0.01 0.10
8 0.10 0.00 0.10 Converged

Table A.6: Iteration Summary for Estimating Synthetic Aa = 0.20 with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k)  (Aa) (Aayq)

1 0.08 0.68 0.76
2 0.76  -0.30 0.46
A4 -0.1 .
0.08 3 0.46 0.16 0.30
4 0.30  -0.08 0.22
5) 0.22 -0.02 0.20
6 0.20 0.00 0.20 Converged
1 0.10 0.33 0.43
2 0.43 -0.15 0.28
0.10 3 0.28  -0.07 0.21
4 0.21 -0.01 0.20
5 0.20 0.00 0.20 Converged
1 0.35 -0.11 0.24
2 .24 -0.04 2
0.35 0 0.0 0.20
3 0.20 0.00 0.20
4 0.20 0.00 0.20 Converged
1 0.50  -0.17 0.33
2 0.33  -0.10 0.24
0.50 3 0.24  -0.03 0.20
4 0.20 0.00 0.20
5 0.20 0.00 0.20 Converged
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0.93  -0.39 0.54
0.54  -0.18 0.36
0.36 -0.11 0.25
0.25  -0.04 0.20
0.20 0.00 0.20
0.20 0.00 0.20 Converged

0.93

Sy O = W DN

Table A.7: Iteration Summary for Estimating Synthetic Aa = 0.35 with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aap) (k) (Aay) (Aagi1)

1 0.11 0.81 0.92
2 092  -0.35 0.57
011 3 0.57  -0.14 0.43
4 043  -0.06 0.37
5 0.37  -0.01 0.35
6 0.35 0.00 0.35 Converged
1 0.20 0.16 0.36
0.20 2 0.36  -0.01 0.35
3 0.35 0.00 0.35 Converged
1 0.50  -0.10 0.40
2 0.40  -0.04 0.36
0.50
3 0.36  -0.01 0.35
4 0.35 0.00 0.35 Converged
1 093  -0.35 0.58
2 0.58  -0.14 0.44
0.93 3 0.44  -0.07 0.37
4 0.37  -0.02 0.35
5 0.35 0.00 0.35 Converged

Table A.8: Tteration Summary for Estimating Synthetic Aa = 0.50 with Different
Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (A (Aay+1)

1 0.14 0.67 0.81
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2 0.81 -0.23 0.58
3 0.58  -0.07 0.52
4 0.52  -0.01 0.50
5 0.50 0.00 0.50 Converged
1 0.20 0.34 0.54
0.90 2 0.54  -0.04 0.50
3 0.50 0.00 0.50 Converged
1 0.35 0.14 0.49
0.35 2 0.49 0.01 0.50
3 0.50 0.00 0.50 Converged
1 0.93  -0.29 0.64
2 0.64  -0.10 0.53
0.93 3 0.53  -0.03 0.50
4 0.50 0.00 0.50 Converged

E¢r

Table A.9: Iteration Summary for Estimating Synthetic Frr = 500 N/mm? with
Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AFEgy Result Comment
(Ef.r) (k) (Erre) (Efri41)
) 1 1 499 500
2 500 0 500 Converged
1 7500 -7174 326
7500 2 326 174 500
3 500 0 500 Converged
1 21000 -20802 198
21000 2 198 302 500
3 500 0 500 Converged
1 23000 -22971 29
23000 2 29 471 500
3 500 0 500 Converged
1 30000  -31555 -1555 Negative value of the update step
30000 . .
2 -1555 — — Model failed at this guess
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Table A.10: Iteration Summary for Estimating Synthetic E;r = 7500 N/mm? with
Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AFEgy Result Comment
(Efr) (k) (Erre) (Efrm+1)
1 1 7218 7219
1 2 7219 281 7500
3 7500 0 7500 Converged
1 500 6728 7228
500 2 7228 272 7500
3 7500 0 7500 Converged
1 21000  -13548 7452
21000 2 7452 48 7500
3 7500 0 7500 Converged
1 30000 -23773 6227
30000 2 6227 1235 7462
3 7462 38 7500
4 7500 0 7500 Converged
1 75000  -74985 15
75000 2 15 7204 7219
3 7219 281 7501
4 7501 -1 7500
1 80000  -82438 -2438 Negative value of the update step
80000 . .
2 -2438 — — Model failed at this guess

Table A.11: Iteration Summary for Estimating Synthetic Fyr = 10000 N/mm? with
Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AFEgy Result Comment

(Err) (k) (Efrn) (Ef1p+1)
1 1 9496 9497
1 2 9497 506 10002
3 10002 -2 10000
4 10000 0 10000 Converged

—_

7500 2472 9972

7500 9972 28 10000

[\
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Table A.11: Iteration Summary for Estimating Synthetic Err = 10000 N/mm? with
Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AFEgy Result Comment

(Ef.r) (k) (Erre) (Efrii1)
3 10000 0 10000 Converged
1 21000 -11071 9929
21000 2 9929 71 10000
3 10000 0 10000 Converged
1 30000 -21125 8875
30000 2 8875 1092 9967
3 9967 33 10000
4 10000 0 10000 Converged
1 81000 -80431 569
2 569 8941 9511
81000 3 9511 492 10002
4 10002 -2 10000
S 10000 0 10000 Converged

Table A.12: Combined Iteration Summary for Estimating Synthetic Erp =
21000 N/mm? with Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AE;r Result Comment
(Etr) (k) (Errw) (Bt k1)
1 1 19596 19597
) 2 19597 1397 20994
3 20994 6 21000
4 21000 0 21000 Converged
1 7500 13320 20820
7500 2 20820 180 21000
3 21000 0 21000 Converged
1 10000 11055 21055
10000 2 21055 -55 21000
3 21000 0 21000 Converged
1 30000 -9340 20660
20000 2 20660 336 20996
20996 4 21000
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4 21000 0 21000 Converged
1 210500 -201607 8893
2 122 2112
510500 8893 35 8
3 21128 -128 21000
4 21000 0 21000 Converged

Table A.13: Combined Iteration Summary for Estimating Synthetic Eyp =
30000 N/mm? with Different Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess AEgr Result Comment
(Eyr) (k) (Eprw) (Efrp+1)
1 1 27594 27595
2 27595 1235 7462
1 3 7462 2387 29982
4 29982 18 30000
d 30000 0 30000 Converged
1 500 27132 27632
2 27632 2350 29982
500 3 29982 18 30000
4 30000 0 30000 Converged
1 7500 21819 29319
2 27632 677 29996
7500 3 29996 4 30000
4 30000 0 30000 Converged
1 21000 8739 29739
2 29739 257 29996
21000
3 29996 4 30000
4 30000 0 30000 Converged
1 35000 -5074 29925
35000 2 29925 75 30000
3 30000 0 30000 Converged
1 210500 -190152 20348
2 20348 9262 29611
210500 3 29611 386 29996
4 29996 4 30000
3 30000 0 30000 Converged
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Table A.14: Iteration Summary for Estimating Synthetic f*** = 0.40kN with Dif-
ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(") (k) F"

1.00 0.00 0.60 0.60
2.00 0.60  -0.18 0.43

0.00
3.00 043  -0.02 0.40
4.00 0.40 0.00 0.40 Converged
1.00 0.30 0.10 0.40

0.30

2.00 0.40 0.00 0.40 Converged

1.00 0.60  -0.17 0.43
0.60 2.00 043  -0.02 0.40
3.00 0.40 0.00 0.40 Converged

1.00 0.80  -0.34 0.46
0.80 2.00 0.46  -0.06 0.40
3.00 0.40 0.00 0.40 Converged

1.00 1.50 -0.86 0.64
2.00 0.64 -0.21 0.43

1.50
3.00 043  -0.03 0.40
4.00 0.40 0.00 0.40 Converged
1.00 3.00 -2.87 0.13
2.00 0.13 0.27 0.41
3.00

3.00 0.41  -0.01 0.40
4.00 0.40 0.00 0.40 Converged

Table A.15: Iteration Summary for Estimating Synthetic f*** = 0.60kN with Dif-
ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(f&) (k) [ f"

1.00 0.01 0.72 0.73
2.00 0.73  -0.12 0.61
3.00 0.61  -0.01 0.60
4.00 0.60 0.00 0.60 Converged

0.01
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1.00 0.40 0.20 0.60

0.40
2.00 0.60 0.00 0.60 Converged
1.00 0.80  -0.18 0.62
2.00 0.62  -0.02 0.60
0.80
3.00 0.60 0.00 0.60 Converged
4.00 0.60 0.00 0.60 Converged
1.00 1.50  -0.75 0.75
150 2.00 0.75  -0.14 0.61
' 3.00 0.61  -0.01 0.60
4.00 0.60 0.00 0.60 Converged
1.00 490  -4.84 0.06
2.00 0.06 0.53 0.59
4.90

3.00 0.59 0.01 0.60
4.00 0.60 0.00 0.60 Converged

Table A.16: Iteration Summary for Estimating Synthetic f*** = 0.80kN with Dif-
ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment

(f&") (k) F"
.00 001 072 0.73
0.01 200 073 007  0.80

3.00 0.80 0.00 0.80 Converged

1.00 0.40 0.42 0.82
0.40 2.00 0.82  -0.02 0.80
3.00 0.80 0.00 0.80 Converged

1.00 0.60 0.21 0.81
0.60 2.00 0.81  -0.01 0.80
3.00 0.80 0.00 0.80 Converged

1.00 1.50  -0.62 0.88
1.50 2.00 0.88  -0.08 0.80
3.00 0.80 0.00 0.80 Converged

1.00 5.00  -4.99 0.01
2.00 0.01 0.74 0.76
3.00 0.76 0.04 0.80
4.00 0.80 0.00 0.80 Converged

5.00

176



Table A.17: Iteration Summary for Estimating Synthetic f*** = 1.50kN with Dif-
ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Af™* Result Comment
() (k) f f" e

1.00 0.00 0.60 0.60
2.00 0.60 0.87 1.47
3.00 1.47 0.03 1.50
4.00 1.50 0.00 1.50 Converged

0.00

1.00 0.40 1.09 1.49
0.40 2.00 1.49 0.01 1.50
3.00 1.50 0.00 1.50 Converged

1.00 0.60 0.87 1.47
0.60 2.00 1.47 0.03 1.50
3.00 1.50 0.00 1.50 Converged

1.00 1.25 0.25 1.50

1.25
2.00 1.50 0.00 1.50 Converged

1.00 2.00 -0.50 1.50

2.00
2.00 1.50 0.00 1.50 Converged

1.00 3.90  -3.81 0.09
2.00 0.09 0.92 1.01
3.90 3.00 1.01 0.48 1.49
4.00 1.49 0.01 1.50
5.00 1.50 0.00 1.50 Converged

Table A.18: Iteration Summary for Estimating Synthetic f*** = 2.00kN with Dif-
ferent Initial Guesses on Small-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(&) (k) f f"

1.00 0.00 0.60 0.60
2.00 0.60 1.30 1.90
3.00 1.90 0.10 2.00
4.00 2.00 0.00 2.00 Converged

0.00

1.00 0.40 1.50 1.90
0.40 2.00 1.90 0.10 2.00
3.00 2.00 0.00 2.00 Converged
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1.00 0.60 1.30 1.90
0.60 2.00 1.90 0.10 2.00
3.00 2.00 0.00 2.00 Converged

1.00 0.80 1.12 1.92
0.80 2.00 1.92 0.08 2.00
3.00 2.00 0.00 2.00 Converged

1.00 1.50 0.48 1.98
1.50 2.00 1.98 0.02 2.00
3.00 2.00 0.00 2.00 Converged

1.00 4.00  -3.11 0.89
2.00 0.89 1.07 1.96
3.00 1.96 0.04 2.00
4.00 2.00 0.00 2.00 Converged

4.00

Medium-sized samples
ha

Table A.19: Tteration Summary for Estimating Synthetic A, = 0.10cm with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment

(hao ) (k) (he,)  (Ahq)  (ha,.,)
1 -2.50 0.07 -1.28
2 -1.28 0.10 -0.28

-2.50 3 -0.28 0.30 0.02
4 0.02 0.03 0.05
2 0.05 0.00 0.05 Converged
1 0.05 0.05 0.10

0.05
2 0.10 0.00 0.10 Converged
1 0.35 -0.26 0.09

0.35 2 0.09 0.01 0.10
3 0.10 0.00 0.10 Converged
1 0.50 -0.43 0.07

0.50 2 0.07 0.03 0.10
3 0.10 0.00 0.10 Converged
1 0.80 -0.74 0.06

0.800 2 0.06 0.04 0.10
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3 0.10 0.000 0.10 Converged
1 2.50 -2.74 -0.24
2 -0.24 2 .

550 0 0.29 0.05
3 0.05 0.05 0.10
4 0.10 0.00 0.10 Converged
1 3.40 -0.20 3.20
2 3.20 -3.21 -0.01

3.40
3 -0.01 0.11 0.10
4 0.10 0.00 0.10 Converged
1 8.00 0.36 8.36

8.00 2 8.36 0.34 8.70

' 3 8.70 0.43 9.13

4 9.13 — — Model failed at this guess

Table A.20: Tteration Summary for Estimating Synthetic A, = 0.35cm with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,.,)
1 -2.50 1.30 -1.20
2 -2.50 1.10 -0.10
-2.50 3 -0.10 0.43 0.33
4 0.33 0.02 0.35
5 0.35 0.00 0.35 Converged
1 -2.00 1.06 -0.94
2 -0.94 2 .34
900 0.9 0.27 0.3
3 0.34 0.01 0.35
4 0.35 0.00 0.35 Converged
1 0.05 0.29 0.34
0.05 2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged
1 0.10 0.24 0.34
0.10 2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged
1 0.50 -0.16 0.34
0.50 2 0.34 0.01 0.35
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3 0.35 0.00 0.35 Converged
1 0.65 -0.31 0.34

0.65 2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged
1 0.80 -0.46 0.34

0.80 2 0.34 0.01 0.35
3 0.35 0.00 0.35 Converged
1 3.40 -0.25 3.14

3.40 2 3.14 -2.78 0.35
3 0.35 0.00 0.35 Converged
1 8.00 0.19 8.19
2 8.19 0.15 8.34
3 8.34 0.20 8.54

8.00
4 8.54 0.13 8.67
5 8.67 0.30 8.97
6 8.97 — — Model failed at this guess

Table A.21: Iteration Summary for Estimating Synthetic h, = 0.5cm with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment

(hao) () (ha)  (Bha)  (hayy)

1 -2.50 1.35 -1.15
2 -1.15 1.10 -0.05
-2.50 3 -0.05 0.53 0.48
4 0.48 0.02 0.50
5 0.50 0.00 0.50  Converged
1 0.050  0.426  0.476
0.050 2 0.476  0.024  0.500
3 0.500  0.000  0.500 Converged
1 0.10 0.32 0.47
0.100 2 0.47 0.03 0.50
3 0.50 0.00 0.50  Converged
1 0.20 0.27 0.47
0.200 2 0.47 0.03 0.50
3 0.50 0.00 0.50  Converged
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1 0.65 -0.57 0.50

0.65 2 0.50 0.00 0.50  Converged
1 0.80 -0.30 0.50

0.80 2 0.50 0.00 0.50  Converged
1 3.40 -0.30 3.10
2 3.10 -2.57 0.52

3.40
3 0.52 -0.02 0.50
4 0.50 0.00 0.50  Converged

Table A.22: Tteration Summary for Estimating Synthetic A, = 0.65cm with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,,,)

1 -2.50 1.38 -1.11
2 -1.11 1.30 0.19
-2.50 3 0.19 0.41 0.60
4 0.60 0.05 0.65
5 0.65 0.00 0.65  Converged
1 0.05 0.55 0.60
0.05 2 0.60 0.05 0.65
3 0.65 0.00 0.65  Converged
1 0.10 0.49 0.59
0.10 2 0.59 0.06 0.65
3 0.65 0.00 0.65  Converged
1 0.35 0.28 0.63
0.35 2 0.62 0.02 0.65
3 0.65 0.00 0.65  Converged
1 0.50 0.15 0.65
0.50
2 0.65 0.00 0.65  Converged
0.80 1 0.80 -0.15 0.65
' 2 0.65 0.00 0.65  Converged
1 3.40 -0.33 3.07
2 3.07 -2.37 0.70
3.40
3 0.70 -0.05 0.65
4 0.65 0.00 0.65  Converged
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Aa

Table A.23: Tteration Summary for Estimating Synthetic Aa = 0.10 with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (A (Aay+1)

1 0.03 0.91 0.94
2 094  -0.47 0.47
3 047  -0.20 0.27
4 0.27  -0.07 0.20
0.03 5 0.20  -0.05 0.15
6 0.15  -0.03 0.12
7 0.12  -0.01 0.11
8 0.11  -0.01 0.10
9 0.10 0.00 0.10 Converged
1 0.05 0.19 0.25
2 0.25  -0.06 0.19
3 0.19  -0.04 0.14
0.05 4 0.14  -0.03 0.12
5 0.12  -0.01 0.10
6 0.10 0.00 0.10
7 0.10 0.00 0.10 Converged
1 0.20  -0.05 0.15
2 0.15  -0.03 0.12
0.20 3 0.12  -0.02 0.11
4 0.11  -0.01 0.10
5 0.10 0.00 0.10 Converged
1 0.50  -0.22 0.28
2 0.28  -0.07 0.21
3 0.21  -0.05 0.16
0.50 4 0.16  -0.03 0.13
5 0.13  -0.02 0.11
6 0.11  -0.01 0.10
7 0.10 0.00 0.10 Converged
1 1.30  -0.67 0.63
2 0.63  -0.30 0.33
3 0.33  -0.08 0.25
4 0.25  -0.06 0.19
1.30
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0.19  -0.04 0.15
0.15  -0.03 0.12
0.12  -0.01 0.10
0.10 0.00 0.10
0.10 0.00 0.10 Converged
2.10  -1.02 1.08
1.08  -0.54 0.54
0.54  -0.25 0.29
0.29  -0.07 0.22
0.22  -0.05 0.17
0.17  -0.04 0.13
0.13  -0.02 0.11
0.11 -0.01 0.10
0.10 0.00 0.10 Converged

2.10

O 00 ~J O Ot = W N /= O o ~ O ot

Table A.24: Iteration Summary for Estimating Synthetic Aa = 0.20 with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (Aag) (Aag1)
0.05 1 0.05 3.18 3.23 Low guess led to overshoot
2 3.23 — — Forward model failed
1 0.06 1.83 1.89
2 1.89  -1.03 0.86
3 0.86  -0.40 0.46
4 0.46 -0.19 0.27
0.06 5 0.27  -0.05 0.22
0 0.22 -0.02 0.20
7 0.20  -0.00 0.20
8 0.20 0.00 0.20 Converged
0.07 1.15 1.22
1.22  -0.53 0.68
0.68  -0.32 0.36
0.36 -0.11 0.25
0.07

0.25  -0.04 0.21
0.21 -0.01 0.20
0.20  -0.00 0.20
0.20 0.00 0.20 Converged

o =~ O T = W N =
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1 0.10 0.37 0.47
2 047  -0.19 0.28
0.10 3 0.28  -0.05 0.23
4 023  -0.02 0.21
5 0.21 -0.01 0.20
6 0.20 0.00 0.20 Converged
1 0.15 0.08 0.23
015 2 023  -0.03 0.21
3 0.21 -0.01 0.20
4 0.20 0.00 0.20 Converged
1 0.25  -0.04 0.21
2 0.21 -0.01 0.20
0.25
3 0.20  -0.00 0.20
4 0.20 0.00 0.20 Converged
1 0.30  -0.06 0.24
2 0.24  -0.03 0.21
0.30 3 0.21 -0.01 0.20
4 0.20  -0.00 0.20
D 0.20 0.00 0.20 Converged
1 0.50  -0.22 0.28
2 0.28  -0.05 0.23
0.50 3 023  -0.02 0.21
4 0.21 -0.01 0.20
D 0.20 0.00 0.20 Converged
1 0.70  -0.31 0.39
2 0.39  -0.13 0.25
0.70 3 025  -0.04 0.22
4 022  -0.01 0.20
5 0.20  -0.00 0.20
6 0.20 0.00 0.20 Converged
1 1.00  -0.48 0.52
2 052  -0.23 0.29
3 0.29  -0.06 0.24
1.00
4 0.24  -0.03 0.21
5 0.21 -0.01 0.20
6 0.20 0.00 0.20 Converged
1 1.50  -0.72 0.78
2 0.78  -0.36 0.42
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3 0.42 -0.16 0.27

4 0.27 -0.05 0.22

5 0.22 -0.02 0.20

6 0.20  -0.00 0.20

7 0.20 0.00 0.20 Converged
>3.00 — — — — Computation failed

Table A.25: Iteration Summary for Estimating Synthetic Aa = 0.35 with Different
Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (Aa) (Aaki1)
0.10 1 0.10 3.72 3.82 Large initial update, overshot
' 2 3.82 — — Forward model failed
1 0.13 1.67 1.80
2 1.80 -0.89 0.91
3 0.91 -0.40 0.51
0.13
4 0.51 -0.14 0.37
5 0.37  -0.02 0.35
6 0.35 0.00 0.35 Converged
1 0.15 1.07 1.22
2 1.22 -0.54 0.68
. -0.2 42
0.15 3 0.68 0.26 0
4 0.42 -0.07 0.35
5 0.35 -0.00 0.35
6 0.35 0.00 0.35 Converged
1 0.20 0.42 0.62
2 .62 -0.22 4
0.90 0.6 0 0.40
3 0.40 -0.05 0.35
4 0.35 0.00 0.35 Converged
1 0.25 0.18 0.43
2 0.43 -0.07 0.35
0.25
3 0.35 -0.00 0.35
4 0.35 0.00 0.35 Converged
1 0.30 0.06 0.36
0.30 2 0.36 -0.02 0.35
' 3 0.35 0.00 0.35
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4 0.35 0.00 0.35 Converged
1 0.40  -0.05 0.35
0.40 2 0.35 0.00 0.35
3 0.35 0.00 0.35 Converged
1 2.10  -1.00 1.10
2 1.10  -0.51 0.59
2.10 3 0.59  -0.20 0.39
4 0.39  -0.04 0.35
5 0.35 0.00 0.35 Converged

Table A.26: Iteration Summary for Estimating Synthetic Aa = 0.5 with Different
Initial Guesses

Initial Guess Iteration Guess A(AA) Result Comment
(AA,) (k) (04) (AAps1)
0.10 1 0.10 8.44 8.54 Large initial step
' 2 8.54 — — Forward model failed
1 0.17 1.82 1.98
2 1.98 -0.91 1.07
0.17 3 1.07 -0.42 0.53
4 0.53 -0.03 0.50
5 0.50 0.00 0.50 Converged
1 0.20 1.01 1.21
2 1.21 -0.45 0.76
3 0.76 -0.21 0.55
0.20
4 0.55 -0.05 0.50
5 0.50 -0.00 0.50
6 0.50 0.00 0.50 Converged
1 0.30 0.24 0.54
0.30 2 0.54 -0.04 0.50
' 3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged
1 0.40 0.10 0.50
0.40 2 0.50 -0.00 0.50
3 0.50 0.00 0.50 Converged
1 0.45 0.05 0.50
0.45 2 0.50 -0.00 0.50
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3 0.50 0.00 0.50 Converged
1 0.55 -0.05 0.50
0.55 2 0.50 -0.00 0.50
3 0.50 0.00 0.50 Converged
1 0.60 -0.09 0.51
0.60 2 0.51 -0.01 0.50
3 0.50 0.00 0.50 Converged
1 0.70 -0.16 0.54
2 .54 -0.04 .
0.70 0.5 0.0 0.50
3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged
1 0.80 -0.24 0.56
2 . -0. .
0.80 0.56 0.06 0.50
3 0.50 -0.00 0.50
4 0.50 0.00 0.50 Converged
1 0.90 -0.31 0.59
2 0.59 -0.09 0.51
0.90
3 0.51 -0.01 0.50
4 0.50 0.00 0.50 Converged
1 1.10 -0.43 0.67
2 0.67 -0.15 0.52
1.10 3 0.52 -0.02 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged
1 1.20 -0.45 0.75
2 0.75 -0.21 0.55
1.20 3 0.55 -0.05 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged
1 1.30 -0.51 0.79
2 0.79 -0.23 0.56
1.30 3 0.56 -0.05 0.50
4 0.50 -0.00 0.50
5 0.50 0.00 0.50 Converged
1 2.10 -0.96 1.13
2 1.13 -0.44 0.69
2.10 3 0.69 -0.16 0.53
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4 0.53 -0.03 0.50
5 0.50 0.00 0.50 Converged

E¢r

Table A.27: Tteration Summary for Estimating Synthetic Fyr = 500 N/mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AFgy Result Comment
(Efr) (k) (Erre) (Efrm+1)
1 1 496 497
1 2 497 3 500
3 500 0 500 Converged
1 250 248 498
250 2 498 2 500
3 500 0 500 Converged
1 7500 -7213 287
2 287 211 498
7500
3 498 2 500
4 500 0 500 Converged
1 16000  -15747 253
16000 2 253 246 498
3 498 2 500
4 500 0 500 Converged
51000 1 21000  -23577 -2577 Negative value of the update step

[\]

-2577 — — Model failed at this guess

Table A.28: Iteration Summary for Estimating Synthetic Fyr = 7500 N/mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AFEgy Result Comment
(Efr) (k) (Efrr) (Efr 1)
1 1 6209 6210
) 2 6210 1300 7510
3 7510 -10 7500
4 7500 0 7500 Converged
1 7000 505 7505
7000
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Table A.28 — Continued

Initial Guess Iteration Guess A(0A)  Result Comment
(040) (k) (0A) (0Ak+1)
2 7505 -5 7500
3 7500 0 7500 Converged
1 21000  -14805 6195
2 1 1314
51000 6195 3 7509
3 7509 -9 7500
4 7500 0 7500 Converged
1 44500  -43771 729
2 729 5655 6385
44500 3 6385 1126 7511
4 7511 -11 7500
5 7500 0 7500 Converged
1 45000  -45490 -490 Negative value of the update step
45000 . .
2 -490 — — Model failed at this guess

Table A.29: Tteration Summary for Estimating Synthetic E;r = 10000 N/mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AFEgt Result Comment,
(Etr) (k) (Erre) (Efrk+1)
1 1 7959 7960
) 2 7960 2006 9966
3 9966 34 10000
4 10000 0 10000 Converged
1 500 7669 8169
2 1 1802 1
500 8169 80 997
3 9971 29 10000
4 10000 0 10000 Converged
1 7500 2460 9960
7500 2 9960 40 10000
3 10000 0 10000 Converged
1 21000 -12082 8918
2 8918 1106 10024
21000
3 10024 -24 10000
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4 10000 0 10000 Converged
1 50000 -49687 313
2 313 7663 7977
50000 3 7977 1989 9966
4 9966 34 10000
5 10000 0 10000 Converged
55000 55000  -5H8247 -3247 Negative value of the update step

-3247 — — Model failed at this guess

Table A.30: Tteration Summary for Estimating Synthetic F;r = 21000 N/mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AVIT Result Comment
(Er.r) (k) (Epre) (Efrp41)
1 1 15766 15767
2 15767 4782 20549
1 3 20549 441 20990
4 20990 10 21000
5 21000 0 21000 Converged
1 15000 5568 20568
15000 2 20568 422 20990
3 20990 10 21000
4 21000 0 21000 Converged
1 20000 976 20976
20000 2 20568 14 21000
3 21000 0 21000 Converged
1 25000 -4025 20975
25000 2 20975 25 21000
3 21000 0 21000 Converged
1 40000  -19812 20188
40000 2 20188 789 20977
3 20977 23 20977
4 21000 0 21000 Converged
1 85000  -83019 1981
2 1981 15568 17548
85000 3 17548 3283 20831
4 20831 160 20991
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Table A.30: Iteration Summary for Estimating Synthetic Err = 21000 N/mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AE;r Result Comment
(Eyr) (k) (Erre) (Ef 1)
5 20991 9 21000
6 21000 0 21000 Converged
1 350000 -382940  -32940  Negative value of the update step
350000 . .
2 -32940 — — Model failed at this guess

Table A.31: Iteration Summary for Estimating Synthetic E¢r = 30000 N/ mm? with
Different Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess AEsr Result Comment
(Err) (k) (Erre) (Etrkt1)
1 1 20885 20885
2 20885 8202 29087
1 3 29087 905 29992
4 29992 8 30000
5 10000 0 10000 Converged
1 7500 18761 26261
7500 2 26261 3720 29981
3 29981 19 30000
4 10000 0 10000 Converged
1 10000 16678 26678
10000 2 26261 3320 30008
3 30008 -8 30000
4 10000 0 10000 Converged
1 21000 8092 29092
2 29092 29992
91000 909 900 999
3 29992 8 30000
4 30000 0 30000 Converged
1 40000  -10401 29599
2 2 401
40000 9599 0 30000
3 29992 401 30000
4 30000 0 30000 Converged
1 147500 -145264 2236
147500
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2 2236 21175 23411
3 23411 6171 29582
4 29582 418 30000
5 30000 0 30000 Converged

350000 -371416  -21416  Negative value of the update step

350000
-21416 — — Model failed at this guess

f‘mam
Cc

Table A.32: Iteration Summary for Estimating Synthetic f*** = 1.50kN with Dif-
ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(") (k) F"

1.00 0.00 2.36 2.36
2.00 2.36  -0.81 1.54
3.00 1.54  -0.04 1.50
4.00 1.50 0.00 1.50 Converged

0.00

1.00 2.00 -0.47 1.53
2.00 2.00 1.53  -0.03 1.50
3.00 1.50 0.00 1.50 Converged

1.00 3.00 -1.39 1.61
3.00 2.00 1.61 -0.11 1.50
3.00 1.50 0.00 1.50 Converged

1.00 450  -3.32 1.18
4.50 2.00 1.18 0.32 1.51
3.00 1.51  -0.01 1.50
4.00 1.50 0.00 1.50 Converged

1.00 570  -5.54 0.16
2.00 0.16 0.95 1.11
5.70 3.00 1.11 0.40 1.51
4.00 1.51  -0.01 1.50
5.00 1.50 0.00 1.50 Converged
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Table A.33: Iteration Summary for Estimating Synthetic f*** = 2.00kN with Dif-
ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Af™* Result Comment

(f"*) (k) F"
.00 000 236  2.36
0.00 200 236 -0.35  2.00

3.00 2.00 0.00 2.00 Converged

1.00 1.50 0.50 2.00

1.50
2.00 2.00 0.00 2.00 Converged

1.00 2.25 -0.25 2.00

2.25
2.00 2.00 0.00 2.00 Converged

1.00 3.00 -0.96 2.04
3.00 2.00 2.04  -0.04 2.00
3.00 2.00 0.00 2.00 Converged

1.00 4.00 -2.04 1.96
4.00 2.00 1.96 0.04 2.00
3.00 2.00 0.00 2.00 Converged

1.00 6.00 -5.84 0.16
2.00 0.16 1.07 1.23
6.00 3.00 1.23 0.81 2.04
4.00 2.04  -0.04 2.00
5.00 2.00 0.00 2.00 Converged

Table A.34: Iteration Summary for Estimating Synthetic f*** = 3.00kN with Dif-
ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Af"**  Result Comment
(f&) (k) fy S

1.00 0.00 2.36 2.36
2.00 2.36 0.63 2.99
3.00 2.99 0.01 3.00
4.00 3.00 0.00 3.00 Converged

0.00

1.00 1.50 1.45 2.95
1.50 2.00 2.95 0.05 3.00
3.00 3.00 0.00 3.00 Converged

1.00 2.00 0.95 2.95
2.00
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2.00 2.95 0.05 3.00
3.00 3.00 0.00 3.00 Converged

1.00 3.25 -0.25 3.00

3.25
2.00 3.00 0.00 3.00 Converged

1.00 4.50 -1.73 2.77
4.50 2.00 2.77 0.23 3.00
3.00 3.00 0.00 3.00 Converged

1.00 7.50  -7.48 0.02
2.00 0.02 5.35 5.37
3.00 5.37  -2.98 2.39
4.00 2.39 0.59 2.98
5.00 2.98 0.02 3.00
6.00 3.00 0.00 3.00 Converged

7.50

Table A.35: Iteration Summary for Estimating Synthetic f*** = 4.00kN with Dif-
ferent Initial Guesses on Medium-Sized Samples

Initial Guess Iteration Guess Af"**  Result Comment
(&) (k) J J"

1.00 0.00 2.36 2.36
2.00 2.36 1.91 4.27
0.00 3.00 4.27 0.22 4.49
4.00 4.49 0.01 4.50
5.00 4.50 0.00 4.50 Converged

1.00 1.50 2.59 4.09
2.00 4.09 0.38 4.47

1.50
3.00 4.47 0.03 4.50
4.00 4.50 0.00 4.50 Converged
1.00 2.00 2.16 4.16
2.00 4.16 0.32 4.48
2.00

3.00 4.48 0.02 4.50
4.00 4.50 0.00 4.50 Converged

1.00 3.00 1.36 4.36
3.00 2.00 4.36 0.14 4.50
3.00 4.50 0.00 4.50 Converged

1.00 5.00 -0.52 4.48
5.00 2.00 4.48 0.02 4.50
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3.00 4.50 0.00 4.50 Converged

1.00 9.70  -9.67 0.03
2.00 0.03 7.34 7.38
3.00 7.38  -3.95 3.43
4.00 3.43 0.96 4.39
5.00 4.39 0.11 4.50
6.00 4.50 0.00 4.50 Converged

9.70

Large-sized samples
hq

Table A.36: Iteration Summary for Estimating Synthetic A, = 0.05cm with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,,,)

1 -1.70 1.37 -0.33
2 -0. 1 -0.1

170 0.33 0.16 0.16
3 -0.16 0.21 0.05
4 0.05 0.00 0.05  Converged
1 0.01 0.04 0.05

0.01
2 0.05 0.00 0.05  Converged

0.9 1 0.2 -0.15 0.05

' 2 0.05 0.00 0.05  Converged

1 0.50 -0.34 0.16

0.50 2 0.16 -0.11 0.05
3 0.05 0.00 0.05  Converged
1 0.80 -0.78 0.02

0.80 2 0.02 -0.15 0.05
3 0.05 0.00 0.05  Converged
1 0.95 -0.96 -0.01

0.95 2 -0.01 0.06 0.05
3 0.05 0.00 0.05  Converged

1 1.50 -1.62 -0.12
1.50 2 -0.12 0.17 0.05
3 0.05 0.00 0.05  Converged

—

2.40 -0.14 2.26



2.26 -1.18 1.08
1.08 -1.07 0.00
0.00 0.05 0.05
0.05 0.00 0.05  Converged

Gt > W N

Table A.37: Iteration Summary for Estimating Synthetic h, = 0.5cm with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,y,)

1 -1.70 1.68 -0.02
2 -0.02 0.49 0.47
-1.70
3 0.47 0.03 0.50
4 0.50 0.00 0.50  Converged
1 0.05 0.45 0.50
0.05
2 0.50 0.00 0.50  Converged
0.80 1 0.80 -0.30 0.50
' 2 0.50 0.00 0.50  Converged
1 0.95 -0.46 0.49
0.95 2 0.49 0.01 0.50
3 0.50 0.00 0.50  Converged
1 1.50 -1.07 0.43
2 0.43 0.06 0.49
1.50
3 0.49 0.01 0.50
4 0.50 0.00 0.50  Converged
1 2.40 -0.24 2.16
2 2.16 -1.76 0.40
2.40
3 0.40 0.10 0.50
4 0.50 0.00 0.50  Converged

Table A.38: Iteration Summary for Estimating Synthetic h, = 0.8cm with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao) (k) (he,)  (Ahq)  (ha,,,)
1 -1.70 1.87 0.17

-1.70
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2 0.17 0.59 0.76
3 0.76 0.04 0.80
4 0.80 0.00 0.80  Converged
1 0.05 0.71 0.76
0.05 2 0.76 0.04 0.80
3 0.80 0.00 0.80  Converged
1 0.50 0.21 0.71
0.50 2 0.71 0.09 0.80
3 0.80 0.00 0.80  Converged
0.95 1 0.95 -0.15 0.80
' 2 0.80 0.00 0.80  Converged
1 2.00 -1.26 0.74
2.00 2 0.74 0.06 0.80
3 0.80 0.00 0.80  Converged
1 2.40 -0.27 2.13
2 2.13 -1.39 0.74
2.40
3 0.74 0.06 0.80
4 0.80 0.00 0.80  Converged

Table A.39: Tteration Summary for Estimating Synthetic h, = 0.95cm with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Update Result Comment
(hao ) (k) (he,)  (Ahq)  (ha,,,)

1 -1.70 1.95 0.25
2 2 . .

170 0.25 0.50 0.75
3 0.75 0.20 0.95
4 0.95 0.00 0.95  Converged
1 0.05 0.84 0.89

0.05 2 0.89 0.06 0.95
3 0.95 0.00 0.95  Converged
1 0.50 0.30 0.80

0.50 2 0.80 0.14 0.94

' 3 0.94 0.01 0.95

4 0.95 0.00 0.95  Converged
1 0.80 0.14 0.94

0.80
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2 0.94 0.01 0.95
3 0.95 0.00 0.95  Converged
1 1.50 -0.59 0.91
1.50 2 0.91 0.04 0.95
3 0.95 0.00 0.95  Converged
1 2.00 -1.09 0.91
2.00 2 0.91 0.04 0.95
3 0.95 0.00 0.95  Converged
1 2.40 -0.28 2.12
2 2.12 -1.22 0.90
2.40
3 0.90 0.05 0.95
4 0.95 0.00 0.95  Converged

Aa

Table A.40: Iteration Summary for Estimating Synthetic Aa = 0.10 with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k)  (Aay) (Aays)

1 0.03 0.91 0.94
2 094  -0.46 0.48
3 0.48  -0.23 0.25
4 0.25  -0.06 0.19
0.03 5 0.19  -0.04 0.15
6 0.15  -0.03 0.12
7 0.12  -0.02 0.10
8 0.10 0.00 0.10 Converged
1 0.20  -0.05 0.15
0.90 2 0.15  -0.03 0.12
3 0.12  -0.02 0.10
4 0.10 0.00 0.10 Converged
1 0.35  -0.13 0.12
0.35 2 0.12  -0.02 0.10
3 0.10 0.00 0.10 Converged
0.50  -0.24 0.26
2 0.26  -0.06 0.19
0.19  -0.05 0.15
0.50
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4 0.15  -0.03 0.12
5 0.12  -0.02 0.10
6 0.10 0.00 0.10 Converged
1 250  -1.33 1.17
2 1.17  -0.59 0.58
3 0.58  -0.29 0.29
4 0.29  -0.07 0.22
2.50
5 0.22  -0.05 0.17
6 0.17  -0.04 0.13
7 0.13  -0.03 0.10
8 0.10 0.00 0.10 Converged

Table A.41: Iteration Summary for Estimating Synthetic Aa = 0.20 with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k)  (Aa) (Aayq)

1 0.06 1.83 1.89
2 1.89  -1.00 0.89
3 0.89  -0.17 0.72
4 0.72  -0.34 0.38
0.06 5 0.38  -0.06 0.32
6 0.32  -0.08 0.24
7 0.24 -0.03 0.21
8 0.21 -0.01 0.20
9 0.20 0.00 0.20 Converged
1 0.10 0.37 0.47
2 0.47 -0.21 0.26
0.10 3 0.26 -0.04 0.22
4 0.26 -0.02 0.20
5 0.20 0.00 0.20 Converged
1 0.35 -0.11 0.24
2 0.24 -0.03 0.21
0.35
3 0.21 -0.01 0.20
4 0.20 0.00 0.20 Converged
1 0.50  -0.23 0.27
2 0.27 -0.05 0.22
050 3 0.22  -0.02 0.20
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4 0.20 0.00 0.20 Converged
1 250  -1.32 1.18
2 1.18  -0.59 1.18
3 1.18  -0.59 0.58
4 0.58  -0.28 0.30
2.50
5 0.30  -0.07 0.23
6 0.23  -0.02 0.21
7 0.21 -0.01 0.20
8 0.20 0.00 0.20 Converged

Table A.42: Tteration Summary for Estimating Synthetic Aa = 0.35 with Different
Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (A (Aays)

1 0.11 2.26 2.37
2 237 -1.22 1.15
3 1.15  -0.54 0.61
0.11 4 0.61 -0.22 0.39
5 0.39  -0.02 0.37
6 0.37  -0.02 0.35
7 0.35 0.00 0.35 Converged
1 0.20 0.33 0.53
0.90 2 0.53  -0.16 0.37
3 0.37  -0.02 0.35
4 0.35 0.00 0.35 Converged
1 0.50  -0.14 0.36
0.50 2 0.36  -0.01 0.35
3 0.35 0.00 0.35 Converged
1 250  -1.30 1.20
2 1.20  -0.21 0.99
3 099  -0.44 0.55
2.50
4 0.5  -0.17 0.37
5 0.37  -0.02 0.35
6 0.35 0.00 0.35 Converged
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Table A.43: Iteration Summary for Estimating Synthetic Aa = 0.50 with Different

Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess A(Aa) Result Comment
(Aao) (k) (Aa) (Aaki1)
1 0.15 2.02 2.17
2 2.17 -1.06 1.11
1.11 -0.4 .
0.15 3 0.45 0.66
4 0.66 -0.14 0.52
5 0.52  -0.02 0.50
6 0.50 0.00 0.50 Converged
1 0.20 0.82 1.02
2 1.02  -0.39 0.63
0.20 3 0.63  -0.12 0.51
4 0.51 -0.01 0.50
5 0.50 0.00 0.50 Converged
1 0.35 0.17 0.52
0.35 2 0.52  -0.02 0.50
3 0.50 0.00 0.50 Converged
1 2.50 -1.27 1.23
2 1.23  -0.54 0.69
2.50 3 0.69  -0.16 0.53
4 0.53  -0.03 0.50
5 0.50 0.00 0.50 Converged

E¢r

s

Table A.44: Combined Tteration Summary for Estimating Frr = 500 N/mm? with

different initial guesses

Initial Guess Iteration Guess AFEgt Result Comment
(Etr) (k) (Eprre) (Ep1pe1)
Table A.44 — Continued
Initial Guess Iteration Guess A(0A)  Result Comment
(0Ao) (k) (0 A) (6 Ak+1)
1 1 527 528
1 2 528 -28 500
500 0 500 Converged
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1 250 95 345

250 2 345 155 500
3 500 0 500 Converged
1 1000 -497 503

1000 2 503 -3 500
3 500 0 500 Converged
1 2500 -2119 381

2500 2 381 119 500
3 500 0 500 Converged
1 4800 -1480 3320
2 3320 -3003 317

4800 3 317 184 501
4 501 -1 500
5 500 0 500 Converged
1 7500 -7808 -308

7500 . .
2 -308 — — Model failed at this guess

Table A.45: Combined Iteration Summary for Estimating ¢ = 7500 N/mm? with
different initial guesses

Initial Guess Iteration Guess AFEgt Result Comment
(Etr) (k) (Eprw) (Et k1)
1 1 6791 6792
1 2 6792 707 7499
3 7499 1 7500
4 7500 0 7500 Converged
1 500 6279 6779
2 2 4
500 6779 720 7499
3 7499 1 7500
4 7500 0 7500 Converged
1 10000  -2494 7506
10000 2 7506 -6 7500
3 7500 0 7500 Converged
1 21000 -14883 6117
2 6117 1340 7457
21000
3 7457 43 7500
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Table A.45 — Continued

Initial Guess Iteration Guess A(0A)  Result Comment
(040) (k) (0A) (0Ak+1)
4 7500 0 7500 Converged
1 30000 -27506 2494
2 2494 4 14
30000 9 655 7149
3 7149 351 7500
4 7500 0 7500 Converged
1 60500 -59312 1188
2 1188 1871 3059
3 3059 1210 4269
60500
4 4269 3170 7439
5 7439 61 7500
6 7500 0 7500 Converged
1 150000 9920 159920
2 15992 16604 17652
150000 59920 1660 76526 . .
2 176526 — — Model failed at this guess

Table A.46: Combined Iteration Summary for Estimating Err = 10000 N/mm?
with different initial guesses

Initial Guess Iteration Guess AFEgr Result Comment
(Eyr) (k) (Efrr) (Ep1 1)
1 1 8738 8738
) 2 8738 1243 9981
3 9981 19 10000
4 10000 0 10000 Converged
1 500 8218 8718
2 8718 1263 9981
500
3 9981 19 10000
4 10000 0 10000 Converged
1 7500 2393 9893
7500 2 9893 107 10000
3 10000 0 10000 Converged
1 21000 -11872 9128
21000 2 9128 872 10000
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Table A.46 — Continued

Initial Guess Iteration Guess A(0A)  Result Comment
(040) (k) (0A) (0Ak+1)
3 10000 0 10000 Converged
1 30000 -23880 6120
30000 2 6120 3700 9820
3 9820 180 10000
4 10000 0 10000 Converged
1 64500  -62948 1552
2 1552 7297 8849
64500 3 8849 1133 9982
4 9982 18 10000
5 10000 0 10000 Converged
150000 1 150000 6580 156580
2 156580 — — Model failed at this guess

Table A.47: Combined Iteration Summary for Estimating Efr = 21000 N/mm?
with different initial guesses

Initial Guess Iteration Guess AFEgt Result Comment
(Eyr) (k) (Erre) (Ey 1)
1 1 17528 17529
1 2 17529 3594 21123
3 21123 -123 21000
4 21000 0 21000 Converged
1 500 17048 17548
500 2 17548 3575 21123
3 21123 -123 21000
4 21000 0 21000 Converged
1 7500 12523 20023
2 20023 803 20826
7500 3 20826 175 21001
4 21001 -1 21000
5 21000 0 21000 Converged
1 10000 10100 20100
2 20100 725 20825
10000
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Table A.47 — Continued

Initial Guess Iteration Guess A(0A)  Result Comment

(04) () (0A) (0A41)
3 20825 175 21001
4 21001 -1 21001
5 21000 0 21000 Converged
1 30000  -9036 20964
2 20964 725 20825

30000 3 20825 36 21000
4 21000 0 21000 Converged
1 73000  -1508 71492
2 71492 -9494 61998
3 61998  -44920 17077

73000 4 17077 2607 19684
5 19684 1330 21014
6 21014 -14 21000
7 21000 0 21000 Converged
1 300000 4405 304405

300000 2 304405 5053 309458  Consistent updating in the wrong directio
3 309458 — — Model failed at this guess

Table A.48: Combined Tteration Summary for Estimating Err = 30000 N/mm?
with different initial guesses

Initial Guess Iteration Guess AFEgt Result Comment
(Eftr) (k) (Errg) (Errper1)
1 1 8738 8738
) 2 8738 1243 9981
3 9981 19 10000
4 10000 0 10000 Converged
1 500 21375 21875
2 21875 7726 29601
500 3 29601 386 29987
4 29987 13 30000
5 30000 0 30000 Converged
1 21000 8344 29344
2 29344 642 29986
21000

205



3 29986 14 30000
4 30000 0 30000 Converged
1 92000  -7347 84653
2 84653  -5953 78700
3 78700  -8281 70420
4 70420  -12505 57915
92000
5 57915 -28600 29315
6 29315 706 30021
7 30021 -21 30000
8 30000 0 30000 Converged
1 50000 -19721 30279
50000 2 30279  -279 30000
3 30000 0 30000  Converged

fma:p
c

Table A.49: Iteration Summary for Estimating Synthetic f*** = 1.00kN with Dif-
ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(&) (k) fy f"

1.00 0.01 0.62 0.62
2.00 0.62 0.39 1.01
3.00 1.01  -0.01 1.00
4.00 1.00 0.00 1.00 Converged

0.01

1.00 0.50 0.51 1.01
0.50 2.00 1.01 -0.01 1.00
4.00 1.00 0.00 1.00 Converged

1.00 2.00 -0.85 1.15
2.00 1.15 -0.14 1.01

2.00
3.00 1.01  -0.01 1.00
4.00 1.00 0.00 1.00 Converged
1.00 3.00 -1.56 1.44
2.00 1.44  -0.38 1.06
3.00
3.00 1.06  -0.06 1.00
4.00 1.00 0.00 1.00 Converged
1.00 450  -2.73 1.77
2.00 1.77  -0.65 1.11
4.50
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3.00 1.11 -0.11 1.00
4.00 1.00 0.00 1.00 Converged

1.00 810  -8.09 0.01
2.00 0.01 0.28 0.30
8.10 3.00 0.30 0.77 1.07
4.00 1.07  -0.07 1.00
5.00 1.00 0.00 1.00 Converged

Table A.50: Iteration Summary for Estimating Synthetic f*** = 2.00kN with Dif-
ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Af"** Result Comment
(") (k) [y F"

1.00 0.01 3.92 3.92
2.00 3.92 -1.65 2.27
3.00 227 -0.26 2.01
4.00 2.01 -0.01 2.00

0.01

1.00 1.00 1.06 2.06
1.00 2.00 2.06  -0.06 2.00
3.00 2.00 0.00 2.00 Converged

1.00 1.50 0.50 2.00

1.50
2.00 2.00 0.00 2.00 Converged

1.00 3.00 -0.89 2.11
3.00 2.00 211 -0.10 2.00
3.00 2.00 0.00 2.00 Converged

1.00 4.50 -2.20 2.30
2.00 2.30 -0.29 2.01

4.
o0 3.00 2.01  -0.01 2.00
4.00 2.00 0.00 2.00 Converged
1.00 8.40 -8.24 0.16
2.00 0.16 1.40 1.56
8.40

3.00 1.56 0.43 1.99
4.00 1.99 0.01 2.00
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Table A.51: Iteration Summary for Estimating Synthetic f*** = 3.00kN with Dif-
ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Af™* Result Comment
() (k) f f" e

1.00 0.01 8.76 8.77
2.00 877  -847 0.30
0.01 3.00 0.30 2.42 2.72
4.00 2.72 0.29 3.00
5.00 3.00 0.00 3.00 Converged

1.00 1.00 2.11 3.11
1.00 2.00 3.11  -0.11 3.00
3.00 3.00 0.00 3.00 Converged

1.00 2.00 1.02 3.02
2.00 2.00 3.02  -0.02 3.00
3.00 3.00 0.00 3.00 Converged

1.00 2.50 0.51 3.01
2.50 2.00 3.01  -0.01 3.00
3.00 3.00 0.00 3.00 Converged

1.00 450  -1.44 3.06
4.50 2.00 3.06  -0.06 3.00
3.00 3.00 0.00 3.00 Converged

1.00 9.00 -8.91 0.09
2.00 0.09 0.98 1.07
9.00 3.00 1.07 2.11 3.17
4.00 3.17  -0.17 3.00
5.00 3.00 0.00 3.00 Converged

Table A.52: Iteration Summary for Estimating Synthetic f*** = 4.50kN with Dif-
ferent Initial Guesses on Large-Sized Samples

Initial Guess Iteration Guess Af"**  Result Comment
(") (k) fy S

1.00 0.01 8.54 8.59
2.00 8.59 -2.60 2.96
0.01 3.00 2.96 1.54 4.49
4.00 4.49 0.01 4.50
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5.00 4.50 0.00 4.50 Converged
1.00 1.00 3.53 4.53

1.00 2.00 453  -0.03 4.50
3.00 4.50 0.00 4.50 Converged
1.00 2.00 2.55 4.55

2.00 2.00 455  -0.05 4.50
3.00 4.50 0.00 4.50 Converged
1.00 3.00 1.50 4.50

3.00
2.00 4.50 0.00 4.50 Converged
1.00 5.00  -0.49 4.51

5.00 2.00 4.51 -0.01 4.50
3.00 4.50 0.00 4.50 Converged
1.00 10.70  -10.52 0.18
2.00 0.18 2.40 2.58

10.70 3.00 2.58 1.96 4.54
4.00 4.54 -0.04 4.50
5.00 4.50 0.00 4.50 Converged
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